
Additional file S2 — Workflow for estimating speed and distance
travelled using CTSD in ctmm

In this appendix we provide three worked examples of how to estimate mean speed over the study
period, instantaneous speed at sampled times, and daily distance travelled, using the continuous-
time latent speed and distance estimation (CTSD) method detailed in the main text. These are
carried out on GPS data from a white-nosed coati (Nasua narica) tracked on Barro Colorado Is-
land, Panama [1], and a wood turtle (Glyptemys insculpta) tracked in Virginia, USA, and ARGOS
data from a brown pelican Pelecanus occidentalis tracked on the eastern coast of the United States.
These three datasets are openly available within the ctmm package.

White-nosed coati example:
Estimating speed/distance with a pre-calibrated device

The coati tracking data used in the main text to demonstrate the functionality of CTSD were
collected using an e-obs collar. These devices have pre-calibrated dilution of precision (DOP)
values, and the data come with ‘eobs horizontal accuracy estimate’ (in meters) as opposed to
HDOP and VDOP columns respectively. As such, there is no need to collect calibration data to
calibrate the device’s error prior to analysis.

#Load the package

library(ctmm)

#Load in the coati tracking dataset

data("coati")

#Extract the data from the desired individual

#and return some summary statistics

DATA <- coati [[1]]

summary(DATA)

$identity
[1] "Aleja"

$timezone
[1] "UTC"

$projection
[1] "+proj=tpeqd +lon _1= -79.8508054092888 +lat _1=9.1520090169231

+lon _2= -79.8466077969879 +lat _2=9.15236182525117 +datum=WGS84"
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$‘sampling interval (minutes)’

[1] 15.18333

$‘sampling period (months)’

[1] 1.351685

$‘longitude range’

[1] -79.85899 -79.83657

$‘latitude range’

[1] 9.147379 9.164963

#Plot the tracking data showing the 50% error circles

plot(DATA ,

error = 2,

level.UD = 0.50)
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Figure 1: A scatterplot of the GPS positional observations for a white nosed coati (Nasua narica)
tracked on Barro Colorado Island, Panama. Data were collected using e-obs collars collecting
locations at a 15 minute sampling interval, over 41 days.

Before fitting any movement models to these data, the first step is to ensure that there are no
outliers that could bias parameter estimation. This step is facilitated by the outlie() function
in the ctmm package (Fleming et al. in prep.). This function calculates distances from the median
longitude and latitude, and maximum speeds over each time step. It returns a data.frame of
these estimates, as well as a plot with intervals of high speed highlighted with blue segments, and
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distant locations highlighted with red points. Both estimates account for telemetry error and the
speed estimates account for timestamp truncation and assign each time step’s speed to the most
likely offending time (based on the speed estimate of adjacent locations). We note that the speed
estimates used here are tailored for outlier detection and have poor statistical efficiency.

#Check for any outliers

OUTLIERS <- outlie(DATA)
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Figure 2: A scatterplot of the GPS positional observations returned by the outlie() function.
Intervals of high speed are highlighted with blue segments, and distant locations are highlighted
with red points

The location in the upper right-hand of the plot appears to be an outlier, but, to confirm this, it
is useful to plot the speed and distance estimates.

plot(OUTLIERS)

This scatterplot confirms our suspicion that the location in question is an outlier, and we can
proceed to remove it.

#Remove the outlier based on the estimated speed

DATA <- DATA[-(which(OUTLIERS [[1]] >= 0.6)),]

Finally, to confirm we have removed all of the outliers, we repeat the above steps on the filtered
data.

#Re-check for any remaining outliers

par(mfrow=c(1,3))
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Figure 3: A scatterplot of the speed and distance estimates returned by the outlie() function.
Note how the majority of the estimates are clustered together, but with one obvious outlier in the
upper right-hand of the plot.

plot(DATA ,

error = 2,

level.UD = 0.50)

OUTLIERS <- outlie(DATA)

plot(OUTLIERS)
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Figure 4: From left to right, scatterplots of the GPS positional observations, the GPS positional
observations returned by the outlie() function, and the speed and distance estimates returned by
the outlie() function. Note how there is not longer any indication of outliers in the data.

After removing any outliers from the data, the next step is to fit a series of continuous-time
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movement models to the data, and the best fit model is selected based on the approximate small-
sample-size corrected Akaike Information Criterion [for a complete description of the model selection
step see: 2].

#Generate the variogram

vg <- variogram(DATA)

#Guesstimate the model to obtain initial parameter values

GUESS <- ctmm.guess(DATA ,

variogram = vg ,

interactive = FALSE)

#Turn error on

GUESS$error <- TRUE

#Fit and select models

FITS <- ctmm.select(DATA ,

CTMM = GUESS)

#Return a summary of the selected model

summary(FITS)

$name
[1] "OUF isotropic error"

$DOF
mean area speed

41.00426 68.62914 537.66568

$CI
low ML high

area (square kilometers) 1.601182 2.059400 2.574401

τ [position] (hours) 8.121016 11.089522 15.143118

τ [velocity] (minutes) 18.627999 21.661519 25.189039

speed (kilometers/day) 5.373700 5.610866 5.847895

#Note: the speed value returned here is the RMS speed

#detailed in Appendix S1

#Plot the variogram and selected model to visualy inspect the fit

plot(vg ,

CTMM = FITS)

With filtered data, and an appropriate movement model in hand, the final step is to estimate
the animal’s instantaneous speeds, the mean speed over the study period, or the speed/distance
travelled over a specific period of time.
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Figure 5: Variogram derived from the coati’s location data. The black line and grey shading depict
the semi-variance ± 95% CIs, whereas the red line and shading depict the fitted movement model
± 95% CIs of the model fit.

#Estimate mean speed over the duration of the study period

speed(DATA ,

FITS)

low ML high

speed (kilometers/day) 4.305776 4.439711 4.57465

#Estimate the instantaneous speeds

SPEEDS <- speeds(DATA ,

FITS)

head(SPEEDS)

low ML high t timestamp

1 0.007752602 0.04316145 0.09353133 1268670712 2010 -03 -15 16:31:52

2 0.005661690 0.03153354 0.06833981 1268672450 2010 -03 -15 17:00:50

3 0.005020705 0.02795043 0.06056812 1268673356 2010 -03 -15 17:15:56

4 0.005774482 0.03209965 0.06953654 1268674253 2010 -03 -15 17:30:53

5 0.007557332 0.04179921 0.09044595 1268675130 2010 -03 -15 17:45:30

6 0.008125551 0.04512254 0.09772508 1268679695 2010 -03 -15 19:01:34

##############################################################

#### Estimating daily movement distance over a study period

#First identify how many days the individual was tracked for
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DATA$day <-cut(DATA$timestamp ,breaks="day")

days <- unique(DATA$day)

#An empty list to fill with the results

res <- list()

#Loop over the number of days

for(i in 1: length(days)){

message("Estimating distance travelled on day ", i,": ", days[i])

#Select data for the day in question

DATA.SUBSET <- DATA[which(DATA$day == days[i]) ,]

#Calculate the duration of the sampling period (in seconds)

SAMP.TIME <- diff(c(DATA.SUBSET$t[1],
DATA.SUBSET$t[nrow(DATA.SUBSET)]))

#Guesstimate the model for initial parameter values

GUESS <- ctmm.guess(DATA ,

variogram = variogram(DATA),

interactive = FALSE)

#Turn error on

GUESS$error <- TRUE

#Fit the movement model to the day ’s data

FITS <- ctmm.fit(DATA.SUBSET ,

CTMM = GUESS)

#Calculate speed in m/s

ctmm_speed <- speed(object = DATA.SUBSET ,

CTMM = FITS ,

units = FALSE)

#Multiply speed (in m/s) by the sample time (in s)

#to get the estimated distance travelled (in m)

ctmm_dist <- ctmm_speed*SAMP.TIME

#Re-name the variable

rownames(ctmm_dist) <- "distance (meters)"
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#And store the results in the list

x <- c(i, #The day

ctmm_dist[2], #The ML distance estimate

ctmm_dist[1], #Min CI

ctmm_dist [3]) #Max CI

names(x) <- c("date", "dist.ML", "dist.Min", "dist.Max")

res[[i]] <- x

}

#Finally bind results together as a data frame

res <- as.data.frame(do.call(rbind , res))

res$date <- as.Date(days)

head(res)

date dist.ML dist.Min dist.Max

1 2010 -03 -15 351.2639 255.0523 454.6734

2 2010 -03 -16 3109.6675 2853.1944 3371.4784

3 2010 -03 -17 2068.6985 1813.2098 2332.2601

4 2010 -03 -18 1837.9638 1686.7342 1992.3331

5 2010 -03 -19 2426.6460 2005.2749 2867.0971

6 2010 -03 -20 2168.0942 1889.9962 2455.3340

Wood turtle example:
Estimating speed/distance with calibration data

For the wood turtle’s data, locations were collected using a tracking device that did not have
calibrated error. For these data, the first step is to therefore calibrate the DOP values. This is
done by using calibration data, where the tracking device has been left in a fixed location for a
period of time, to estimate the device’s user equivalent range error (UERE). The device specific
UERE is then used to translate the unit-less GPS dilution of precision (DOP) values into standard
deviations of mean-zero error, where the horizontal error = UERE × HDOP [3]. Calibration data
for this turtle’s tracking tag were collected by leaving two devices in a fixed location, each for 1 day,
sampling at 10-minute intervals. The uere.fit() function from the ctmm package is then used to
both estimate the UERE, and the uere()<- function was used to assign that value to the tracking
data.

#Load in the wood turtle calibration , and tracking data

data("turtle")

#Split the data into the calibration datasets

#And the desired individual ’s tracking data
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CALIBRATION <- list(turtle [1:2])

DATA <- turtle [[4]]

#Plot the calibration data

plot(CALIBRATION ,

error = 2,

level.UD = 0.5,

ylim = c(-200, 200))
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Figure 6: Scatterplot of the device’s calibration data.

#Estimate the UERE

UERE <- uere.fit(CALIBRATION)

summary(UERE)

An object of class "UERE"

horizontal

all 10.62878

Slot "DOF":

horizontal

all 229

Slot "AICc":

horizontal

3993.712

Slot "Zsq":

horizontal
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6.179499

#Assign the UERE to the tracking data

uere(DATA) <- UERE

#Plot the tracking data showing the 50% error circles

plot(DATA ,

error = 2,

level.UD = 0.50)
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Figure 7: A scatterplot of the wood turtle’s GPS positional observations.

After having calibrated the errors, the process of estimating speed and distance travelled using
the CTSD approach is much the same as that detailed for the coati’s tracking data above. First,
any outliers are removed from the dataset, movement models are fit to the clean data, and the best
fit model is used to generate the desired estimates.

#Identify any potential outliers and visualise the outputs

par(mfrow=c(1,2))

OUTLIERS <- outlie(DATA)

plot(OUTLIERS)

#Filter out the outliers

DATA <- DATA[-(which(OUTLIERS [[1]] >= 0.03)),]

#Generate the variogram

vg <- variogram(DATA)

#Guesstimate the model for initial parameter values

GUESS <- ctmm.guess(DATA ,
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Figure 8: From left to right, the GPS positional observations returned by the outlie() function,
and the speed and distance estimates returned by the outlie() function.

variogram = vg ,

interactive = FALSE)

#Turn error on

GUESS$error <- TRUE

#Fit and select models

FITS <- ctmm.select(DATA ,

CTMM = GUESS)

#Return a summary of the selected model

summary(FITS)

$name
[1] "OUF anisotropic error"

$DOF
mean area speed

1.752473 1.733970 13.040823

$CI
low ML high

area (hectares) 0.2486431 2.610812 7.682437

τ [position] (days) 0.0000000 26.570201 66.986488
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τ [velocity] (hours) 1.3185238 7.787562 45.995469

speed (meters/day) 18.9896098 26.009084 33.015861

#Note: the speed value returned here is the RMS speed

#detailed in Appendix S1

#Estimate mean speed over the duration of the study period

speed(DATA ,

FITS)

low ML high

speed (meters/day) 13.72984 19.26969 25.24772

#Estimate the instantaneous speeds in m/s

SPEEDS <- speeds(DATA ,

FITS)

head(SPEEDS)

low ML high t

1 0.00001883583 0.0002334009 0.0005892840 0

2 0.00001879900 0.0002276023 0.0005724466 3604

3 0.00001860172 0.0002205374 0.0005527448 7200

4 0.00001837331 0.0002133778 0.0005329544 10799

5 0.00001814747 0.0002068077 0.0005149008 14402

6 0.00001779611 0.0002004074 0.0004979616 18001

Brown pelican (Pelecanus occidentalis) example:
Estimating speed/distance with ARGOS data

The empirical tracking data used in the main text to demonstrate the functionality of CTSD were
collected using GPS-based tags. While GPS data tend to have greater positional accuracy and finer
resolutions than data collected using ARGOS based telemetry, CTSD can be applied to ARGOS
data. Here, we walk through an application of the method on data for a brown pelican Pelecanus
occidentalis collected using tags that collected both ARGOS and GPS data (Fig. 9). A total
of 338 ARGOS-based locations, and 1295 GPS-based were sampled over a ∼5 month period in
winter 2017. The ARGOS based locations had a mean location error of 414.5 meters (ranging
from 132 m – 3.7 km), while the GPS based locations had a mean HDOP of 3.2 (ranging from 2 –
10). Modern ARGOS devices come pre-calibrated, so, for these data, no additional data collection
and/or calibration was necessary. ARGOS data and the error ellipse information are automatically
imported into ctmm. For the GPS data, however, no calibration data were available. As such, we
set the RMS UERE to 10m.
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Figure 9: A scatterplot of the positional observations for a brown pelican Pelecanus occidentalis
tracked on the eastern coast of the United States. Data were collected using a tag that recorded
338 ARGOS locations, and 1295 GPS locations over a ∼5 month period.

#Load in the brown pelican tracking data

data("pelican")

summary(pelican)

$identity
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[1] "BRPE _03_2017_ Adam"

$timezone
[1] "UTC"

$projection
[1] "+proj=tpeqd +lon _1= -79.3445351593173 +lat _1=21.9507561869621 +lon

_2= -76.1854133925203 +lat _2=38.2184417075292 +datum=WGS84 +ellps=

WGS84 +towgs84 =0,0,0"

$‘sampling interval (hours)‘

[1] 1.185139

$‘sampling period (months)‘

[1] 5.169918

$‘longitude range ‘

[1] -81.44378 -75.55172

$‘latitude range ‘

[1] 21.63308 35.22516

#Check for any outliers

OUTLIERS <- outlie(pelican)

There are no locations that appear to be obvious outliers, but, to confirm this, it is useful to plot
the speed and distance estimates.

plot(OUTLIERS)

This scatterplot confirms our suspicion that there are no obvious outliers in the data, and we can
proceed with the analyses.

The next step is to fit a series of continuous-time movement models to the data, and the best
fit model is selected based on the approximate small-sample-size corrected Akaike Information
Criterion.

#begin by returning some summary statistics on the data

#Generate an initial guess for an IOU (non -range resident) model

GUESS <- ctmm.guess(argos_data ,

interactive = FALSE ,

CTMM = ctmm(tau = c(Inf , 2 %#% ‘hours’),

range = FALSE))

#Turn error on

GUESS$error <- TRUE
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Figure 10: A scatterplot of the ARGOS positional observations returned by the outlie() function.
Intervals of high speed are highlighted with blue segments, and distant locations are highlighted
with red points

#Fit and select models

argos_FIT <- ctmm.select(pelican ,

GUESS)

#Return a summary of the selected model

summary(argos_FIT)

$name
[1] "IOU anisotropic error"

$DOF
mean area speed

0.0000 0.0000 194.6332

$CI
low est high

τ [velocity] (hours) 1.85794 2.304798 2.859132

speed (kilometers/day) 150.82847 162.224325 173.609543

#Note: the speed value returned here is the RMS speed

#detailed in Appendix S1
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Figure 11: A scatterplot of the speed and distance estimates returned by the outlie() function.
Note how the majority of the estimates are clustered together, with no obvious outliers.

#Plot the variogram and selected model to visualy inspect the fit

plot(variogram(argos_data ,

fast = FALSE ,

dt = (c(1,6,24) %#% "hr")),

CTMM = argos_FIT)

With outlier free data, and an appropriate movement model in hand, the final step is to estimate
the animal’s instantaneous speeds, the mean speed over the study period, or the speed/distance
travelled over a specific period of time.

#Estimate mean speed over the duration of the study period

speed(pelican ,

argos_FIT)

low est high

speed (kilometers/day) 87.58893 93.43971 99.38238

#Estimate the instantaneous speeds

argos_SPEEDS <- speeds(pelican ,

argos_FIT)
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Figure 12: Variogram derived from the pelican’s location data. The black line and grey shading
depict the semi-variance ± 95% CIs, whereas the red line and shading depict the fitted movement
model ± 95% CIs of the model fit. Note the lack of a clear asymptote in the empirical variogram.

head(argos_SPEEDS)

low est high t timestamp

1 4.4141978 5.6301304 6.915797 1513289368 2017 -12 -14 22:09:28

2 2.7031713 3.6199390 4.599460 1513292364 2017 -12 -14 22:59:24

3 0.1105584 0.6354424 1.386813 1513295439 2017 -12 -14 23:50:39

4 0.2301657 0.9992814 2.040662 1513298604 2017 -12 -15 00:43:24

5 0.1711297 1.0425512 2.304380 1513305604 2017 -12 -15 02:40:04

6 0.2432888 1.4751163 3.257147 1513475824 2017 -12 -17 01:57:04

In comparison the SLD estimated speed for this individual can be estimated as:

#The SLD Speed (in km/day)

#First get the duration of the sampling period (in days)

DURATION <- (tail(pelican$t,1) - head(pelican$t,1))/86400

#The SLD speed (distance/time)

(tot.dist(pelican)/1000)/DURATION

27.32517

For these coarsely sampled ARGOS data, CTSD estimation suggested a mean speed of 93.4 km/day
(95% CIs: 87.6–99.4), whereas the SLD estimate was >3-fold lower at 27.3 km/day. To confirm
the scale-insensitivity of the CTSD estimate for these data, versus the scale-sensitivity of SLD, we
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repeat the analysis on the more finely sampled GPS data collected over the same period.

The first steps are to import the data, assign the RMS UERE, and check for outliers.

gps_data <- pelican [[2]]

#Assign a 10m UERE

uere(gps_data) <- 10

#Re-check for any remaining outliers

par(mfrow=c(1,3))

plot(DATA ,

error = 2,

level.UD = 0.50)

OUTLIERS <- outlie(DATA)

plot(OUTLIERS)
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Figure 13: From left to right, the GPS positional observations returned by the outlie() function,
and the speed and distance estimates returned by the outlie() function.

As with the ARGOS data, there is no clear evidence that any of these data are outliers, so we
proceed with the model fitting and estimation steps.

#Fit and select the movement models

GUESS <- ctmm.guess(gps_data ,

interactive = FALSE ,

CTMM = ctmm(tau = c(Inf ,
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2 %#% ’hours ’),

range = FALSE))

GUESS$error <- TRUE

GPS_FIT <- ctmm.select(gps_data ,

GUESS)

summary(GPS_FIT)

$name
[1] "IOU anisotropic error"

$DOF
mean area speed

0.000 0.000 1180.545

$CI
low est high

τ [velocity] (hours) 1.561744 1.720164 1.894655

speed (kilometers/day) 152.802686 157.289429 161.774421

#Estimate speed

gps_speed <- speed(gps_data , GPS_FIT , cores = -1)

low est high

speed (kilometers/day) 90.92524 93.96206 97.02328

GPS_SPEEDS <- speeds(gps_data ,

GPS_FIT)

head(GPS_SPEEDS)

low est high t timestamp

1 0.1885202 1.136441 2.506196 1513296033 2017 -12 -15 00:00:33

2 0.1905690 1.139954 2.509741 1513303216 2017 -12 -15 02:00:16

3 1.5093224 3.041988 4.822413 1513339234 2017 -12 -15 12:00:34

4 0.6270016 1.821023 3.313038 1513346433 2017 -12 -15 14:00:33

5 0.1815883 1.073224 2.356639 1513353659 2017 -12 -15 16:00:59

6 0.6555744 1.954969 3.587240 1513368011 2017 -12 -15 20:00:11

#The SLD Speed (in km/day)

#First get the duration of the sampling period (in days)

DURATION <- (tail(gps_data$t,1) - head(gps_data$t,1))/86400
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#The SLD speed (distance/time)

(tot.dist(gps_data)/1000)/DURATION

39.77388

From these GPS data, we see that the CTSD estimate of 94.0 km/day (95%CIs 90.9–97.0) is
nearly identical to the CTSD estimate on the ARGOS data (93.4 km/day; 95% CIs: 87.6–99.4),
though with narrower confidence intervals on the more finely sampled GPS data. In contrast, the
39.8 km/day speed estimated via SLD on the GPS data is drastically greater than the 27.3 km.day
estimated on the more coarsely sampled ARGOS data. Collectively these results confirm the scale-
insensitivity and well-behaved confidence intervals of CTSD, as opposed to the scale-sensitivity of
SLD. They further reveal that the primary source of bias in both the GPS and ARGOS data is
tortuosity induced, a data regime where model-smoothing is unlikely to provide any major benefits
to SLD estimation (see simulation results in the main text).
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