
Auto-q: Qiime Analysis automating script

Background

Microbiome studies have attracted much attention recently and many publications

have reported the effects of the microbiome on health and disease. With the progress

of next-generation sequencing techniques and the increased volume of data pro-

duced during these studies, the necessity of the automation of the sequencing anal-

ysis is increasing day by day.

QIIME (pronounced as chime) stands for Quantitative Insights Into Micro-

bial Ecology. It is a pipeline for microbiome analysis, starting from raw DNA

sequencing data and ending with visualization and statistical analysis results. It

consists of a comprehensive collection of tools, available at http://qiime.org/.

Some of these tools are newly written in Python by the QIIME developers, and

other tools are adopted from external sources, such as usearch and fastq-join

(https://github.com/ExpressionAnalysis/ea-utils), wrapped over by QIIME scripts

to work in harmony with the whole pipeline.

Since QIIME is command line-based, a good experience in terminal and shell

scripting is required to perform the multi-step analysis, especially with multiple

files, which is usually the case in microbiome analysis. Each step needs to be exe-

cuted separately. Moreover, in trimming, merging, and chimera removal, it needs to

be executed for each single sample. These issues make the analysis strenuous and

1



prone to mistakes, particularly if the analysis needs to be repeated more than once,

for purposes of comparing the effect of analysis parameters, for instance, or to use

different reference databases.

When our group started a new microbiome project, we needed to repeat the

analysis several times to explore the impact of different data processing methods

and parameters, and to decide the most appropriate set of parameters for our data

set. Doing such an analysis using the usual QIIME commands is time-consuming

and difficult to be tracked, because of the large number of commands to be executed

and modified each time. Moreover, we needed to stop the analysis at certain steps,

check the intermediate results, and resume the execution, rather than running the

entire sequence of commands at once. These two factors motivated us to write a

new tool to help achieve these tasks.

We wrote a Python script, Auto-q, to automate QIIME analysis of Illumina

paired-end reads. The command-line input is kept to minimal; only one command

needs to be executed to perform the full analysis. The raw sequencing data need to

be saved as FASTQ files in a single folder. The script takes the input and the output

folder names as command-line arguments; all the results and intermediate files are

stored in the output folder and its subfolders. Figure 1 shows the sequence of steps

followed:

1. Trimming: Illumina per-base sequence quality decreases with the read length,

especially in the reverse reads. Therefore, to improve the merging quality,

trimming is used to cut the 3’ end; the trimming point depends on the quality

of the read, and trimming can lead to improved merging results. Since QIIME

does not provide any trimming tools, Auto-q wraps around BBDuK from

BBTools (http://jgi.doe.gov/data-and-tools/bbtools/). Contaminants are also

removed in this step, such as adapter and Phix sequences.

2



Figure. 1. Auto-q workflow steps.

3



2. Paired reads joining: The default joining tool in QIIME is fastq-join, and

we set it as default in Auto-q as well. We also incorporated BBMerge from

BBTools, which offers more options and parameters. After merging, reads

shorter than a user-specified cutoff are discarded.

3. Quality control: Using QIIME split libraries fastq.py script, Auto-q is able

to demultiplex the reads, but in this case, we use it for quality control only.

The low-quality reads are removed totally. The quality phred threshold can

be specified using the –q argument (19 by default).

4. Chimera removal: It is achieved by applying usearch61 in two steps:

first by identifying chimeric sequences using the reference database with

the identify chimeric seqs.py script from Qiime and then, by filtering the

chimera using the filter fasta.py script.

5. OTU picking: It is performed using the open reference otus.py script. The

default reference database is Greengenes. We also included SILVA.

6. Diversity analyses: Alpha and beta diversity analyses are performed using

the core diversity analyses.py script from QIIME.

Other command-line arguments include: -e for the depth of rarefaction for di-

versity analysis, -s (stop at) to stop the analysis at a particular step, -b (begin with)

to restart the analysis (e.g., starting with OTU picking or diversity analysis), and -c

for specifying the configuration file.

Auto-q uses a configuration file, a Python INI file, to save the required informa-

tion such as the location of the database folders, the number of parallel jobs to be

executed at the same time, and the default names of the output folders. Mapping file

preparation: Auto-q generates a minimally required QIIME mapping file automati-

cally. This file needs to be modified manually to add experimental conditions, and

4



Auto-q can rerun the diversity analysis. We recommend running the full analysis

once, and repeating the diversity analysis as many times as required depending on

the experimental conditions being considered.

Auto-q is designed to work in QIIME virtual machine. It is written in Python

and utilizes the tools that are already included in QIIME virtual machine, except for

a few additions, namely BBTools, and reference databases (SILVA); the installation

of these additional tools is trivial without dependency concerns.

References

1. Bushnell B, Rood J, Singer E. BBMerge – Accurate paired shotgun read

merging via overlap. PLOS ONE. 2017;12:e0185056.

2. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello

EK, et al. QIIME allows analysis of high-throughput community sequencing

data. Nat. Methods. 2010;7:335–6.

3. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al.

Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench

Compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–72.

4. Edgar RC. Search and clustering orders of magnitude faster than BLAST.

Bioinformatics. 2010;26:2460–1.

5. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M,

et al. Towards a unified paradigm for sequence-based identification of fungi.

Mol. Ecol. 2013;22:5271–7.

6. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA

5



ribosomal RNA gene database project: improved data processing and web-

based tools. Nucleic Acids Res. 2013;41:D590–6.

7. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in dis-

ease. Curr. Opin. Gastroenterol. 2015;31:69–75.

6


