
Additional file S3 — Technical details

In this appendix we provide details on estimating the mean speed and root mean square (RMS)
speed from either a time-averaged stationary Gaussian stochastic process or from instantaneous
Kriged velocity estimates. For the following calculations we will assume the velocity v to be nor-
mally distributed with mean µ and covariance σ. The Gaussian RMS speed can be calculated very
quickly from the fitted movement model’s parameter estimates, but is not generally proportional
to the distance travelled. The approach described in the main text represents the mean speed,
which is conditioned off the data, and is more accurate when the data are not fully specified by the
Gaussian model.

RMS speed

The RMS speed is easily related to the velocity variance

vRMS =

√
lim
T→∞

1

T

∫ +T

−T
dt 〈v(t)2〉 , (1)

=

√
lim
T→∞

1

T

∫ +T

−T
dt 〈trv(t)v(t)T〉 , (2)

=

√
lim
T→∞

1

T

∫ +T

−T
dt (µ(t)2 + trσ(t)) , (3)

where for a stationary process, vRMS =
√

trσ, or vRMS(t) =
√
µ(t)2 + trσ(t) instantaneously.

Mean speed

The mean speed is derived from the mean absolute deviation 〈|v|〉, which is difficult to calculate
in general. First we will derive the mean speed under the assumption of µ = 0, which is sufficient
for the time-average of a stationary process. Next we will derive the mean speed for a symmetric
covariance matrix σ. Finally, we will combine these exact results into an approximate formula for
the general case.
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Mean speed: zero mean

If µ = 0, then in two dimensions the mean speed is determined by the integral

〈|v|〉 =

∫∫
d2v
√
v2

1√
det 2πσ

e−
1
2
vTσ−1v , (4)

=
1

2π

∫∫
d2v
√
vTσ v e−

1
2
v2
, (5)

=
1

2π

∫ 2π

0
dθ
√
u(θ)Tσ u(θ)

∫ ∞
0
dv v2 e−

1
2
v2 , (6)

=

√
π

2

1

2π

∫ 2π

0
dθ
√
u(θ)Tσ u(θ) , (7)

where u(θ) = (cos θ, sin θ) is the unit vector. This relation can be simplified by rotating our polar
coordinate system so that θ = 0 occurs when u(θ) is parallel with one of the eigen-vectors of the
velocity covariance. Let σ± represent the two eigen-values of σ, where σ+ ≥ σ−. The mean speed
integral then reduces to

〈|v|〉 =

√
π

2

1

2π

∫ 2π

0
dθ

√
σ+ cos2 θ + σ− sin2 θ , (8)

=

√
π

2

1

2π

∫ 2π

0
dθ

√
σ+ − (σ+−σ−) sin2 θ , (9)

=

√
2

π

√
σ+

∫ π
2

0
dθ

√
1− σ+−σ−

σ+
sin2 θ , (10)

=

√
2

π

√
σ+E

(
σ+−σ−
σ+

)
. (11)

where E(k) is the complete elliptic integral of the second kind. In the isotropic case where σ± = σ0
and E(0) = π/2, the mean speed reduces to

√
π/2σ0.

Mean speed: zero eccentricity

If σ = σ0 I, then the two-dimensional mean speed is given by the integral

〈|v|〉 =

∫∫
d2v
√
v2

1

2πσ0
e
− 1

2σ0
(v−µ)2

, (12)

=
1

2πσ0

∫ ∞
0
dv v2 e

− v
2+µ2

2σ0

∫ 2π

0
dθ e

+µv
σ0

cos(θ)
, (13)

=

∫ ∞
0
dv

v2

σ0
e
− v

2+µ2

2σ0 I0

(
µv

σ0

)
, (14)
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where Im(z) the mth order modified Bessel function of the first kind. The remaining integral
resolves to

〈|v|〉 =

√
π

2
σ0 I0

(
µ2

2σ0

)
e
− µ2

2σ0 + µ

√
π

2

√
µ2

2σ0

(
I0

(
µ2

2σ0

)
+ I1

(
µ2

2σ0

))
e
− µ2

2σ0 . (15)

Mean speed: combined approximation

To construct a generally applicable approximation, we compare the combined limits of zero mean
and eccentricity, which results in a mean speed of

√
π/2σ0. Relation (11) generalizes this result to

non-zero eccentricity, while relation (15) generalizes this result to non-zero mean. In (15), one can
identify the mean-zero limit as a factor of the first term, while the second term contains the large
mean limit. Therefore we combine the two results directly to obtain the approximate relation

〈|v|〉 ≈
√

2

π

√
σ+E

(
σ+−σ−
σ+

)
I0

(
µ2

2σ0

)
e
− µ2

2σ0 + µ

√
π

2

√
µ2

2σ0

(
I0

(
µ2

2σ0

)
+ I1

(
µ2

2σ0

))
e
− µ2

2σ0 . (16)

where σ0 = (σ+ + σ−)/2. This result is exact in three limits: µ2 → 0, µ→∞, and σ+ → σ−.

χ2 and χ confidence intervals

In this appendix, we detail how we translate point estimates and standard errors into non-standard
confidence intervals, which can be more appropriate than normal confidence intervals if the sampling
distribution more resembles another. All of these confidence intervals obey the central limit theorem
and share the same first two moments or cumulants.

χ2 confidence intervals

If a statistic X is proportionally χ2
k, then its mean and variance obey the relation

VAR[X]

〈X〉2
=

2

k
, (17)

and so the degrees of freedom are given by

k =
2 〈X〉2

VAR[X]
. (18)

We use CIs derived from this distribution on square speed estimates, because they are exact in
some cases then.
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χ confidence intervals

If a statistic X is proportionally χ1
k, then its mean and variance obey the relation

〈X〉2

VAR[X] + 〈X〉2︸ ︷︷ ︸
R

=
2π

k
B

(
k

2
,
1

2

)−2
︸ ︷︷ ︸

f(k)

, (19)

where B denotes the beta function. We use CIs derived from this distribution on mean speed
estimates, because they are exact in some cases. To solve k = f−1(R), we expand about a numerical
estimate ki and update to get

R = f(ki) + f ′(ki) (k − ki) +O
(
(k−ki)2

)
, ki+1 = ki +

R− f(ki)

f ′(ki)
, (20)

f ′(k) = f(k)

(
1− 1

k
+ ψ

(
k + 1

2

)
− ψ

(
k

2

))
, (21)

where ψ(z) = ψ0(z) is the digamma function. For the initial numerical estimate, we use the
asymptotic expansion of the ratio of the variance to the square mean

VAR[X]

〈X〉2
= R−1 − 1 =

1

2k
+O

(
k−2

)
, k0 =

〈X〉2

2 VAR[X]
=

1

2

1

R−1−1
, (22)

which is analogous to the χ2 relation and well behaved.
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