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Supplementary Figure 1: Comparing SNP heritability estimates of ROI volumes in UK
Biobank phase 1 (n=9,198 subjects) and phase 2 (n=10,431 subjects) data. The sample
correlation coefficient of these estimates is 0.852.
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Supplementary Figure 2: Comparing SNP heritability estimates of ROI volumes in UK
Biobank phase 1 (n=9,198 subjects) and the combined phases 1 and 2 (n=19,629 subjects)
data. The sample correlation coefficient of these estimates is 0.930.
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Supplementary Figure 3: Comparing SNP heritability estimates of ROI volumes in UK
Biobank phase 2 (n=10,431 subjects) and the combined phases 1 and 2 (n=19,629 subjects)
data. The sample correlation coefficient of these estimates is 0.947.
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Supplementary Figure 4: SNP heritability estimates and 95% confidence intervals of ROI
volumes in UK Biobank phase 1 (n=9,198 subjects) data.
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Supplementary Figure 5: SNP heritability estimates and 95% confidence intervals of ROI
volumes in UK Biobank phase 2 (n=10,431 subjects) data.
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Supplementary Figure 6: SNP heritability estimates and 95% confidence intervals of ROI
volumes in the combined UK Biobank phases 1 and 2 (n=19,629 subjects) data.
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Supplementary Figure 7: Genetic correlation estimates and 95% confidence intervals
for the 101 ROI volumes between UK Biobank phase 1 (n=9,198 subjects) and phase 2
(n=10,431 subjects) data.
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Supplementary Figure 8: Number of independent significant variant-level associations
discovered in UKB GWAS (n=19,629 subjects) on each chromosome weighted by the chro-
mosome length at different significance levels. The p-values are raw p-values of two-sided
t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/)).
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Supplementary Figure 9: Functional consequences of independent significant variants
(SNPs) and variants in LD with them indicated by functional annotation assigned by
ANNOVAR at different significance levels (n=19,629 subjects). The p-values are raw p-
values of two-sided t-test statistics generated by PLINK (https://www.cog-genomics.org/

plink2/).
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Supplementary Figure 10: Pleiotropic genes identified in functional mappings of ROI
volumes (n1=19,629 subjects) that have been linked to cognitive traits and mental health
disease/disorders in previous GWAS. For each of the ROI-associated genes listed in the X
axis, we manually checked the previously reported associations on the NHGRI-EBI GWAS
catalog (version 2019-05-03, https://www.ebi.ac.uk/gwas/). The novel and previously
reported genes of ROI volumes were labeled with two different colors (orange and green,

respectively).
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Supplementary Figure 11: Number of significant variant-level associations discovered

in UKB GWAS (n=19,629 subjects) at different significance levels. Outer layer: P-value

< 5 x 1078; middle layer: P-value < 5 x 107?; and inner layer: P-value < 4.9 x 10710,

The 4.9 x 1071° threshold corresponds to adjusting for testing multiple imaging phenotypes
with the Bonferroni correction. The p-values are raw p-values of two-sided t-test statistics
generated by PLINK (https://www.cog-genomics.org/plink2/).
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Supplementary Figure 12: Number of significant variant-level associations discovered
in meta-analyzed GWAS (n=21,821 subjects) at different significance levels. Outer layer:
P-value < 5 x 1078; middle layer: P-value < 5x 107?; and inner layer: P-value < 4.9 x 10710,
The 4.9 x 1071° threshold corresponds to adjusting for testing multiple imaging phenotypes
with the Bonferroni correction. The two-sided t-test statistics were separately generated on
UKB (n=19,629 subjects), PING (n=461 subjects), PNC (n=537 subjects), ADNI (n=860
subjects), and HCP (n=334 subjects) cohorts by PLINK (https://www.cog-genomics.
org/plink2/), and then we meta-analyzed these summary results by METAL (https://
genome . sph.umich.edu/wiki/METAL) with the sample-size weighted approach.
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Supplementary Figure 13: Selected pairwise genetic correlations between ROI vol-
umes (n=21,821 subjects) and other traits. Stars are significant associations after adjust-
ing for multiple testing by the Benjamini-Hochberg procedure at 0.05 level. The LDSC
software (https://github.com/bulik/ldsc) was used to estimate and test the pairwise
genetic correlation using GWAS summary statistics. The two-sided test statistics were
calculated using jackknife algorithms, more details can be found in Bulik-Sullivan et al.

(https://www.nature.com/articles/ng.3406).
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Supplementary Figure 14: Selected pairwise genetic correlation estimates between ROI
volumes (n=21,821 subjects) and other traits. Stars are significant associations after ad-
justing for multiple testing by the Benjamini-Hochberg procedure at 0.1 level. The LDSC
software (https://github.com/bulik/ldsc) was used to estimate and test the pairwise
genetic correlation using GWAS summary statistics. The two-sided test statistics were
calculated using jackknife algorithms, more details can be found in Bulik-Sullivan et al.
(https://www.nature.com/articles/ng.3406).
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Supplementary Figure 15: Prediction accuracy (incremental R-squared) of significant
polygenic risk scores constructed by UKB-derived GWAS summary statistics (n=19,629
subjects) on the four independent datasets. We display the 29 ROIs that are significant in
at least three of the four datasets after the Bonferroni correction.
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Supplementary Figure 16: Prediction accuracy (incremental R-squared) of significant
polygenic risk scores constructed by UKB-derived GWAS summary statistics (n=19,629
subjects) on the four independent datasets. We display the 56 ROIs that are significant in
at least two of the four datasets after the Bonferroni correction.
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Supplementary Figure 17: Prediction accuracy (incremental R-squared) of significant
polygenic risk scores constructed by UKB-derived GWAS summary statistics (n=19,629
subjects) on the four independent datasets. We display the 84 ROIs that are significant in
at least one of the four datasets after the Bonferroni correction.



2 Supplementary datasets and tables

All supplementary dataset and tables can be found in the zip file, here is a list the header
of each dataset/table.

Supplementary Dataset 1: GWAS Manhattan plots for all the 101 ROI volumes (n=19,629
subjects).

Supplementary Dataset 2: GWAS QQ plots for all the 101 ROI volumes (n=19,629
subjects).

Supplementary Table 1: SNP heritability estimates of ROI volumes using UKB phase 1
data (n=9,198 subjects), UKB phase 2 data (n=10,431 subjects), UKB phases 1 and 2 data
(n=19,629 subjects), and the genetic correlations between UKB phases 1 and 2. The SNP
heritability estimates were calculated in linear mixed effect models and were tested using
one-sided likelihood ratio test. The formal settings can be found in Yang et al. (https:
//doi.org/10.1016/j.ajhg.2010.11.011). We also provided the adjusted p-values after
the Bonferroni correction. The LDSC software (https://github.com/bulik/1ldsc) was
used to estimate and test the pairwise genetic correlation. The two-sided test statistics
were calculated using jackknife algorithms, more details can be found in Bulik-Sullivan et
al. (https://www.nature.com/articles/ng.3406).

Supplementary Table 2: Number of significant variant-level associations, independent sig-
nificant variant-level associations, and significant genetic risk loci discovered in UKB GWAS
(n=19,629 subjects) at different significance levels. The p-values are raw p-values of two-
sided t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/)).

Supplementary Table 3: List of independent significant variant-level associations discov-
ered in UKB GWAS (n=19,629 subjects) at different significance levels. The p-values are raw
p-values of two-sided t-test statistics generated by PLINK (https://www.cog-genomics.
org/plink2/).

Supplementary Table 4: Number of independent significant variant-level associations
discovered in UKB GWAS (n=19,629 subjects) on each chromosome at different significance
levels. The p-values are raw p-values of two-sided t-test statistics generated by PLINK
(https://www.cog-genomics.org/plink2/).


https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
https://github.com/bulik/ldsc
https://www.nature.com/articles/ng.3406
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/

Supplementary Table 5: List of significant genetic risk loci identified by UKB GWAS
(n=19,629 subjects) at different significance levels. The p-values are raw p-values of two-
sided t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/)).

Supplementary Table 6: Number of significant genetic risk loci identified by UKB GWAS
(n=19,629 subjects) on each chromosome at different significance levels. The p-values are raw
p-values of two-sided t-test statistics generated by PLINK (https://www.cog-genomics.
org/plink2/)).

Supplementary Table 7: Summary of significant associations identified by UKB GWAS
(n=19,629 subjects) at different significance levels. The p-values are raw p-values of two-
sided t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/)).

Supplementary Table 8: Independent significant (P-value < 4.9 x 1071%) variants and
their correlated variants for ROI volumes that have previously been identified at P-value
< 9%x107% in GWAS of any traits listed on the NHGRI-EBI GWAS catalog (version 2019-01-
31, https://www.ebi.ac.uk/gwas/)). The independent significant variants for ROI volumes
were identified by UKB GWAS (n=19,629 subjects), whose p-values are raw p-values of two-
sided t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/).

Supplementary Table 9: Independent significant (P-value < 4.9x1071%) variants and their
correlated variants for ROI volumes that have previously been identified at P-value < 9 x 10°
in GWAS of any brain volume and structure traits listed on the NHGRI-EBI GWAS catalog
(version 2019-01-31, https://www.ebi.ac.uk/gwas/). The independent significant variants
for ROI volumes were identified by UKB GWAS (n=19,629 subjects), whose p-values are raw
p-values of two-sided t-test statistics generated by PLINK (https://www.cog-genomics.
org/plink2/)).

Supplementary Table 10: Independent significant (P-value < 5 x 107®) variants and
their correlated variants for ROI volumes that have previously been identified at P-value
< 9x107% in GWAS of any traits listed on the NHGRI-EBI GWAS catalog (version 2019-01-
31, https://www.ebi.ac.uk/gwas/)). The independent significant variants for ROI volumes
were identified by UKB GWAS (n=19,629 subjects), whose p-values are raw p-values of two-
sided t-test statistics generated by PLINK (https://www.cog-genomics.org/plink2/)).

Supplementary Table 11: List of variants that are within LD of independent significant
variants discovered by UKB GWAS (n=19,629 subjects) at different significance levels. The
p-values are raw p-values of two-sided t-test statistics generated by PLINK (https://www.
cog-genomics.org/plink2/)).
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Supplementary Table 12: List of significant gene-level associations identified by MAGMA
(P-value < 2 x 1078) in UKB dataset (n=19,629 subjects). The p-values are raw p-values
calculated using asymptotic sampling distribution via permutations. Details can be found
in de Leeuw et al. (https://doi.org/10.1371/journal.pcbi.1004219) and the “Gene
Analysis” section of the MAGMA manual (https://ctg.cncr.nl/software/MAGMA/doc/
manual_v1.07.pdf).

Supplementary Table 13: List of novel genes identified by MAGMA gene-based associ-
ation analysis (P-value < 2 x 107®) in UKB dataset (n=19,629 subjects). The p-values are
raw p-values calculated using asymptotic sampling distribution via permutations. Details
can be found in de Leeuw et al. (https://doi.org/10.1371/journal.pcbi.1004219) and
the “Gene Analysis” section of the MAGMA manual (https://ctg.cncr.nl/software/
MAGMA/doc/manual_v1.07.pdf).

Supplementary Table 14: Functional consequences of independent variants (and variants
in LD with them) indicated by functional annotation assigned by ANNOVAR at different
significance levels. The independent variants were identified by UKB GWAS (n=19,629
subjects), whose p-values are raw p-values of two-sided t-test statistics generated by PLINK
(https://www.cog-genomics.org/plink2/).

Supplementary Table 15: List of mapped genes identified in functional mapping of UKB
GWAS (n=19,629 subjects) results at different significance levels. The UKB GWAS p-
values are raw p-values of two-sided t-test statistics generated by PLINK (https://www.
cog-genomics.org/plink2/)).

Supplementary Table 16: Significant 3D chromatin (Hi-C) interactions identified in func-
tional mapping of UKB GWAS (n=19,629 subjects) results at different significance levels.
The UKB GWAS p-values are raw p-values of two-sided t-test statistics generated by PLINK
(https://www.cog-genomics.org/plink2/).

Supplementary Table 17: List of mapped genes identified in functional mapping of UKB
GWAS (n=19,629 subjects) results by 3D chromatin (Hi-C) interaction. The UKB GWAS
p-values are raw p-values of two-sided t-test statistics generated by PLINK (https://www.
cog-genomics.org/plink2/)).
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Supplementary Table 18: MAGMA gene property analysis for UKB GWAS (n=19,629
subjects) results and 14 brain tissues. The 14 brain tissues were from GTEx v7 RNA-seq
database. Significant tissue groupings are highlighted in bold. The p-values are raw p-
values of two-sided test statistics in linear regression. Details can be found in de Leeuw
et al. (https://doi.org/10.1371/journal.pcbi.1004219) and the “Gene-level Analysis”
section of the MAGMA manual (https://ctg.cncr.nl/software/MAGMA/doc/manual _v1.
07 .pdf).

Supplementary Table 19: Cell-type/tissue-specific chromatin-based annotation analy-
sis for UKB GWAS (n=19,629 subjects) results. Significant tissue groupings are high-
lighted in bold. The p-values are raw p-values from one-sided test statistics calcu-
lated using jackknife algorithms. Details can be found in Finucane et al. (https://
www.nature.com/articles/s41588-018-0081-4) and https://github.com/bulik/ldsc/
wiki/Cell-type-specific-analyses.

Supplementary Table 20: DEPICT gene-set enrichment analysis for UKB GWAS
(n=19,629 subjects) results. The p-values are raw p-values from one-sided tests and the
test statistics were empirically calculated using re-sampling techniques with z-scores. De-
tails can be found in Pers et al. (https://www.nature.com/articles/ncomms6890) and
https://github.com/perslab/depict.

Supplementary Table 21: MAGMA gene-set analysis for UKB GWAS (n=19,629 sub-
jects) results. Significant gene sets after correcting for testing multiple ROIs are highlighted
in bold. The gene-set p-values are asymptotic p-values of one-sided test statistics in lin-
ear regression. Details can be found in de Leeuw et al. (https://doi.org/10.1371/
journal.pcbi.1004219) and the “Gene-level Analysis” section of the MAGMA manual
(https://ctg.cncr.nl/software/MAGMA/doc/manual _v1.07.pdf).

Supplementary Table 22: Number of significant variant-level associations discovered in
meta-analyzed GWAS (n=21,821 subjects) at different significance levels. The two-sided
t-statistics were separately generated on UKB (n=19,629 subjects), PING (n=461 sub-
jects), PNC (n=537 subjects), ADNI (n=860 subjects), and HCP (n=334 subjects) cohorts
by PLINK (https://www.cog-genomics.org/plink2/), and then we meta-analyzed the
GWAS summary results by METAL (https://genome.sph.umich.edu/wiki/METAL) with
the sample-size weighted approach.
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Supplementary Table 23: Genetic correlation between several UKB ROIs volumes
(TBV, left/right thalamus proper, left/right caudate, left/right putamen, left/right pal-
lidum, left/right hippocampus, left/right accumbens area, n=21,821 subjects) and their
corresponding traits studied in the ENIGMA consortium. The LD hub (http://1ldsc.
broadinstitute.org/ldhub/) was used to estimate and test the pairwise genetic correla-
tion. The two-sided test statistics were calculated using jackknife algorithms, more details
can be found in Bulik-Sullivan et al. (https://www.nature.com/articles/ng.3406).

Supplementary Table 24: Sources of the 50 sets of publicly available GWAS summary
statistics used in this study.

Supplementary Table 25: Genetic correlation estimates and p-values between ROI vol-
umes (n=21,821 subjects) and other traits. The LDSC software (https://github.com/
bulik/ldsc) was used to estimate and test the pairwise genetic correlation. The two-sided
test statistics were calculated using jackknife algorithms, more details can be found in Bulik-
Sullivan et al. (https://www.nature.com/articles/ng.3406).

Supplementary Table 26: Significant Genetic correlation estimates and p-values between
ROI volumes (n=21,821 subjects) and other traits. The LDSC software (https://github.
com/bulik/1dsc) was used to estimate and test the pairwise genetic correlation. The two-
sided test statistics were calculated using jackknife algorithms, more details can be found in
Bulik-Sullivan et al. (https://www.nature.com/articles/ng.3406).

Supplementary Table 27: Prediction accuracy (incremental R-squared) and p-value of
polygenic risk scores in the ten-fold cross-validation analysis within UKB (n=19,629 sub-
jects). The p-values are asymptotic p-values of two-sided t-test statistics in linear regression.

Supplementary Table 28: Prediction accuracy (incremental R-squared) and p-value of
polygenic risk scores constructed by UKB-derived GWAS summary statistics (n=19,629
subjects) on the four independent datasets. The p-values are asymptotic p-values of two-
sided t-test statistics in linear regression.

Supplementary Table 29: Sample size and number of variants of the data used in each
GWAS.

Supplementary Table 30: Demographic information of five datasets (UKB, ADNI, HCP,
PING, and PNC).
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3 Supplementary Note

Cohort information

In this study, we made use of data from five independent studies, whose demographic infor-
mation is listed in Supplementary Table 30} The main GWAS was performed on the British
individuals (self-reported ethnic background, Data-Field 21000) in UK Biobank study. For
the other four cohorts, we only considered the unrelated European ancestry individuals (self-
reported race, ethnic and family information) in GWAS. In polygenic risk score prediction,
we used all available individuals (with genetic variants and phenotype data) to examine the
prediction power of UKB GWAS results in testing data.

The raw MRI data were downloaded from each data resource. We processed the MRI
data locally using consistent procedures via advanced normalization tools (ANTs) (Avants
et al.,|2011)) to generate ROI volumes for each dataset. Normalization/standardization using
the ANTSs software had been detailed in [Tustison et al.| (2014]) and |Avants et al. (2011). We
used the standard OASIS-30 Atropos template for registration and Mindboggle-101 atlases
for labeling. Details of these templates and processing steps can be found in https://
mindboggle.info/data.html, Klein and Tourville (2012) and Tustison et al.| (2014).

Genotyping and quality control

We downloaded the imputed genetic variants data from UKB and HCP data resources,
respectively. Genotype imputation was performed locally on the PNC, ADNI, and PING
datasets using consistent procedures via MACH-Admix (Liu et al.; 2013)). A full description
of the imputation procedures in PNC, ADNI, and PING datasets was detailed supplementary
information of Zhao et al.| (2018]). We further performed the following genetic variants data
quality controls on each dataset: 1) exclude subjects with more than 10% missing genotypes;
2) exclude variants with minor allele frequency less than 0.01; 3) exclude variants with larger
than 10% missing genotyping rate; 4) exclude variants that failed the Hardy-Weinberg test
at 1 x 1077 level; and 5) remove variants with imputation INFO score less than 0.8.

For X chromosome analysis of UKB dataset, we performed quality controls using XWAS
(Gao et al., 2015). Steps are detailed in http://keinanlab.cb.bscb.cornell.edu/data/
xwas/XWAS_manual_v3.0.pdf. First, the general quality control steps were performed sep-
arately on males and females, including 1) exclude subjects with more than 10% missing
genotypes; 2) exclude variants with minor allele frequency less than 0.01; 3) exclude variants
with larger than 10% missing genotyping rate; 4) exclude variants that failed the Hardy-
Weinberg test at 1 x 1077 level; and 5) sex check. Next, the following X-specific quality
control steps were performed on males and females together: 1) variants on chromosomes
other than X were removed, as well as variants in the pseudoau-tosomal regions (PARs) on
X; 2) variants were removed if they had significantly different MAF between male and female
(p-value < 1.76 x 1077, Bonferroni-corrected). The final number of genetic variants after all
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quality controls is 283,120.

Number of significant variant-level associations of UKB GWAS

For the UKB GWAS, there were 26,425 significant variant-level associations at the con-
ventional 5 x 10~® GWAS significance level and 14, 448 significant ones at the 4.9 x 10~
significance level (that is, 5 x 1078/101, additionally adjusted for all 101 GWAS performed).
TBYV had the largest number of significant associations, which was 3,445 at 4.9 x 10710 signif-
icance level. In addition to TBV, left /right hippocampus, left /right putamen, and cerebellar
vermal lobules VIII-X had more than 500 significant associations (Supplementary Table 2,
Supplementary Fig. 11).

We then use FUMA (Watanabe et al., 2017)) to define independent significant variants
as significant variants that were independent of other significant variants. Left/right hip-
pocampus, left /right putamen, and cerebellar vermal lobules VIII-X had at least 30 indepen-
dent significant variants. Other ROIs that had at least 10 independent significant variants
included left/right precentral, left/right cerebellum exterior, brain stem, X4th ventricle,
left /right lateral ventricle, left /right cerebellum white matter, cerebellar vermal lobules I-V,
cerebellar vermal lobules VI-VII, left pericalcarine, and TBV (Supplementary Table 4).

Enrichment and annotation analyses

First, gene property analysis was performed for 14 brain tissues to examine whether the
tissue-specific gene expression levels were related to the associations between genes and ROI
volumes by using MAGMA (de Leeuw et al., 2015). We detected five significant associations
after the Bonferroni correction (that is, 14 x 101 = 1,414 tests), involving gene expression
in brain cerebellar hemisphere and cerebellum tissues and gene’s association significance
with pallidum and putamen volumes (p-value < 2.05 x 107°) (Supplementary Table 18).
These results showed that genes with higher transcription levels on these brain tissues also
had stronger genetic associations with brain ROI volumes. We also performed chromatin-
based annotation analysis by stratified LDSC (Finucane et al., 2018). A total of 490 cell-
type/tissue-specific DNase I hypersensitivity and activating histone marker annotations were
examined (Online Methods). After the Bonferroni correction (that is, 490 x 101 = 49,490
tests), we found that H3K4me3 histone annotations from three brain tissues had significantly
enriched contribution to per-SNP heritability of left /right accumbens area (p-value < 6.58 x
1077) (Supplementary Table 19).

To gain more insights into the biological mechanisms, we used DEPICT (Pers et al., |[2015)
and MAGMA (de Leeuw et al., 2015)) to conduct gene set analysis. DEPICT performed en-
richment testing for 10, 968 reconstituted gene sets, see Supplementary Data 1 of [Pers et al.
(2015) for an overview of these gene sets. None of the candidates survived the Bonferroni
correction (that is, 10,968 x 101 tests). At the 4.5 x 1079 significance level (that is, not ad-
justed for testing multiple phenotypes), DEPICT showed suggestive evidence for enrichment



of 10 gene sets (Supplementary Table 20), such as “abnormal brain development” gene set
(MP:0000913) enriched among variants associated with left cerebellum exterior, and “open
neural tube” (MP:0000929) gene set enriched for left ventral DC. Similarly, MAGMA was
performed for 10,678 candidate gene sets, two of which were significant after the Bonferroni
correction, and there were 35 more enriched gene sets when not adjusted for testing multiple
ROIs (Supplementary Table 21).

Genetic correlation with other traits

In the genetic correlation (gc) analysis, we found that TBV had positive correlations with
cognitive functions, education, intelligence, and numerical reasoning (gc range=[0.20, 0.25],
mean=0.22, p-value range=[1.52x 107 3.45x1075]). Similar connections were also observed
on several other ROIs. For example, left posterior cingulate showed positive correlation with
intelligence (gc=0.16, p-value=1.38 x 10~%), left rostral middle frontal showed positive corre-
lation with BD (gc=0.22, p-value=5.85 x 107°), right fusiform had positive correlation with
education (gc=0.13, p-value=1.0 x 107%), and right precuneus had positive correlation with
neuroticism (gc=0.17, p-value=1.0 x 107%). Reaction time had positive genetic correlations
with right lateral ventricle and X3rd ventricle (ge range=[0.15, 0.16], p-value range=[1.39 x
107°,2.04 x 107%)), and had negative correlations with left/right pallidum, left/right ventral
DC, and WM (gc range=[—0.20, —0.13], p-value range=[3.80 x 1077,1.14 x 107%]). Nega-
tive genetic correlations were also found between depressive symptoms and GM (ge=—0.25,
p-value=2.79 x 107°), and between neuroticism and TBV (gc=—0.14, p-value=2.0 x 107%).
Gray matter volume loss has been revealed in depressed individuals (Belden et al., 2016;
Grieve et al., [2013), and neuroticism and TBV may be negatively correlated (Jackson et al.,
2011 Knutson et al., 2001]).

PING Methods

Part of the data used in the preparation of this article were obtained from the Pediatric
Imaging, Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.
edu/). PING was launched in 2009 by the National Institute on Drug Abuse (NIDA) and
the Funice Kennedy Shriver National Institute Of Child Health & Human Development
(NICHD) as a 2-year project of the American Recovery and Reinvestment Act. The primary
goal of PING has been to create a data resource of highly standardized and carefully curated
magnetic resonance imaging (MRI) data, comprehensive genotyping data, and developmental
and neuropsychological assessments for a large cohort of developing children aged 3 to 20
years. The scientific aim of the project is, by openly sharing these data, to amplify the
power and productivity of investigations of healthy and disordered development in children,
and to increase understanding of the origins of variation in neurobehavioral phenotypes. For
up-to-date information, see http://ping.chd.ucsd.edu/.
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ADNI Methods

Data used in the preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a 60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimers disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2.
To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate
in the research, consisting of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow up duration of each group is specified in the
protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1
and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org.
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