## **Supporting Material for**

## Using Deep Neural Networks to reconstruct non-uniformly sampled NMR spectra

D. Flemming Hansen

Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom, WC1E 6BT

E-mail: d.hansen@ucl.ac.uk

## Description of the layers used in the Deep Neural Network:

The layers used for the deep neural network in Figure 1 consist of:

| Layer name | Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F          | A flattening layer denoted 'F'. The flattening layer only re-arranges the data, no calculations are performed, and no parameters are optimised. For a two-<br>dimensional input tensor (a matrix) $\mathbf{x}$ of size {2, $np$ }, the flattening layer returns a one-dimensional vector $\mathbf{y}$ of length $2 \times np$ that consists of a concatenation of the rows of $\mathbf{x}$                                                                                                                                                                                                                                                                                                                                      |
| R          | A reshape layer denoted 'R'. The reshape layer only re-arranges the data, no calculations are performed, and no parameters are optimised. The reshape layer in Figure 1 is used as the reverse of the flattening layer F. Thus, for a one-dimensional input vector $\mathbf{x}$ of length $2 \times np$ the output $\mathbf{y}$ is a two-dimensional tensor (a matrix) of size $\{2, np\}$ .                                                                                                                                                                                                                                                                                                                                    |
| Τ          | A linear layer with hyperbolic tangent, $tanh(x)$ , activation function and bias<br>denoted 'T'. The layer transforms, in a linear manner, an input vector <b>x</b> of<br>size <i>n</i> into an output vector <b>y</b> of size <i>m</i> . This layer contains a two-<br>dimensional parameter-tensor, <b>A</b> , with dimension $\{m, n\}$ and a one-<br>dimensional parameter-vector, <b>b</b> , of size <i>m</i> . As described in Eqs. 1 and 2, <b>y</b><br>= $\{tanh(z_1), tanh(z_2),, tanh(z_m)\}$ , where $\mathbf{z} = \{z_1, z_2,, z_m\}$ and $\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{b}$ . Training the neural network involves optimisation of all the $(n+1) \times m$<br>parameters of <b>A</b> and <b>b</b> . |
| σ          | A linear layer with sigmoidal activation and bias denoted ' $\sigma$ '. This layer is similar to 'T', only difference is that a sigmoidal function is used, $\varphi(x) = (1+\exp(-x))^{-1}$ , instead of the hyperbolic tangent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| +          | An elementwise addition layer denoted '+'. For two input vectors, <b>x</b> and <b>y</b> , of identical length <i>n</i> , the output vector, <b>z</b> , is calculated as: $\mathbf{z} = \{z_1, z_2,, z_n\} = \{x_1+y_1, x_2+y_2,, x_n+y_n\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ×          | An elementwise multiplication layer denoted '×'. For two input vectors, <b>x</b> and <b>y</b> , of identical length <i>n</i> , the output vector, <b>z</b> , is calculated as: $\mathbf{z} = \{z_1, z_2,, z_n\} = \{x_1^*y_1, x_2^*y_2,, x_n^*y_n\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



**Fig. S1.** The <sup>15</sup>N-<sup>1</sup>H HSQC spectrum of T4L L99A used to evaluate the performance of the algorithms for reconstruction of sparsely sampled one-dimensional spectra. Shown is, the fully sampled spectrum as well as the spectra reconstructed from a Poisson-gap 12.5% sampling (Table S1), with the three algorithms DNN, IST<sup>1</sup>, and SMILE<sup>2</sup>. The green vertical dashed lines shows where the one-dimensional spectra in Figure 3 are extracted from.



**Fig. S2.** The <sup>15</sup>N-<sup>1</sup>H HSQC spectrum of T4L L99A used to evaluate the performance of the algorithms for reconstruction of sparsely sampled one-dimensional spectra. Shown is, the fully sampled spectrum as well as the spectra reconstructed from a random 12.5% sampling (Table S1), with the three algorithms DNN, IST<sup>1</sup>, and SMILE<sup>2</sup>. The green vertical dashed lines shows where the one-dimensional spectra in Figure 3 are extracted from.



**Fig. S3.** <sup>15</sup>N-<sup>1</sup>H HSQC correlation spectrum of T4L L99A. Peaks that are not overlapped and used for comparison of intensities, Figure 4 and 5, are shown with black marks.

| 12.5% random sampling <sup>a)</sup>                    |           | 12.5% Poisson-gap <sup>b)</sup> |           |                      | 1                       | 18.8% Poisson-gap <sup>b)</sup> |            |          |  |
|--------------------------------------------------------|-----------|---------------------------------|-----------|----------------------|-------------------------|---------------------------------|------------|----------|--|
| 0                                                      | 0         | 0                               | 0         | 0                    | 0                       | 0                               | 0          | 0        |  |
| 12                                                     | 11        | 4                               | 2         | 2                    | 1                       | 1                               | 1          | 1        |  |
| 18                                                     | 16        | 9                               | 3         | 3                    | 2                       | 3                               | 2          | 2        |  |
| 26                                                     | 21        | 19                              | 5         | 7                    | 3                       | 4                               | 3          | 5        |  |
| 28                                                     | 31        | 36                              | 8         | 9                    | 5                       | 5                               | 4          | 7        |  |
| 45                                                     | 34        | 42                              | 11        | 12                   | 7                       | 6                               | 5          | 8        |  |
| 56                                                     | 36        | 47                              | 13        | 17                   | 10                      | 8                               | 6          | 9        |  |
| 77                                                     | 41        | 48                              | 20        | 24                   | 14                      | 9                               | 9          | 11       |  |
| 80                                                     | 64        | 56                              | 30        | 28                   | 17                      | 11                              | 12         | 12       |  |
| 105                                                    | 76        | 75                              | 38        | 34                   | $\frac{1}{20}$          | 13                              | 12         | 12       |  |
| 105                                                    | 70        | 83                              | 43        | 44                   | 20                      | 15                              | 16         | 13       |  |
| 100                                                    | 88        | 98                              | 55        | 54                   | 20                      | 17                              | 20         | 23       |  |
| 117                                                    | 80        | 100                             | 55<br>66  | 5 <del>4</del><br>66 | <i>JJ</i><br><i>A</i> 1 | 22                              | 20         | 20       |  |
| 121                                                    | 03        | 116                             | 00<br>78  | 00<br>81             | 41<br>52                | 22                              | 20         | 23       |  |
| 132                                                    | 95<br>111 | 117                             | 02        | 07                   | 56                      | 20                              | 32         | 26       |  |
| 133                                                    | 111       | 117                             | 93<br>115 | 97<br>105            | 30<br>72                | 22                              | 38<br>42   | 30       |  |
| 140                                                    | 119       | 119                             | 115       | 103                  | 12                      | 33                              | 43         | 40       |  |
| 142                                                    | 120       | 121                             | 154       | 120                  | 09<br>107               | 40                              | 50         | 42       |  |
| 143                                                    | 129       | 132                             | 151       | 143                  | 107                     | 4/                              | 59         | 44<br>50 |  |
| 154                                                    | 149       | 130                             | 105       | 101                  | 131                     | 55<br>57                        | 03         | 50       |  |
| 100                                                    | 150       | 137                             | 101       | 1/9                  | 149                     | 57<br>61                        | / I<br>9 1 | 50       |  |
| 1/0                                                    | 100       | 130                             | 192       | 200                  | 100                     | 66                              | 01         | 08       |  |
| 103                                                    | 173       | 139                             | 200       | 200                  | 202                     | 72                              | 91         | /4<br>00 |  |
| 195                                                    | 180       | 140                             | 212       | 209                  | 202                     | 73                              | 100        | 82<br>97 |  |
| 197                                                    | 104       | 145                             | 227       | 220                  | 217                     | 04                              | 110        | 8/<br>06 |  |
| 211                                                    | 188       | 154                             | 234       | 227                  | 229                     | 98                              | 118        | 90       |  |
| 221                                                    | 195       | 159                             | 239       | 231                  | 230                     | 106                             | 129        | 103      |  |
| 224                                                    | 196       | 185                             | 243       | 238                  | 238                     | 119                             | 143        | 114      |  |
| 233                                                    | 215       | 196                             | 240       | 242                  | 242                     | 130                             | 154        | 122      |  |
| 240                                                    | 218       | 205                             | 251       | 247                  | 249                     | 148                             | 168        | 128      |  |
| 240                                                    | 220       | 239                             | 252       | 250                  | 251                     | 163                             | 1/5        | 14/      |  |
| 250                                                    | 232       | 243                             | 254       | 252                  | 252                     | 1/3                             | 180        | 161      |  |
| 251                                                    | 254       | 250                             | 255       | 255                  | 254                     | 188                             | 194        | 1/4      |  |
|                                                        |           |                                 |           |                      |                         | 199                             | 204        | 185      |  |
|                                                        |           |                                 |           |                      |                         | 206                             | 212        | 196      |  |
|                                                        |           |                                 |           |                      |                         | 211                             | 21/        | 203      |  |
|                                                        |           |                                 |           |                      |                         | 220                             | 224        | 210      |  |
|                                                        |           |                                 |           |                      |                         | 227                             | 230        | 218      |  |
|                                                        |           |                                 |           |                      |                         | 234                             | 234        | 224      |  |
|                                                        |           |                                 |           |                      |                         | 237                             | 236        | 229      |  |
|                                                        |           |                                 |           |                      |                         | 239                             | 238        | 235      |  |
|                                                        |           |                                 |           |                      |                         | 241                             | 241        | 237      |  |
|                                                        |           |                                 |           |                      |                         | 242                             | 243        | 240      |  |
|                                                        |           |                                 |           |                      |                         | 247                             | 244        | 243      |  |
|                                                        |           |                                 |           |                      |                         | 249                             | 247        | 246      |  |
|                                                        |           |                                 |           |                      |                         | 251                             | 249        | 249      |  |
|                                                        |           |                                 |           |                      |                         | 252                             | 251        | 251      |  |
|                                                        |           |                                 |           |                      |                         | 253                             | 253        | 253      |  |
| $\begin{bmatrix} 255 & 255 \\ 255 & 255 \end{bmatrix}$ |           |                                 |           |                      |                         |                                 |            |          |  |

 Table S1. Sampling schedules

**a**) Generated using the random function within the python module *numpy*. First schedule, in bold, is used for data in Figure 3c,d and Figure S2. **b**) Generated with the programme provided as a part of the istHMS<sup>1</sup> package using the Knuth algorithm and random seeds of 31415926, 31415925, 31415920, respectively. First schedule, in bold, is used for data in Figures 2, 3a, 3b, and S1.

## **Supporting References**

- Hyberts, S. G., Milbradt, A. G., Wagner, A. B., Arthanari, H. & Wagner, G. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. *J. Biomol. NMR* 52, 315–327 (2012).
- Ying, J., Delaglio, F., Torchia, D. A. & Bax, A. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both nonuniformly sampled and conventional NMR data. *J. Biomol. NMR* 68, 101– 118 (2017).