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Supplementary Information 
 
 
 
Supplementary Methods 
 
Patient cohort and selection 
During September 1 2010 to March 31 2015, 408 patients were diagnosed with TNBC in the 
Region Skåne healthcare area based on data from the Swedish national breast cancer quality 
registry (NKBC). To derive this patient set the following exclusion criteria were used in the 
INCA technical platform in a two-step fashion: 
1: Removing non-TNBC cases 

- Cases that were not ER-negative (A100ER_Värde=2) 
- Cases that were not PR-negative (A100PR_Värde=2) 
- Cases that were not HER2-negative (A100HER2_Värde=2) 

2: Removing TNBC cases with unclear treatment history 
- Cases with no planned surgery (INCA parameter A050PrimOp_Värde=0) caused by  

o i) missing data for parameter A050EjOpOrsk_Värde,  
or  

o ii) other reason A050EjOpOrsk_Värde=4  
were removed 

- Cases that did not have indication of planned postoperative treatment yes/no OR 
planned preoperative treatment yes/no were removed. This corresponded to including 
patients that fulfilled INCA parameters: (A120PostOpBeh2_Värde=1) or 
(A120PostOpBeh2_Värde=0) or (A070PreBeh_Värde=0) or (A070PreBeh_Värde=1) 

 
Briefly, criteria 2 above excluded TNBC patients with an unclear/unknown treatment status 
based on registry data, irrespective of the type of treatment given. This meant that the 
identified and retained patients could have had neoadjuvant treatment, adjuvant systemic 
treatment, no treatment, or even palliative treatment due to metastatic disease already at time 
of diagnosis (thus including these patient categories in subsequent cohorts). Of the 408 
patients, 340 provided informed written consent and were enrolled in the Sweden Cancerome 
Analysis – Breast (SCAN-B) study1-3 (ClinicalTrials.gov ID NCT02306096). The final tally 
of 254 samples were selected into this study based on also having available quality controlled 
RNA sequencing (RNAseq) data from SCAN-B, sufficient DNA, and passing extensive 
review of available clinical data from individual patient´s files by a senior oncologist. 
Corresponding RNAseq data for primary cases has been deposited in GEO series 
GSE960584,5 based on a previous study (outlining quality control filters). The 254 patients 
were diagnosed at any of the four main hospitals in the Region Skåne healthcare region, with 
a catchment area of approximately 1.3 million inhabitants (year 2017).  
 
 
Tissue sampling, DNA and RNA extraction 
Fresh tumor tissue samples preserved in RNAlater (Qiagen, Hilden, Germany) were obtained 
in conjunction with routine clinical sampling by a diagnostic pathologist in regional pathology 
departments (see 3 for outline). RNA and DNA were extracted using the Qiagen Allprep 
extraction kit (Qiagen) as described1. DNA from whole blood was extracted by the 
Labmedicin Skåne Biobank, Lund, Sweden. 
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Prior germline testing and classification of BRCA1 and BRCA2 germline 
variants 
49 patients had prior clinical genetic counseling involving NGS-based screening of BRCA1 
and BRCA2, or were enrolled in the SWEA research study (The Swedish BRCA1 and BRCA2 
study collaborators (SWE-BRCA) Extended Analysis) for high-risk patients and screened for 
an extended panel of susceptibility genes. The inclusion criteria for the SWEA study were in 
line with the Swedish national clinical practice guidelines for breast cancer. Briefly, genetic 
testing was offered when there was at least a 10 % probability to detect a pathogenic germline 
variant in BRCA1 or BRCA2, based on the patient’s age at diagnosis, histology, and family 
history. Detected germline variants were classified according to the ENIGMA BRCA1/2 
Gene variant Classification Criteria (2017-06-29) 
https://enigmaconsortium.org/library/general-documents/. Only class 5 variants were 
considered as pathogenic, corresponding to nine BRCA1 and three BRCA2 variants.  
 
 
DNA promoter methylation analysis 
Bisulfite conversion of genomic DNA was performed with the column based EpiTecht Fast 
DNA Bisulfite kit (Qiagen GmBH, Hilden, Germany. Promoter methylation analysis was 
performed using a PSQ MD 96 pyrosequencing instrument (Qiagen). A fully methylated as 
well as an unmethylated sample was included as controls in each run. The PyroMark analysis 
program was used for data analysis and all electropherograms were manually checked. For 
BRCA1, analysis was performed as described6, and included analysis of two CpG island 
regions. We used 7% cut-off compared to previous 10% due to cleanness of the data. 

For RAD51C we first performed a correlation analysis based on TCGA breast cancers used in 
a previous study7 similar to the study by Polak et al.8. This analysis identified seven CpGs 
present on the Illumina 450K methylation beadchip array <1000bp upstream of the gene. Four 
CpGs with a Pearson correlation less than -0.44 (cg05214530, cg27221688, cg02118635, 
cg10487724) were selected, from which primers for RAD51C were adapted from Hansmann 
et al.9. 
 
Final RAD51C primers were: 
RAD51C_PCR_F 5’-NNATGGTGTATAAGTGTGAAAATTTATAAGA-3’ 
RAD51C_PCR_R 5’-biotin-CCTCTAAAAATTCCTCAACAATCTAAA-3’ 
 
RAD51C_SEQ_1 5’-ATTGAGTAAAGTTGTAAGGT-3’ 
RAD51C_SEQ_2 5’-GGGGTTAGTAGGTGAGTTTG-3’ 
 
In the final analysis, two different primer sets of four (BRCA1 and RAD51C) different CpG 
sites were used for each gene. CpG allele methylation percentage was averaged across each 
primer set and next merged to the mean of the two sets. Cut-offs were applied (BRCA1 7%, 
RAD51C 9%) for making a call on methylation or otherwise. The cut-off was set higher for 
RAD51C as this assay generated slightly higher background variability between primer sets. 
The cut-off was verified (and supported) by RNA sequencing data for RAD51C. Two cases 
failed RAD51C methylation analysis.  
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For PALB2 and RAD51 promoter hypermethylation analysis primers described by Wanatabe 
et al.10 were used. A similar cut-off (9%) as for RAD51C was used to call methylated cases 
(none observed). 
 
 
IHC validation of mismatch repair deficient (MMRd) cases 
Suspected MMRd cases identified by whole genome sequencing were stained for MLH1, 
PMS2, MSH2 and MSH6 as outlined originally in Joost et al.11. Stained slides were evaluated 
for protein expression in both tumor cells and non-malignant cells. 
 
 
Gene expression analyses 
Gene expression data was available from Gene Expression Omnibus4, series GSE96058 
reported elsewhere5. FPKM data for specific genes were extracted and log2 transformed. For 
TNBCtype, IC10, CIT classification, 228 cases were available for analysis based on 
GSE960585 (primary tumors only). For remaining cases, these were included separately and 
subtyped only using AIMS12 (as this is a single sample predictor of molecular subtype) and 
analyzed for individual FPKM gene expression.    
 
Classification according to different molecular subgroups in breast cancer was performed as 
follows, after i) an offset of 1 was added to all FPKM values, ii) log2 transformation: 

- PAM50. PAM50 subtypes were obtained using the AIMS single sample classifier12, 
based on the aims R package. All samples were classified. 

- TNBCtype13,14. For TNBCtype classification the entire GSE96058 data set was used. 
Data was mean-centered across all samples for each gene, TNBC cases were extracted 
and uploaded as a separate data set into the web-based classifier14. For a few cases the 
web-based application called the samples as not being ER-negative. These samples 
were removed from the TNBC data set (inferring missing values) and remaining 
samples were again uploaded to the web-based application for subtyping.  

- IC1015. For IC10 classification the entire GSE96058 data set was used. Data was 
mean-centered across all samples for each gene. IC10 subgroups were obtained 
through the ic10 R package using default processing.  

- CIT16. CIT subtypes were obtained through the citbcmst R package, using pearson 
correlation as distance method and gene symbol as matching entity.  

 
Calculation of six gene expression metagenes representing different biological functions in 
breast cancer was performed as described17, using the GSE96058 data set for gene-centering 
across samples. 
 
Unsupervised clustering 
All unsupervised analysis was performed in R 18 using the ConsensusClusterPlus R-package 
19. Two input formats were used, FPKM data and PCA components.  

When using FPKM data as input this was first offset by +0.1, log2 transformed, 
and mean-centered across samples for each RefSeq associated gene. A filter step based on 
standard deviation of expression was used as defined in result presentations. In the clustering 
we used Pearson correlation as distance metric and ward.D2 linkage. Additional parameters 
were pItem=0.8, pFeature=0.8, number of iterations = 2000. 

When using PCA components as input, these were derived from a PCA analysis 
of all 19000 RefSeq genes available using the prcomp() function in R. All components were 
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then used in consensus clustering with pItem=0.8, pFeature=0.98, number of iterations = 
2000. 
 
 
 
Machine learning 
All machine learning was performed in R 18 using the Caret package. Model performance was 
assessed using ROC analysis and the area under the curve (AUC) estimate. We used 70% of 
samples for training and 30% for internal validation. Division into training and internal 
validation was performed using the createDataPartition() Caret function, balancing the 
sample splitting for grade (1,2,3), lymph node status (node-negative, node-positive), and age 
(<50, >=50 years). For FPKM data as input this was offset by +0.1, log2 transformed and 
mean-centered across samples in respective cohort (training and test). For machine learning 
using PCA components (see above for extracting these) all components were used directly in 
training. 
 
We evaluated seven machine-learning methods listed below by their names in Caret: 

- svmLinear (linear support vector machine) 
- gbm 
- pam 
- rf (random forest) 
- glm 
- glmboost 
- knn (k nearest neighbor) 

 
In the training we used the trainControl() Caret function with parameters: 
method=repeatedcv 
number=4 
repeats=10 
classProbs=TRUE 
summaryFunction=twoClassSummary 
savePredictions=TRUE 
 
For the actual training we used the train() Caret function with ROC as metric, the defined 
trainControl parameters above, and tune.length=10. Trained models were saved as R data 
objects. We applied the models to the internal validation set for each evaluation group using 
the predict() Caret function. ROC values were calculated using the roc() function in the 
pROC R package. 
 
The entire process described above was repeated 10 times with different splits of training and 
internal validation sets to reduce the possibility of bias in the results based on sample 
splitting. This generated 10 different AUC estimates from 10 potentially different predictors 
for each model. 
 
 
Survival analyses 
Definition of clinical endpoints: 

-­‐ Overall survival was obtained from national registries, calculated as the time from 
diagnosis to death of any cause. 
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-­‐ Invasive disease-free survival (IDFS) was defined according to STEEP guidelines20, 
as the time from diagnosis to either death of any cause or invasive breast-cancer 
related events (loco-regional and distant recurrence). 

-­‐ Distant relapse-free interval (DRFI) was defined according to STEEP guidelines as the 
time from surgery to diagnosis a distant relapse (event) or to last day of follow-up 
(censoring). Events include patients that first developed a loco-regional relapse, and 
then a distant relapse. For these patients the day of the distant relapse was used.  

 
Exclusion criteria for outcome analyses: 

-­‐ Neoadjuvant treatment 
-­‐ Metastatic disease at time of diagnosis (including microinvasive disease). 
-­‐ Metastatic disease identified immediately prior to, or during adjuvant chemotherapy. 
-­‐ Patients not managed in an adjuvant setting (irrespective if adjuvant treatment or not 

provided later). 
-­‐ Bilateral breast cancer. 
-­‐ Lost to follow-up before start of systemic treatment. 
-­‐ Unclear histological type (one case). 
-­‐ For DRFI, patients with a relapse or death from a malignancy of uncertain origin were 

excluded. These patients were however included in OS and IDFS analyses. 
 
Multivariable analyses 
Analysis was performed using the coxph R function from the survival R package. Covariates 
in multivariable Cox regression were patient age (<50, ≥50 years), lymph node status 
(N0/N+), tumor size (≤20, >20mm), and tumor grade (1,2,3). Data for lymph node status, and 
tumor size were obtained from NKBC data. Tumor grade was obtained from clinical review 
of individual patient’s files. 
 
 
 
 

Whole Genome Sequencing Analysis 
 
Whole genome sequencing and alignment 
150 base pair paired-end sequencing was performed on Illumina X10 machines following 
standard library preparation according to the manufacturer’s protocols. Target insert size was  
450 bp. The target coverage for tumour-normal pairs was 30x for patients that received 
adjuvant chemotherapy (based on NKBC registry data, see above), and 15x otherwise. Paired-
end reads were aligned to the reference human genome (GRCh37) using Burrows-Wheeler 
Aligner, BWA (v0.7.15). 
 
 
Identification of somatic mutations 
Paired tumour-normal bam files were interrogated for somatic mutations using the following 
algorithms: 
● Caveman (1.11.0, 1.11.5) for identification of somatic point mutations 

https://github.com/cancerit/CaVEMan 
Jones (2016). cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to 
Detect Somatic Single Nucleotide Variants in NGS Data.21 
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● Pindel (2.1.0, 2.2.4) for identification of somatic small insertions and deletions 
  https://github.com/cancerit/cgpPindel 
Raine (2016). cgpPindel: Identifying Somatically Acquired Insertion and Deletion 
Events from Paired End Sequencing.22. 

● Brass (5.3.3, 6.0.5) for identification of somatic rearrangements 
https://github.com/cancerit/BRASS 

● ASCAT (4.0.0, 4.0.1) for identification of somatic copy number changes 
https://github.com/cancerit/ascatNgs 

● Battenberg (3.0.1, 3.2.2) for identification of subclonal copy number changes  
https://github.com/cancerit/cgpBattenberg 

 
To ensure that the final dataset had high specificity for signature analysis: 
● Point mutations were additionally  filtered by CLPM (median number of soft clipped 

bases in variant supporting reads) and ASMD (median alignment score of reads 
showing the variant allele) filters (CLPM=0 and  ASMD>=140). 

● Indels were filtered by QUAL (variant quality score assigned by Pindel) and REP 
(change repeat count within range) (QUAL>=250 and REP<10) to ensure high 
specificity.  

● Both point mutations and indels were additionally annotated with respect to presence 
in databases of common human variation using Annovar (1000 genomes August 2015, 
ExAC 20151129, dbSNP147).  
Wang K. et al. (2010). ANNOVAR: Functional annotation of genetic variants from 
next-generation sequencing data.23 

● All rearrangements had to pass the stage of re-assembly in Brass, and were further 
filtered by size (at least 1kb between breakpoints). A known library-preparation 
artefact was removed by filtering out inversions that were shorter than 5kb and 
reported by 5 or fewer reads.  

 
For seeking cancer driver mutations, we applied less stringency in specificity.  
 
 
Criteria for sample exclusion from analysis  
DNA was extracted from diagnostic cancer samples in the population-based study as 
described above (section Tissue sampling, DNA and RNA extraction). For some patients it is 
possible that the amount of tumor DNA present in the sample was insufficient for whole-
genome sequencing and interpretation of tumour-specific somatic mutations.  
 
Samples were excluded from analysis if: 

- the library preparation failed to yield sufficient output 
- for samples with coverage below 20x, Battenberg algorithm failed to find a copy-

number solution 
- for samples with coverage over 20x, Battenberg failed to find a copy-number solution 

and the the number of somatic point mutations identified was less than 500. 
 
 
Identification and curation of germline and somatic mutations in genes 
related to DNA repair 
We interrogated germline and somatic mutations in genes related to DNA repair. The list of 
165 genes included genes tested in the SWEA study (see above in section Prior germline 
testing and classification of BRCA1 and BRCA2 germline variants) and genes included in 



	
   7	
  

the INSIGNIA study (experimental study to explore mutagenesis in isogenic cell systems and 
in patients with inherited DNA repair defects, www.mutationsignatures.org). Screened 
genes are listed in the Supplementary Data file. 
 
In order to prioritise germline mutations which are likely pathogenic, the variants were 
filtered to ensure the mutations were real (supported by at least 5 reads and not in a region of 
repetitive sequence, by curation), and further filtered according to prior information on 
particular mutations (protein consequence, frequency in population through the ExAC 
database less than 1 in 100, and if considered pathogenic in the ClinVar database, dated 
20170501). Nonsense, frameshift or essential splice-site mutations were considered 
pathogenic, unless they were known to be exceptions (eg. p.K3326* BRCA2 nonsense). 
 
Germline copy number in most commonly-mutated DNA-repair genes (BRCA1, BRCA2, 
PALB2) were assessed through visual inspection of coverage in the bam files.  
 
Among somatic mutations in the DNA repair genes, as pathogenic we considered those that 
were either nonsense, frameshift or essential splice site. Somatic rearrangements from 
BRASS algorithm were also included if a breakpoint disrupted the gene body. 
 
Finally, somatic copy number at the DNA-repair genes was inferred from the genome-wide 
copy number profiles from the ASCAT algorithm. When total copy number is zero in the 
tumour, the gene was considered lost (homozygous deletion), and when it was one, it was 
flagged as loss of heterozygosity. 
 
 
Identification of cancer drivers  
Among point mutations and small insertions and deletions, only coding and essential splice 
site mutations were considered as potential drivers. To be classified as putative drivers, 
missense or in-frame variants in dominant genes had to either be recurrent in literature (e.g. 
COSMIC database) or be deleterious to previously reported recessive cancer genes. Mutations 
in 740 genes identified in literature as cancer drivers were considered, together with 
classification regarding dominant or recessive status of each gene. 
 
Copy number profiles of the cancer genomes were scrutinised for changes to common cancer 
genes. The ASCAT algorithm provided estimates of overall tumour ploidy, cellularity and 
copy number profiles. Copy number changes were considered putative drivers when they 
coincided with frequently altered genes24. Specifically, copy number changes were deemed as 
an amplifications when total copy number in the tumour exceeded (p*2+1), where p stands 
for overall tumour ploidy. Homozygous deletions were declared when total copy number in 
tumour was zero. Loss of heterozygosity was determined when total copy number of a gene 
was one and minor copy number was zero. 
 
Finally, previous analysis24 revealed increased frequencies of somatic rearrangements in gene 
bodies of several recessive cancer genes, compared to the surrounding chromosomal regions. 
We declared some somatic rearrangements as putative drivers when they disrupted gene 
bodies, with the exception of instances when both breakpoints of rearrangements hit the same 
intron. The list of recessive cancer genes included: ARID1B, CDKN2A, FBXW7, MAP2K4, 
MAP3K1, PTEN, RB1, TP53, and MLLT4.  
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Application of the HRDetect algorithm 
A high-specificity somatic mutation dataset was first compiled for all cancer genomes in the 
study as described in above (section Identification of somatic mutations). 
 
Cellularity and ploidy estimates were obtained from the output of ASCAT. 
 
Point mutations were annotated with the sequence context (and reverse-complemented when 
necessary to put them into pyrimidine context). Signatures of point mutations were assigned 
with the SigFit R package using the 30 signatures from the COSMIC signature database 
(https://cancer.sanger.ac.uk/cosmic/signatures). Signatures of rearrangements were also 
analysed by SigFit using the six rearrangement signatures from Nik-Zainal et al.24. Small 
deletions were classified into the following categories: micro-homology mediated, repeat-
mediated and others. HRD score was calculated from ASCAT copy number profiles as 
described previously24.  
 
Exposures of signatures, HRDetect score, and proportion of indels at microhomology were 
tabulated for the entire cohort. The features were normalised as described in the original 
report describing HRDetect25. The HRDetect weights were applied to the normalised features, 
to obtain HRDetect probability for every patient. 
 
 
Principal-component analysis of components of HRDetect 
HRDetect assigns a single probability of HR deficiency to every sample. However,  we have 
previously demonstrated  that BRCA1-null and BRCA2-null tumors were distinguishable. To 
explore the sub-structure of cancers with HR deficiency, we conducted a Principal-component 
analysis (PCA) of components of HRDetect. 
 
Specifically, the products of normalised features and HRDetect weights were tabulated as 
matrix N x 6, where N is the number of samples in the study and 6 represents the 6 non-zero 
weights of HRDetect. Each entry in the matrix is a product of HRDetect weight and the 
respective normalised sample feature. Prior to the PCA analysis, the variables in the new 
matrix were not scaled, so that the dimensions with highest weights of HRDetect exhibited 
highest variance.  
 
Two-dimensional visualisations of the PCA results are presented in Figure 3.   
 
 
Mobile element (MELT) analysis 
Mobile element (ME) insertions not present in the GRCh37 reference genome were called and 
genotyped using the Mobile Element Locator Tool (MELT) version 2.1.5 26. The ME 
reference sequences provided with MELT were used for discovery of three major classes of 
MEs: Alu, SVA (SINE-VNTR- Alu) and LINE1 (long interspersed nucleotide element-1). 
Default parameters were used except -z (set to 50000) and read length, coverage and insert 
length, which were determined for each bam file. Tumor and normal samples from the same 
individual were analyzed together to increase sensitivity (MELT GroupAnalysis and 
MakeVCF). ME insertions previously discovered as part of the 1000 Genomes Projects, Phase 
III, were used as priors 27,28. Supporting aligned read data for ME insertions discovered in or 
near (within 5 kb) 11 genes with potential impact on HR (ATM, BARD1, BRCA1, BRCA2, 
BRIP1, CHEK2, MRE11, NBN, PALB2, RAD51C, RAD51D) were visually inspected in 
Integrative Genomics Viewer (IGV 29). 



	
   9	
  

On average, 1302 Alu, 186 LINE1 and 90 SVA insertions were detected in each 
pair of tumor and normal sample. Of these, 90.5% of the Alu, 79.5% of the LINE1 and 86.3% 
of the SVA insertions were previously seen in the 1000 Genomes Projects. Most insertions 
were detected in both the normal and tumor data (93.1% of Alu, 89.3% of LINE1 and 86.3% 
of SVA elements). 

Two ME insertions were found in the 11 HR related genes. One was a known 
Alu insertion in BRCA2 at chr13: 32922439 found in two sample pairs (ID: 
ALU_umary_ALU_9673, detected in both normal and tumor). This Alu insertion has an allele 
frequency of 4.2% in the 1000 genomes project, phase III dataset (ref 3). The other was an 
SVA element inserted 1.8kb downstream of the first coding exon in BRCA1 at 
chr17:41274217. This ME was not seen in the 1000 genomes project, phase III dataset. 
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Supplementary Table S1. HRD frequency in subgroups of population-based TNBC for successfully 
analysed WGS cases. 
 HRDetect-low  

(prob 0-0.2) 
HRDetect-intermediate 

(prob 0.2-0.7) 
HRDetect-high 

(prob >0.7) 
General cohort (n=237) 35.9% 5.5% 58.6% 
Primary disease only (n=231)A 35.5% 5.2% 59.3% 
BRCA-status    
BRCA1 biallelic inactivated (n=22) 

† 
0% 0% 100% 

BRCA1 monoallelic alteration 
(n=4) 

25.0% 0% 75.0% 

BRCA1 hypermethylated (n=57) † 1.8% 0% 98.2% 
BRCA2 biallelic inactivated (n=7) † 0% 0% 100% 

BRCA2 monoallelic alteration 
(n=6) † 

16.7% 0% 83.3% 

Neoadjuvant therapy (n=16) 31.2% 6.2% 62.5% 
Adjuvant therapy    
Chemotherapy (n=149, OS/IDFS) † 30.9% 2.7% 66.4% 

Untreated (n=50) † 54.0% 10.0% 36.0% 
ER-staining positivity    

<1% (n=206) † 36.9% 5.3% 57.8% 
1-10% (n=29) † 31.0% 6.9% 62.1% 

Grade    
2 (n=27) † 77.8% 3.7% 18.5% 

3 (n=207) † 30.0% 5.8% 64.3% 
Age    

<50 years (n=52) † 9.6% 1.9% 88.5% 
50-70 years (n=119) † 38.7% 3.4% 58.0% 

>70 years (n=66) † 51.5% 12.1% 36.4% 
Lymph node status    

N0 (n=153) † 37.3% 3.9% 58.8% 
N+ (n=81) † 34.6% 8.6% 56.8% 

Tumor size    
≤20mm (n=120) † 34.2% 2.5% 63.3% 
>20mm (n=117) † 37.6% 8.5% 53.8% 

PAM50 subtypes 11    
Basal-like (n=183) † 25.1% 4.9% 69.9% 

HER2-enriched (n=31) † 67.7% 12.9% 19.4% 
Normal-like (n=22) † 77.3% 0.0% 22.7% 

TNBC molecular subtypes 36    
Basal-like 1 (BL1, n=46) † 15.2% 2.2% 82.6% 

Basal-like 2 (BL2, n=23) 43.5% 17.4% 39.1% 
Immunomodulatory (IM, n=46) † 30.4% 4.3% 65.2% 

Luminal androgen receptor (LAR, 
n=30) † 

86.7% 6.7% 6.7% 

Mesenchymal (M, n=41) † 19.5% 4.9% 75.6% 
 Mesenchymal stem-like (MSL, 

n=14) † 
42.9% 0% 57.1% 

IC10 15    
Cluster 10 (n=148) † 21.6% 4.7% 73.6% 

Cluster 9 (n=13) † 61.5% 0.0% 38.5% 
Cluster 4 (n=57) † 64.9% 7.0% 28.1% 

CIT 12    
Basal-like (basL, n=175) † 24.6% 3.4% 72.0% 

Molecular apocrine (mApo, n=46) 
† 

76.1% 10.9% 13.0% 

Proportions calculated excluding missing data. 
A: Excluding patients with metastatic disease at diagnosis or micro/macro residual disease after surgery. 
†: Chi-square test for given probabilities p-value < 0.05, 2 degrees of freedom. 



Supplementary Table S2. Patient characteristics and clinicopathological variables of the TNBC study 
cohorts.  

 Background 
(healthcare 
region) A 

SCAN-B 
enrolled 
patients 

SCAN-B 
WGS patients 

SCAN-B WGS 
adjuvant 

chemotherapy 
outcome 

SCAN-B 
WGS 

Untreated 
outcome 

N 408 340 237 149 50 
Cases with 30X 
sequence depth (%) 

- - 69.6% 100% 0% 

Cases with 15X 
sequence depth (%) 

- - 30.4% 0% 100% 

ER IHC staining <1% 86% 85% 87.7% 88.5% 84.0% 
ER IHC staining 1-10% 14% 15% 12.3% 11.5% 16.0% 
Tumor size ≤20mm 49% 48% 50.6% 55.0% 38.0% 
Tumor size >20mm 51% 52% 49.4% 45.0% 62.0% 
Grade 1 1% 1% 0% 0% 0% 
Grade 2 16% 16% 12.1% 7.4% 20.0% 
Grade 3 83% 83% 87.9% 92.6% 80.0% 
Age <50 years  23% 21% 21.9% 28.9% 0% 
Age 50-70 years 45% 46% 45.6% 57.0% 14.0% 
Age >70 years 32% 32% 32.5% 14.1% 86.0% 
Node negative (N0) 68% 69% 65.4% 66.9% 70.0% 
Node positive (N+) 32% 31% 34.6% 33.1% 30.0% 
BRCA and RAD51C 
status* 

     

BRCA1 germline 
carrier 

- - 8% 9.4% 2.0% 

BRCA2 germline 
carrier 

- - 3.0% 2.7% 2.0% 

BRCA1 
hypermethylation 

- - 24.1% 28.9% 12.0% 

RAD51C 
hypermethylation 

- - 2.1% 2.7% 0% 

Adjuvant chemotherapy      
FEC alone - - 8.0% 12.8% 0% 

FEC + taxane - - 60.8% 83.2% 0% 
Other combination/Not 

specified** 
- 67% 3.0% 4.0% 0% 

Outcome      
Death events (%) - 24% 26.6% 14.8% 40.0% 

Relapse, all types (%) - - 23.6% 18.1% 26.0% 
Distant metastases (%) - - 20.7% 14.8% 24.0% 

PAM50 subtypes***      
Basal-like - - 77.2% 84.6% 54.0% 

HER2-enriched - - 13.1% 7.4% 30.0% 
Lum A - - 0% 0% 0% 
Lum B - - 0.4% 0% 2.0% 

Normal-like - - 9.3% 8.1% 14.0% 
TNBC subtypes***      

Basal-like 1 (BL1) - - 20.3% 22.1% 12.2% 
Basal-like 2 (BL2) - - 10.1% 11.4% 4.1% 

Immunomodulatory 
(IM) 

- - 20.3% 22.8% 14.3% 

Luminal androgen 
receptor (LAR) 

- - 13.2% 6.7% 34.7% 

Mesenchymal (M) - - 18.1% 17.4% 18.4% 
Mesenchymal stem-like 

(MSL) 
- - 6.2% 6.7% 2.0% 

Uncertain - - 11.9% 12.8% 14.3% 
Proportions calculated excluding missing data. For all enrolled and background population numbers are 
presented at a general level.  
A: Identified in the Swedish national breast cancer quality registry. 
B: In Sweden ER-negativity is defined as ≤10% of cells with IHC-staining for ER. 
*: Mutation calls based on WGS analysis. 
**: For SCAN-B enrolled patients specified value indicates % of patients having planned or started 
chemotherapy (including neoadjuvant) treatment according to available registry data. 
***: RNAseq data is not available for all enrolled SCAN-B patients, and thus not provided. 
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