

Supplementary Information for

Quantifying the impact of treatment history on plasmid-mediated resistance evolution in

human gut microbiota

Burcu Tepekule, Pia Abel zur Wiesch, Roger Kouyos, Sebastian Bonhoeffer

Burcu Tepekule.

E-mail: burcu.tepekule@env.ethz.ch

This PDF file includes:

- Figs. S1 to S6
- Tables S1 to S2
- References for SI reference citations

¹² **Model parameters**

- ¹³ The obtained growth rates are all positive, and consistent with the underlying biological assumptions, as well as the reported
- ¹⁴ growth rates in [\(1\)](#page-10-1). Values obtained for interaction terms are all negative except one inter-phyla interaction term, which is
- ¹⁵ positive but small in magnitude. Hence, our numerical estimations for the interaction terms are dominated by competition,
- ¹⁶ which is shown to improve gut microbiome stability and permit high diversity of species to coexist [\(2\)](#page-10-2). Statistics on the ¹⁷ parameter estimates are provided in Table [S1](#page-8-0) and Figures [S1](#page-2-0) and [S2.](#page-3-0) Figure [S1](#page-2-0) shows that the phylum *Firmicutes* and
- ¹⁸ *Actinobacteria* do not affect the abundances of *Proteobacteria* and *Bacteroidetes* strongly due to their low inter-phyla interaction
- ¹⁹ rates. From the perspective of resistance evolution modeling, this indicates that the model can be reduced to two phyla
- ²⁰ including *Proteobacteria* and *Bacteroidetes*, since they are the only two phyla with the resistant variants. Dynamics of this
- ²¹ reduced model are presented in Figure [S3,](#page-4-0) where three random treatment courses are applied on the 4-phyla (full) and 2-phyla
- ²² (reduced) models, and very similar results are observed. Note that this reduction is only possible in hindsight after the ²³ interaction parameters are estimated using the full model, and depends highly on the model scenario.
- ²⁴ Estimated parameters led to steady state values of 2*.*92%, 59*.*77%, 32*.*48%, and 0*.*37% for *Proteobacteria* (*C*0), *Bacteroidetes* $(25 \ (C_1)$, *Firmicutes* (C_2), and *Actinobacteria* (C_3), respectively. These values indicate that the most abundant 4 phyla represent ²⁶ the 95*.*5% of the microbial population, and are in agreement with the temporal mean of the time series data as well as 27 reported values in the literature [\(3–](#page-10-3)[9\)](#page-10-4). Numerical values for conjugation frequencies (h_{inter} , h_{inter}), resistance costs ($ρ_0$, $ρ_1$), ²⁸ and missegregation fraction (*γ*) are jointly assigned to achieve a plausible decay rate for the plasmid, as explained in more 29 detail in the Methods section. However, the time it takes for the plasmid-bearing population to go extinct (T_{ext}) is affected by ³⁰ the stochasticity in our simulations, and can be different for each realization of the system. This is demonstrated in Figure $31 S4(A)$ $31 S4(A)$ $31 S4(A)$, where the distribution of T_{ext} is provided in the absence of treatment, calculated over 1000 hybrid deterministic - 32 stochastic simulations. Figures $S_4(B)$ and $S_4(C)$ show the baseline dynamics of the system in the absence of any treatment,
- ³³ using a purely deterministic and a hybrid deterministic stochastic realization, respectively.

 b_i

- Out of 10000 randomly sampled $\{h_{\text{intra}}, h_{\text{inter}}, \rho_0, \rho_1, \gamma\}$ sets, the set $\{10^{-15.831} \text{ NR}^{-1} \times \text{day}, 10^{-15.923} \text{NR}^{-1} \times \text{day}, 0.157,$ ³⁵ 0*.*0122*,* 0*.*0131} (NR : normalized reads) led to a reservoir extinction time of 720 days in the absence of treatment, which is the ³⁶ targeted extinction time of two years. Numerical values for death rates were obtained by employing the random sampling scheme described in Figure 6. Out of 10000 randomly sampled $\{\delta_0, \delta_1, \delta_2, \delta_3\}$ sets, $\{0.288 \times day^{-1}, 0.398 \times day^{-1}, 0.449 \times day^{-1},\}$ ³⁸ 0.395 × day⁻¹} led to the minimum score and therefore used in the model. Standard error of the mean and 95% confidence
- 39 intervals for $\{\delta_0, \delta_1, \delta_2, \delta_3\}$ and $\{h_{\text{intra}}, h_{\text{inter}}, \rho_0, \rho_1, \gamma\}$ are given in Table [S2,](#page-9-0) and the corresponding parameter distributions are provided in Figures [S5](#page-6-0) and [S6,](#page-7-0) respectively.

⁴¹ **Information quantification**

We first transformed each realization into a sequence of length $\max(T_L) + \max(T_{df}) = 1000 + 360 = 1360$ days, where the *i*th 42 43 day is denoted by b_i and set to

44

$$
= \begin{cases} 0, & \text{if } i < T_I \\ -1, & \text{if } i \geq T_I \text{ and } \mathbb{1}_T = 0 \text{ (there is no treatment)} \\ +1, & \text{if } i \geq T_I \text{ and } \mathbb{1}_T = 1 \text{ (there is treatment)} \end{cases}
$$

so that the days before the colonization with the resistant reservoir $(i < T_I)$, days without treatment after the colonization with the resistant reservoir $(i \geq T_I, \mathbb{1}_T = 0)$, and days with treatment after the colonization with the resistant reservoir $(i \geq T_I, \mathbb{1}_T = 1)$ has no (0), negative (-1), and positive (+1) impact on the prevalence of resistance *P*, respectively. After generating these sequences, we applied linear regression in the form of

$$
\mathbf{P} = \alpha \cdot [\mathbf{1} \ \mathbf{b}], \tag{1}
$$

45 where **P** denotes the prevalence of resistance vector, α denotes the vector of regression coefficients including the intercept term,

and $[1 \, d]$ denotes the matrix of treatment history sequences with an additional column of ones for the intercept term. We

47 used 600000 randomly subsampled realizations, 1200 realizations per $N = \{1, 2, \dots, 20\}$ per $T_{df} = \{0, 15, 30, \dots, 360\}$ value,

and calculated the linear regression coefficients α_i for each day d_i . Figure 5 shows the absolute values of the linear regression

⁴⁹ coefficients given the day index *i*, and an exponential decay function that is fit to these data points.

Fig. S1. Visualization of the **(A)** growth and **(B)** interaction parameter estimates provided in Table [S1.](#page-8-0)

Fig. S2. Phylum-level time series data obtained from two healthy subjects' gut microbiota **(A)** F4 GUT and **(B)** M3 GUT provided in [\(10\)](#page-10-5). *C*0, *C*1, *C*2, and *C*³ denote the phyla *Proteobacteria*, *Bacteroidetes*, *Firmicutes*, and *Actinobacteria*, respectively. Phylum name (data) denotes the data provided in [\(10\)](#page-10-5), and phylum name (sim) denotes the realization of the system using the estimated parameters, starting from the same initial conditions with the data.

Fig. S3. (A) 4-phyla (full) model used in the main manuscript, including Proteobacteria (C_0), Bacteroidetes (C_1), Firmicutes (C_2), and Actinobacteria (C_3). (B) 2-phyla (reduced) model including only *Proteobacteria* (C_0) and *Bacteroidetes* (C_1).

Fig. S4. (A) Distribution of the extinction time of the plasmid (Text), calculated over 1000 hybrid deterministic - stochastic simulations for the parameter set used in the model. Demonstration of the baseline dynamics of the system in the absence of any treatment, using **(B)** a purely deterministic and **(C)** a hybrid deterministic - stochastic realization.

Fig. S5. Distributions of {*h_{intra}*, *h_{inter}*, *ρ*₀, *ρ*₁, γ } leading to a normally distributed plasmid extinction time with mean 720 and standard deviation of 20 days.

Fig. S6. Distributions of $\{\delta_0, \delta_1, \delta_2, \delta_3\}$ with the best 100 scores.

Table S1. Results of the parameter estimation for growth and interaction terms. Phylum-level time series data obtained from two healthy subjects' gut microbiota (referred as F4 GUT and M3 GUT) provided in [\(10\)](#page-10-5) is used. To infer parameters invariant to the scale of the data, OTU reads are normalized across all phyla for each time point, and used the resulting quotients for *Proteobacteria***,** *Bacteroidetes***,** *Firmicutes***, and** *Actinobacteria* **as a proxy for their abundance in the gut. Bayesian variable selection algorithm in MDSINE [\(11\)](#page-10-6) is adopted for the time series analysis of the data.**

Table S2. Standard error of the mean and 95% confidence intervals for $\{\delta_0,\,\delta_1,\,\delta_2,\,\delta_3\}$ with the best 100 scores, and $\{h_{\sf intra},\,h_{\sf inter},\,\rho_0,\,\rho_1,\,\gamma\}$ **leading to a normally distributed plasmid extinction time with mean** 720 **and standard deviation of** 20 **days.**

parameter	mean	SEM	CI95
δ_0	0.283	0.00326	0.276-0.289
δ_1	0.371	0.00612	0.359-0.383
δ_2	0.435	0.00435	$0.426 - 0.444$
δ_3	0.249	0.00856	$0.232 - 0.266$
ρ_0	0.0945	4.66E-05	0.0944-0.095
ρ_1	0.0278	1.70E-05	0.0278-0.028
h_{intra}	-14.8	0.00059	$-14.8 - 15$
$h_{\sf inter}$	-15.5	0.000443	$-15.5 - 15$
	0.0227	1.13E-05	0.0227-0.023

References

- 1. Stein RR, et al. (2013) Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. *PLoS computational biology* 9(12):e1003388.
- 2. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. *Science* 350(6261):663–666.
- 3. Qin J, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. *nature* 464(7285):59.
- 4. Qin N, et al. (2015) Influence of h7n9 virus infection and associated treatment on human gut microbiota. *Scientific reports* 5:14771.
- 5. Eckburg PB, et al. (2005) Diversity of the human intestinal microbial flora. *science* 308(5728):1635–1638.
- 6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. *Nature* 489(7415):220.
- 7. Arumugam M, et al. (2011) Enterotypes of the human gut microbiome. *nature* 473(7346):174.
- 8. Huttenhower C, et al. (2012) Structure, function and diversity of the healthy human microbiome. *Nature* 486(7402):207.
- 9. Peris-Bondia F, Latorre A, Artacho A, Moya A, D'Auria G (2011) The active human gut microbiota differs from the total microbiota. *PloS one* 6(7):e22448.
- 10. Caporaso JG, et al. (2011) Moving pictures of the human microbiome. *Genome biology* 12(5):R50.
- 11. Bucci V, et al. (2016) Mdsine: Microbial dynamical systems inference engine for microbiome time-series analyses. *Genome Biology* 17(1):121.