

Supplementary Information for

An on-board checking mechanism ensures effector delivery of the type

VI secretion system in Vibrio cholerae

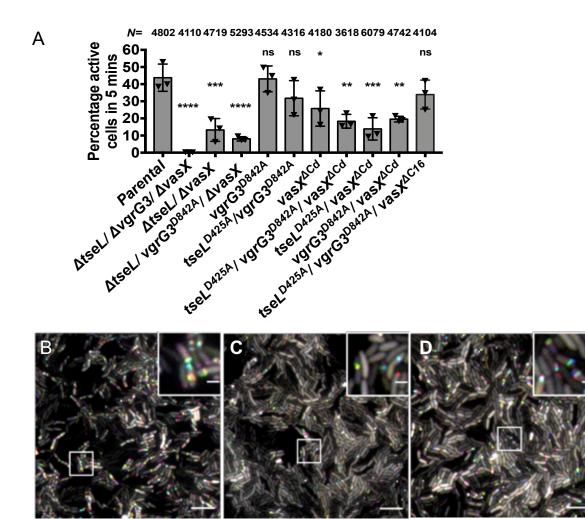
Running title: Effector-loading ensures secretion efficiency

Xiaoye Liang^{a,1}, Fatima Kamal^{b,1}, Tong-Tong Pei^a, Ping Xu^a, John J. Mekalanos^{c,2}, and Tao G.

Dong^{a,b,2}

¹ Contributed equally.

² Correspondence to tdong@ucalgary.ca or john_mekalanos@hms.harvard.edu

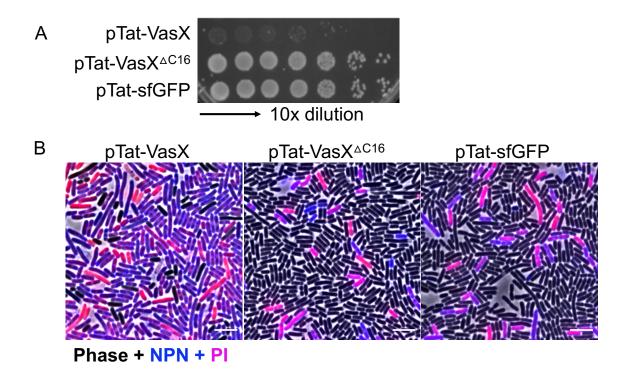

^aState Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China; ^bDepartment of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; and ^cDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115

This PDF file includes:

Supplementary text Figures S1 to S5 Tables S1 SI References

Other supplementary materials for this manuscript include the following:

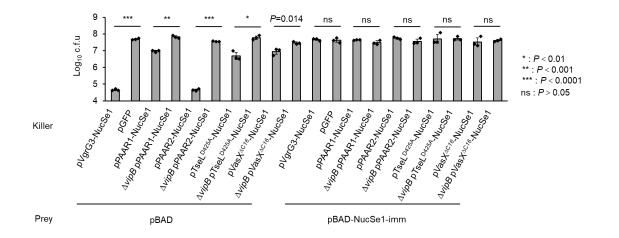
Datasets S1



tseL^{D425A}/vasX^{∆C16}/vgrG3^{D842A}

tseL^{D425A}/vasX^{∆Cd}

vgrG3^{D842A} /vasX^{∆Cd}


Fig. S1. Quantification and comparison of sheath formation in all mutants. A, *N* indicates the number of cells counted for each strain. Error bars indicate the mean +/- standard deviation (n= 3). One-way ANOVA with Dunnett's multiple comparisons test compared to parental *****P* < 0.001; ****P* < 0.001; ***P* < 0.005; **P* < 0.05; ns, not significant. B-D, 40 X 40 µm representative field of cells with a 3X magnified 5 X 5 µm inset (marked by box) is shown. VipA-mCherry signal was followed for 5 minutes and temporally color coded. Representative images are shown with a close up of a selected region as an inset. Scale bar for large field of view represents 5 µm and for the inset represents 1 µm. Genotypes are as indicated.

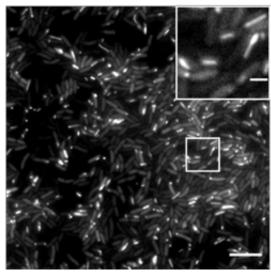

Fig. S2. Periplasmic expression of VasX results in membrane damage and cell death. A, survival of cells expressing pTat-VasX and pTat-VasX^{C16} by serial dilution. B, merged images of cells expressing pTat-VasX and pTat-VasX^{C16}. The phase-contrast, NPN and PI channels are merged and representative images shown. Fluorescence signals for NPN and PI are depicted in blue and red respectively.

Fig. S3. Neighbor-joining tree of VasX homologs. Sequences of 198 VasX homologs were downloaded from the HMMER database and analyzed using Jalview and EMBL-EBI. The graphic view is generated by iTOL. Representative species and their relative clusters are indicated.

Fig. S4. Delivery of chimeric cargo by T6SS. Please also see Figure 5 for a representative assay plate and detailed description. Data were obtained from independent triplicate samples. Error bars show standard deviation. Statistical analysis was performed using the Student's *t*-test and *P*-values indicated.

vipA-N3-sfgfp ΔtseL/ΔvasX/ ΔvgrG3

Fig. S5. Non-contractile sheath formation in the $\Delta tseL/\Delta vasX/\Delta vgrG3$ mutant. 40 X 40 µm representative field of *V. cholerae vipA-N3-sfgfp* effector deletion mutant with a 3X magnified 5 X 5 µm inset (marked by box) is shown. VipA-N3-sfGFP signal was followed for 5 minutes. Scale bar for large field of view represents 5 µm and for the inset represents 1 µm.

Strain	Genotype	Description	Source
<i>V. cholerae</i> V52 rhh	Parental	Deletion in <i>rtxA hlyA hapA</i> , parental strain	(1)
	$\Delta vasK$	T6SS null, in-frame deletion of VCA0120	(1)
	vipA-mCherry2	C-terminal chromosomal fusion of mCherry2 to VipA	(2)
	vipA-mCherry2, tseL ^{D425A}	Chromosomal mutation of the TseL catalytic residue D425	This study
	vipA-mCherry2, vgrG3 ^{D842A}	Chromosomal mutation of the VgrG3 catalytic residue D842	This study
	$vipA$ -mCherry2, $vasX^{\Delta Cd}$	Chromosomal deletion of the colicin domain (R775-I915) of VasX	This study
	vipA-mCherry2, tseL ^{D425A} /vgrG3 ^{D842A}	Double mutations in <i>tseL</i> and <i>vgrG3</i>	This study
	$vipA$ -mCherry2, $tseL^{D425A}/vasX^{4Cd}$	Double mutations in <i>tseL</i> and <i>vasX</i>	This study
	$vipA$ -mCherry2, $vgrG3^{D842A}/vasX^{4Cd}$	Double mutations in $vgrG3$ and $vasX$	This study
	$vipA$ -mCherry2, $tseL^{D425A}/vasX^{4Cd}/vgrG3^{D842A}$	Triple inactive mutations of VgrG3, TseL, and VasX	This study
	$vipA$ -mCherry2, $\Delta tseL/\Delta vasX/\Delta vgrG3$	In-frame deletion of the three effectors	This study
	$vipA$ -mCherry2, $\Delta tseL/\Delta vasX/vgrG3^{D842A}$	In-frame deletion of <i>tseL</i> and <i>vasX</i> , point mutation in <i>vgrG3</i>	This study
	$vipA$ -mCherry2, $vasX^{4C16}$	Deletion of a 16-aa loop (A852 to F867) in the colicin domain	This study
	$vipA$ -mCherry2, $tseL^{D425A}/vasX^{4C16}/vgrG3^{D842A}$	Triple effector inactive mutations including the loop deletion in VasX	This study
	vipA-mCherry2, Δ vipB tseL ^{D425A} /vasX ^{AC16} /vgrG3 ^{D842A}	T6SS null of the triple effector- inactivated mutant, in-frame deletion of $vipB$	This study
	vipA-N3-sfgfp,	Non-contractile sheath mutant	(3)

 Table S1. Strains and plasmids used in this study.

	$\Delta tsiVI$	Immunity mutant of TseL, deletion of VC1417-21	(4)
	$\Delta tsiV2$	Immunity mutant of VasX, deletion of VCA0019-21	(4)
	$\Delta tsiV3$	Immunity mutant of VgrG3, deletion of VCA0123-24	(4)
E. coli			
PIR1	F-∆lac169 rpoS(Am) robA1 creC510 hsdR514 endA recA1 uidA(∆MluI)∷pir-116	Strain used for cloning	Invitrogen
SM10 (λ pir)	Km ^r , <i>thi-1</i> , <i>thr</i> , <i>leu</i> , <i>tonA</i> , <i>lacY</i> , <i>supE</i> , <i>recA</i> :: <i>RP4-2</i> - <i>Tc</i> :: <i>Mu</i> , <i>pir</i>	Strain used for conjugation	Mekalanos lab
CC114		A transposon mutant used as prey for T6SS killing	Mekalanos lab
DH5alpha	F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 phoA supE44 thi-1 gyrA96 relA1 λ-	Strain used for cloning	Invitrogen

Plasmid

Plasmid	Description	Source
pDS132	Suicidal conjugation vector for all chromosomal allelic changes	(5)
pDS132- <i>tseL</i> ^{D425A}	Suicidal vector to construct chromosomal <i>tseL</i> ^{D425A}	This study
pDS132- <i>vgrG3</i> ^{D842A}	Suicidal vector to construct chromosomal vgrG3 ^{D842A}	This study
pDS132- vasX ^{4Cd}	Suicidal vector to construct chromosomal vasX ^{4Cd}	This study
pDS132- vasX ^{4C16}	Suicidal vector to construct chromosomal vasX ^{4C16}	This study
pDS132- vipA-mCherry2	Suicidal vector to construct chromosomal insertion VipA-mCherry2	(2)
pBAD18	Arabinose-induced expression vector	(6)
pBAD18-VasX-3V5	For expressing VasX with a C-terminal 3 x V5 epitope tag	This study
pBAD18-VasX ^{∆Cd} -3V5	For expressing VasX ^{ΔCd} with a C-terminal 3 x V5 epitope tag	This study

pBAD18-VasX ^{∆C16} -3V5	For expressing VasX $^{\Delta C16}$ with a C-terminal 3 x V5 epitope tag	This study
pPSV37-Tat-VasX	For expressing VasX in the periplasm, IPTG inducible	This study
pPSV37-Tat-VasX ^{∆C16}	For expressing VasX $^{\Delta C16}$ in the periplasm, IPTG inducible	This study
pPSV37-Tat-sfGFP	For expressing sfGFP in the periplasm, IPTG inducible	This study
pBAD33-VgrG3-NucSe1	For expressing chimeric VgrG3-NucSe1 fusion	(7)
pBAD33-NucSe1-imm	For expressing NucSe1 immunity protein	(7)
pBAD33-PAAR1-NucSe1	Derivative of VgrG3-NucSe1 for expressing chimeric VCA0105-NucSe1	This study
pBAD33-PAAR2-NucSe1	Derivative of VgrG3-NucSe1 for expressing chimeric VCA0284-NucSe1	This study
pBAD33-TseL ^{D425A} -NucSe1	Derivative of VgrG3-NucSe1 for expressing chimeric TseL ^{D425A} -NucSe1	This study
pBAD33-VasX ^{∆C16} -NucSe1	Derivative of VgrG3-NucSe1 for expressing chimeric Vas $X^{\Delta C16}$ -NucSe1	This study

References

- 1. Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a *Vibrio cholerae* type VI secretion effector requires bacterial endocytosis by host cells. *Cell Host Microbe* 5(3):234–243.
- 2. Basler M, Ho BT, Mekalanos JJ (2013) Tit-for-Tat: Type VI secretion system counterattack during bacterial cell-cell interactions. *Cell* 152(4):884–894.
- 3. Brackmann M, Wang J, Basler M (2018) Type VI secretion system sheath intersubunit interactions modulate its contraction. *EMBO Rep* 19(2):225–233.
- 4. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013) Identification of T6SSdependent effector and immunity proteins by Tn-seq in *Vibrio cholerae*. *Proc Natl Acad Sci* 110(7):2623–2628.
- 5. Philippe N, Alcaraz J-P, Coursange E, Geiselmann J, Schneider D (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. *Plasmid* 51(3):246–255.
- 6. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* 177(14):4121–4130.
- 7. Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) *Vibrio cholerae* type 6 secretion system effector trafficking in target bacterial cells. *Proc Natl Acad Sci U S A* 114(35):9427–9432.