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I. DERIVATION OF THE RUN LENGTH DISTRIBUTION

The summation in Eq.(4) in the main text,

P (n) =
∞∑

m,l=0

(m+ l)!

m!l!

(J+

JT

)m(J−
JT

)l(Jγ
JT

)
δm−l,n, (S1)

can be carried out for n > 0, leading to,

P (n > 0) =
(J+

JT

)n(Jγ
JT

) ∞∑
l=0

(J+J−

J2
T

)l (2l + n)

(n+ l)!l!

=
(J+

JT

)n(Jγ
JT

)
2F1

(1 + n

2
,
2 + n

2
; 1 + n; 4

J+J−

J2
T

)
,

(S2)

where 2F1 is Gaussian hypergeometric function. By using the special case of 2F1 (page 556

of [1]), we obtain the following expression for the run length distribution,

P (n ≷ 0) =
( 2J±

JT +
√
J2
T − 4J+J−

)|n| Jγ√
J2
T − 4J+J−

. (S3)

In the above equation n is non-dimensional quantity which denotes the position of the motor

on the track. Notice that Eq.(S3) is independent of ATP concentration, which is in accord

with experiments [2, 3] as long as ATP concentration exceeds ≈ 10µM. At lower ATP

concentration, the mean run length does moderately depend on [T]. This suggests that at

very low [T] the motor head could enter the vulnerable 1HB state spontaneously. In such a

state the LH could detach before ATP binds to it. This would occur if the binding time for

ATP (inverse of a pseudo first order constant) is greater than the detachment time.

II. DERIVATION OF THE VELOCITY DISTRIBUTION

In our model (Fig.1(c) and (d) in the main text), the probability distribution of forward

step, backward step, and detachment at time t, and the corresponding Laplace transform
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(L(f) =
∫∞
0

e−stf(t)dt) are given by the following expressions,

f+(t) =

∫ t

0

dt′ke−kt
′
k+e−(k

++k−+γ)(t−t′)

=
kk+

k+ + k− + γ − k
(e−kt − e−(k

++k−+γ)t)

f̃+(s) =
kk+

(s+ k)(s+ k+ + k− + γ)
;

(S4)

and

f−(t) =

∫ t

0

dt′ke−kt
′
k−e−(k

++k−+γ)(t−t′)

=
kk−

k+ + k− + γ − k
(e−kt − e−(k

++k−+γ)t)

f̃−(s) =
kk−

(s+ k)(s+ k+ + k− + γ)
;

(S5)

fγ(t) =

∫ t

0

dt′ke−kt
′
γe−(k

++k−+γ)(t−t′)

=
kγ

k+ + k− + γ − k
(e−kt − e−(k

++k−+γ)t)

f̃γ(s) =
kγ

(s+ k)(s+ k+ + k− + γ)
.

(S6)

The probability that the motor takes m forward steps and l backward steps before detaching

at time t can be written as,

f(m, l, t) =
(m+ l)!

m!l!

∫ t

0

dtm+l

∫ tm+l

0

dtm+l−1 · · ·
∫ t3

0

dt2

∫ t2

0

dt1

m∏
i=1

f+(ti − ti−1)
m+l∏

i=m+1

f−(ti − ti−1)fγ(t− tm+l).

(S7)

The factorial term in Eq.(S7) accounts for the number of ways in which the motor can take

m forward steps and l backward steps for a net displacement of m − l. In Laplace space,
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Eq.(S7) is a multiplication of all the dwell time distributions up to the time of detachment,

f̃(m, l, s) =
(m+ l)!

m!l!
(f̃+(s))m(f̃−(s))lf̃γ(s)

=
(m+ l)!

m!l!
km+l+1(k+)m(k−)lγ

1

(s+ k)m+l+1(s+ k+ + k− + γ)m+l+1
.

(S8)

In order to obtain f(m, l, t) by inverse Laplace transform, we need to evaluate the following

integral,

1

2πi

∫ c+i∞

c−i∞

1

(s+ ξ1)n+1(s+ ξ2)n+1
estds, (S9)

where we set m+ l = n, ξ1 = k, and ξ2 = k+ + k−+ γ. This can be done using the standard

residue theorem. For the generic case of ξ1 6= ξ2, there are two distinct poles of order n+ 1.

Res
[ 1

(s+ ξ1)n+1(s+ ξ2)n+1
est
]∣∣∣
s=−ξ1

=
1

n!

dn

dsn

[ 1

(s+ ξ2)n+1
est
]∣∣∣
s=−ξ1

=
1

n!

n∑
p=0

(−1)p
(
n

p

)
tn−pe−ξ1t

(−ξ1 + ξ2)n+p+1

(n+ p)!

n!
,

(S10)

Res
[ 1

(s+ ξ1)n+1(s+ ξ2)n+1
est
]∣∣∣
s=−ξ2

=
1

n!

dn

dsn

[ 1

(s+ ξ1)n+1
est
]∣∣∣
s=−ξ2

=
1

n!

n∑
p=0

(−1)p
(
n

p

)
tn−pe−ξ2t

(−ξ2 + ξ1)n+p+1

(n+ p)!

n!
.

(S11)

Thus, by combining Eqs.(10.47.9), (10.49.1), and (10.49.12) of the NIST handbook of Math-

ematics [4], the inverse Laplace transform in Eq.(S9) becomes,

(S9) =
1

n!

n∑
p=0

(−1)p
(
n

p

)
tn−pe−ξ1t

(−ξ1 + ξ2)n+p+1

(n+ p)!

n!
+

1

n!

n∑
p=0

(−1)p
(
n

p

)
tn−pe−ξ2t

(−ξ2 + ξ1)n+p+1

(n+ p)!

n!

=
tn√
πn!

e−
ξ1+ξ2

2
t

√
(ξ1 − ξ2)t

(ξ2 − ξ1)n+1
Kn+ 1

2
(
ξ1 − ξ2

2
t) +

tn√
πn!

e−
ξ1+ξ2

2
t

√
(ξ2 − ξ1)t

(ξ1 − ξ2)n+1
Kn+ 1

2
(
ξ2 − ξ1

2
t),

(S12)
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where K is the modified Bessel function of the second kind.

Hence, Eq.(S7) becomes,

f(m, l, t) =
γ

m!l!

1√
π

e−
ξ1+ξ2

2
ttm+lkm+l+1(k+)m(k−)l

[ √(ξ1 − ξ2)t
(ξ2 − ξ1)m+l+1

Km+l+ 1
2

(ξ1 − ξ2
2

t
)

+

√
(ξ2 − ξ1)t

(ξ1 − ξ2)m+l+1
Km+l+ 1

2

(ξ2 − ξ1
2

t
)]
.

(S13)

We can simplify the above expression by employing the following identity for modified Bessel

function given in Eq.(10.34.2) in [4], and rewrite it as,

Kn+ 1
2
(−x) = −i

(
πIn+ 1

2
(x) + (−1)nKn+ 1

2
(x)
)

(x > 0), (S14)

where I is the modified Bessel function of the first kind. Therefore, we further simplify

Eq.(S13) as follows.

For ξ1 − ξ2 > 0,

f(m, l, t) =
γ

m!l!

√
πe−

ξ1+ξ2
2

ttm+lk
m+l+1(k+)m(k−)l

(ξ1 − ξ2)m+l+1

√
(ξ1 − ξ2)t Im+l+ 1

2

(ξ1 − ξ2
2

t
)
. (S15)

If ξ2 − ξ1 > 0 then,

f(m, l, t) =
γ

m!l!

√
πe−

ξ1+ξ2
2

ttm+lk
m+l+1(k+)m(k−)l

(ξ2 − ξ1)m+l+1

√
(ξ2 − ξ1)t Im+l+ 1

2

(ξ2 − ξ1
2

t
)
. (S16)

Both cases are written as,

f(m, l, t) =
γ
√
π

m!l!
e−

ξ1+ξ2
2

ttm+lk
m+l+1(k+)m(k−)l

|ξ2 − ξ1|m+l+1

√
|ξ2 − ξ1|t Im+l+ 1

2

( |ξ2 − ξ1|
2

t
)
. (S17)
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We finally obtain the expression for the velocity distribution.

For m− l > 0,

P (v > 0) =
∞∑
m,l
m>l

∫ ∞
0

f(m, l, t)δ(v − m− l
t

)dt

=
∞∑
m,l
m>l

m− l
v2

γ
√
π

m!l!
e−

ξ1+ξ2
2

m−l
v

(m− l
v

)m+l+ 1
2
km+l+1(k+)m(k−)l

|ξ2 − ξ1|m+l+ 1
2

Im+l+ 1
2

( |ξ2 − ξ1|
2

m− l
v

)
.

(S18)

For m− l < 0,

P (v < 0) =
∞∑
m,l
l>m

∫ ∞
0

f(m, l, t)δ(v − m− l
t

)dt

=
∞∑
m,l
l>m

l −m
v2

γ
√
π

m!l!
e−

ξ1+ξ2
2

m−l
v

(m− l
v

)m+l+ 1
2
km+l+1(k+)m(k−)l

|ξ2 − ξ1|m+l+ 1
2

Im+l+ 1
2

( |ξ2 − ξ1|
2

m− l
v

)
.

(S19)

Where ξ1 = k and ξ2 = k+ + k− + γ.

Let us now consider the case ξ1 = ξ2. Let ξ1 = ξ2 ≡ ξ, then we need to evaluate the

following integral,

1

2πi

∫ c+i∞

c−i∞

1

(s+ ξ)2(n+1)
estds. (S20)

In this case, we have a single pole of order 2(n+ 1). The result for f(m, l, t) becomes,

f(m, l, t) =
(m+ l)!

m!l!
km+l+1(k+)m(k−)lγ

t2(m+l)+1e−ξt

(2(m+ l) + 1)!
, (S21)

leading to

P (v > 0) =
∞∑
m,l
m>l

m− l
v2

(m+ l)!

m!l!

km+l+1(k+)m(k−)lγ

(2(m+ l) + 1)!

(m− l
v

)2(m+l)+1

e−ξ
m−l
v , (S22)
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P (v < 0) =
∞∑
m,l
l>m

l −m
v2

(m+ l)!

m!l!

km+l+1(k+)m(k−)lγ

(2(m+ l) + 1)!

(m− l
v

)2(m+l)+1

e−ξ
m−l
v . (S23)

Note that Eqs.(S21)-(S23) could also be obtained by taking the limit for ξ1 → ξ2 in Eqs.(S17)-

(S19), knowing that the limit for small argument of the modified Bessel function of the first

kind is given in Eq.(10.30.1) of [4].

For the kinetic scheme in Fig.1(c) and (d) in the main text, the expressions for the

velocity distributions are identical. However, the rate k, k+, k−, and γ depend on ATP

concentration in a different manner for the two models, which describe two distinct waiting

states of kinesin for ATP.

III. RANDOMNESS PARAMETER

Randomness parameter, which in some sense is easier to measure in experiments, is a

useful way to estimate the number of rate limiting steps of molecular motors [5, 6]. We

here discuss two types of randomness parameters for our models in the main text, chemical

randomness rC and mechanical randomness rM , which are connected by a relation denoted

by r̄C as shown below.

A. Chemical randomness parameter, rC

Chemical randomness is given by the following expression,

rC =
〈τ 2〉 − 〈τ〉2

〈τ〉2
, (S24)

where τ is the dwell time of the motor at a given site and the bracket denotes an average

over an ensemble of motors. Dwell time distributions for stepping forward (+) or backward

(−) at a site at time t in our models [Fig.1(c) and (d) in the main text] are given by,

f±(t) =

∫ t

0
dt′ke−kt

′
k±e−(k

++k−+γ)(t−t′)

=
kk±

k+ + k− + γ − k
(e−kt − e−(k

++k−+γ)t).

(S25)
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Thus, the first and second moment of dwell time distribution conditioned by forward or

backward step are,

〈τ±〉 =

∫∞
0 τ±f±(τ±)dτ±∫∞
0 f±(τ±)dτ±

=
k + k+ + k− + γ

k(k+ + k− + γ)
, (S26)

〈τ2±〉 =

∫∞
0 τ2±f±(τ±)dτ+∫∞
0 f±(τ±)dτ±

=2
k2 + k(k+ + k− + γ) + (k+ + k− + γ)2

k2(k+ + k− + γ)2
.

(S27)

Thus, (〈τ 2+〉 − 〈τ+〉2)/〈τ+〉2 = (〈τ 2−〉 − 〈τ−〉2)/〈τ−〉2, which allows us to express rC as

rC =
k2 + (k+ + k− + γ)2

(k + k+ + k− + γ)2
. (S28)

B. Mechanical randomness parameter, rM

We define rM as,

rM = lim
t→∞

〈n2(t)〉 − 〈n(t)〉2

〈n(t)〉
, (S29)

where n(t) is the position of the motor at time t. In our model, we can obtain the expression

for the probability distribution that the motor is at site n at time t, which is needed to

calculate the moments in (S29).

Using (S17) we obtain the probability that the motor takes n = (m− l) ,

f(n, t) =
∑
m,l

δm,n+lf(m, l, t)

=
∞∑
l=0

γ
√
π

(n+ 2l)!l!
e−

ξ1+ξ2
2

ttn+2l+ 1
2
kn+2l+1(k+)n+l(k−)l

|ξ2 − ξ1|n+2l+ 1
2

In+2l+ 1
2

( |ξ2 − ξ1|
2

t
)
.

(S30)

However, as written the sum (S30) accounts for contributions from motors that have de-

tached from the track before sufficiently long time t has elapsed. The appropriate probability

distribution to get the moments in Eq.(S29) is the re-normalized probability distribution at

each time t, which accounts only for the motors which stay on the track for a long time t.

We denote this probability distribution as f̄ , which is defined as,
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FIG. S1. Relaxation of mechanical randomness parameter at F = 0pN (blue), F = 4pN (green),

and F = 6pN (red). [T]=1mM in all cases. (a) 2HB model. (b) 1HB model. In all cases t = 0.5s

is long enough for rM to have a plateau value.

f̄(n, t) =
1

C

∞∑
l=0

γ
√
π

(n+ 2l)!l!
e−

ξ1+ξ2
2

ttn+2l+ 1
2
kn+2l+1(k+)n+l(k−)l

|ξ2 − ξ1|n+2l+ 1
2

In+2l+ 1
2

( |ξ2 − ξ1|
2

t
)
, (S31)

where

C =
∞∑
l=0

∞∑
n=−∞

γ
√
π

(n+ 2l)!l!
e−

ξ1+ξ2
2

ttn+2l+ 1
2
kn+2l+1(k+)n+l(k−)l

|ξ2 − ξ1|n+2l+ 1
2

In+2l+ 1
2

( |ξ2 − ξ1|
2

t
)
. (S32)

We used the distribution Eq.(S31) to obtain the first and second moment of n for the

calculation of mechanical randomness parameter. In practice, we calculated the first and

second moments 〈n(t)〉 and 〈n2(t)〉 at t = 0.5s, which is long enough for 〈n(t)〉 to decay

significantly. The double summation in Eq.(S32) should include enough terms to ensure

convergence of 〈n(t)〉 and 〈n2(t)〉. We truncated the summation at 30 and 130 for l and n,

respectively. Needless to say that if t is extended beyond 0.5s then a larger number of terms

will have to be calculated to obtain converged results.

If we denote r̄C as the chemical randomness parameter, which takes backward steps into

account, we found that,
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r̄C =
(2P+ − 1)rM − 4P+(1− P+)

(2P+ − 1)2
. (S33)

Thus, r̄C can be calculated from mechanical randomness parameter by taking into account

backward steps. The derivation of this equation can be found in the literature in a different

context [7, 8]. We show that in the next section this relation can be derived by including

backward steps in the work by Schnitzer and Block [6]. In order to calculate r̄C we need to

compute the probability of forward step, P+. We assume P+ + P− = 1 for all times until

the motor detaches.

Thus, in our model,

P+ =

∫∞
0
f+(τ+)dτ+∫∞

0
f+(τ+)dτ+ +

∫∞
0
f−(τ−)dτ−

=
k+

k+ + k−
. (S34)

Using rM and P+, we are able to calculate r̄C .

C. Derivation of mechanical randomness parameter with backward steps

We derive Eq.(S33) by incorporating backward steps into the work by Schnitzer and

Block [6]. We denote the dwell time distribution corresponding to forward and backward

steps as f+(t) and f−(t), respectively. Let g(m, l, t) be the probability distribution of taking

m forward steps and l backward steps before time t. The Laplace transform of g(m, l, t), is

written as follows,

g̃(m, l, s) =
(m+ l)!

m!l!
(f̃+(s))m(f̃−(s))l

1− f̃+(s)− f̃−(s)

s
. (S35)

The last term in (S35) is the Laplace transform of 1 −
∫ t
0
(f+(t) + f−(t))dt, means neither

forward nor backward step occurs in the last time step. For n ≡ m− l ≥ 0,

g̃+(n, s) =
∑
m,l

δn,m−lg̃(m, l, s)

=[f̃+(s)]n 2F1(
1 + n

2
,
2 + n

2
, 1 + n; 4f̃+(s)f̃−(s))

1− f̃+(s)− f̃−(s)

s
.

(S36)
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Using the special case of Hypergeometric function (page 556 of [1]) we obtain,

g̃+(n, s) =

[
2f̃+(s)

1 +
√

1− 4f̃+(s)f̃−(s)

]n
1√

1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s
. (S37)

For n ≤ 0, a similar procedure leads to,

g̃−(n, s) =

[
2f̃−(s)

1 +
√

1− 4f̃+(s)f̃−(s)

]−n
1√

1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s
. (S38)

Thus,

g̃±(n, s) =

(
2f̃±(s)

1 +
√

1− 4f̃+(s)f̃−(s)

)|n|
1√

1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s
. (S39)

The first and second moment of n are defined as,

〈n(s)〉 =
∞∑
n=0

ng̃+(n, s) +
0∑

n=−∞

ng̃−(n, s)

≡〈n(s)〉+ + 〈n(s)〉−

〈n2(s)〉 =
∞∑
n=0

n2g̃+(n, s) +
0∑

n=−∞

n2g̃−(n, s)

≡〈n2(s)〉+ + 〈n2(s)〉−.

(S40)

It is convenient to use the generating function of g̃±(n, s) to calculate the moments, and it

is a simple geometric sum given by,

Z+(x, s) =
∞∑
n=0

g̃+(n, s)xn

=
1

1− 2f̃+(s)x

1+
√

1−4f̃+(s)f̃−(s)

1√
1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s
.

(S41)
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The average number of forward step is calculated using the generating function as,

〈n(s)〉+ =
∂Z+

∂x

∣∣∣
x=1

=
2f̃+(s)

[
1 +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

[
1− 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]2 1− f̃+(s)− f̃−(s)

s
.

(S42)

The second derivative of the generating function leads to,

〈n2(s)〉+ − 〈n(s)〉+ =
∂2Z+

∂x2

∣∣∣
x=1

=
8[f̃+(s)]2

[
1 +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

[
1− 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]3 1− f̃+(s)− f̃−(s)

s
.

(S43)

Thus,

〈n2(s)〉+ =
2f̃+

[
1 +

√
1− 4f̃+(s)f̃−(s)

][
1 + 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

[
1− 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]3 1− f̃+(s)− f̃−(s)

s
.

(S44)

In a similar manner,

〈n(s)〉− = −
2f̃−(s)

[
1 +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

[
1− 2f̃−(s) +

√
1− 4f̃+(s)f̃−(s)

]2 1− f̃+(s)− f̃−(s)

s
,

(S45)

〈n2(s)〉− =
2f̃−

[
1 +

√
1− 4f̃+(s)f̃−(s)

][
1 + 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

[
1− 2f̃−(s) +

√
1− 4f̃+(s)f̃−(s)

]3 1− f̃+(s)− f̃−(s)

s
.

(S46)
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By substituting the above expressions in Eq.(S40) we obtain,

〈n(s)〉 =
2
[
1 +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s

[
f̃+(s)[

1− 2f̃+(s) +
√

1− 4f̃+(s)f̃−(s)
]2

− f̃−(s)[
1− 2f̃−(s) +

√
1− 4f̃+(s)f̃−(s)

]2
]
,

(S47)

〈n2(s)〉 =
2
[
1 +

√
1− 4f̃+(s)f̃−(s)

]
√

1− 4f̃+(s)f̃−(s)

1− f̃+(s)− f̃−(s)

s

[
f̃+(s)

[
1 + 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]
[
1− 2f̃+(s) +

√
1− 4f̃+(s)f̃−(s)

]3
+
f̃−(s)

[
1 + 2f̃−(s) +

√
1− 4f̃+(s)f̃−(s)

]
[
1− 2f̃−(s) +

√
1− 4f̃+(s)f̃−(s)

]3
]
.

(S48)

We express f̃±(s) using Taylor expansion,

f̃+(s) =P+

∞∑
k=0

〈τ k+〉(−s)k

k!

f̃−(s) =P−

∞∑
k=0

〈τ k−〉(−s)k

k!
.

(S49)

The moments of f̃±(t) are given by,

〈τ k+〉 =

∫∞
0
τ k+f+(τ+)dτ+∫∞

0
f+(τ+)dτ+

=

∫∞
0
τ k+f+(τ+)dτ+

P+

=
(−1)k d

k f̃+(s)
dsk

P+

,

〈τ k−〉 =

∫∞
0
τ k−f−(τ−)dτ−∫∞

0
f−(τ−)dτ−

=

∫∞
0
τ k−f−(τ−)dτ−

P−
=

(−1)k d
k f̃−(s)
dsk

P−
.

(S50)
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From here we assume the relation P+ + P− = 1. Substituting (S49) into (S47) and (S48)

with the condition either 1
2
< P+ ≤ 1 or 0 ≤ P+ <

1
2

both yield,

〈n(s)〉 =
2P+ − 1(

P+〈τ+〉+ (1− P+)〈τ−〉
)
s2

+
−2P 2

+〈τ+〉2 + 2(1− P+)2〈τ−〉2 + P+(2P+ − 1)〈τ 2+〉+ (2P+ − 1)(1− P+)〈τ 2−〉
2
(
P+〈τ+〉+ (1− P+)〈τ−〉

)2
s

+O(1),

(S51)

and

〈n2(s)〉 =
2(2P+ − 1)2(

P+〈τ+〉+ (1− P+)〈τ−〉
)2
s3

+

−P 2
+(8P+ − 5)〈τ+〉2 + (1− P+)2(8P+ − 3)〈τ−〉2 + 2(2P+ − 1)2

(
(1− P+)〈τ2−〉+ P+〈τ2+〉

)
+ 2(1− P+)P+〈τ+〉〈τ−〉(

P+〈τ+〉+ (1− P+)〈τ−〉
)3
s2

+O(s−1).

(S52)

After inverse Laplace transform,

〈n(t)〉 =
2P+ − 1(

P+〈τ+〉+ (1− P+)〈τ−〉
)t

+
−2P 2

+〈τ+〉2 + 2(1− P+)2〈τ−〉2 + P+(2P+ − 1)〈τ 2+〉+ (2P+ − 1)(1− P+)〈τ 2−〉
2
(
P+〈τ+〉+ (1− P+)〈τ−〉

)2 +O(t−1),

(S53)

and

〈n2(t)〉 − 〈n(t)〉2 =
P+(2P+ − 1)2〈τ 2+〉 − P 2

+(4P+ − 3)〈τ+〉2(
P+〈τ+〉+ (1− P+)〈τ−〉

)3 t

+
(1− P+)(2P+ − 1)2〈τ 2−〉 − (1− P+)2(1− 4P+)〈τ−〉2(

P+〈τ+〉+ (1− P+)〈τ−〉
)3 t

+
2(1− P+)P+〈τ+〉〈τ−〉(
P+〈τ+〉+ (1− P+)〈τ−〉

)3 t+O(1).

(S54)
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Now we compute the randomness parameter as

rM = lim
t→∞

〈n2(t)〉 − 〈n(t)〉2

〈n(t)〉

=
P+(2P+ − 1)2〈τ 2+〉 − P 2

+(4P+ − 3)〈τ+〉2(
P+〈τ+〉+ (1− P+)〈τ−〉

)2
(2P+ − 1)

+
(1− P+)(2P+ − 1)2〈τ 2−〉 − (1− P+)2(1− 4P+)〈τ−〉2(

P+〈τ+〉+ (1− P+)〈τ−〉
)2

(2P+ − 1)

+
2(1− P+)P+〈τ+〉〈τ−〉(

P+〈τ+〉+ (1− P+)〈τ−〉
)2

(2P+ − 1)
.

(S55)

For the special case, namely 〈τ+〉 = 〈τ−〉 and 〈τ 2+〉 = 〈τ 2−〉, rM in the above equation reduces

to the following expression,

rM =
(2P+ − 1)2〈τ 2〉 − (8P 2

+ − 8P+ + 1)〈τ〉2

(−1 + 2P+)〈τ〉2
. (S56)

Manipulation of Eq.(S56) leads to,

rC =
(2P+ − 1)rM − 4P+(1− P+)

(2P+ − 1)2
≡ r̄C , (S57)

where rC = 〈τ2〉−〈τ〉2
〈τ〉2 . Note that rC = rM if P+ is unity, which holds in the absence of

backward steps.
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IV. TWO MODELS FOR HOW KINESIN WAITS FOR ATP

DP D DP φ
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FIG. S2. A sketch showing all the relevant rates involved in the stepping of kinesin. The upper

(lower) panel shows the 2HB (1HB) waiting state. In the 2HB model , ATP binds to the LH when

both heads are bound to the microtuble (MT). In the 1HB model ATP binding occurs only after

the trailing head detaches from the MT. At extremely low ATP concentration the 1HB model is

more likely.

As explained in the main text, the two models (Fig.S3) have been proposed for the waiting

states of kinesin for ATP binding. In the 2HB model, ATP binds to the leading head when

both the heads are bound to the MT (upper panel in Fig.S2). In contrast, Isojima et al.

have suggested, based on dark field microscopy, that ATP binds only after the trailing head

detaches leading to the so-called vulnerable state (Fig.S3 bottom panel). In order to simplify

the kinetic scheme, we merge the 4 states in Fig.S2 into two states shown in Fig.S3 in order
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FIG. S3. Simplified two states model.

to calculate the net flux of transition from 2HB state to 1HB state (J2HB→1HB), forward

step (J1HB→2HB), and detachment (Jγ). The simplification allows us to obtain closed form

expressions for J2HB→1HB, J1HB→2HB, and Jγ.

In the following calculations, we employ method pioneered by Hill [9, 10]. We may design

state 3 to be the absorbing state for the transition from 2HB to 1HB (state 2 to state 3),

state 1 to be the absorbing state for the transition from 1HB to 2HB (state 4 to state

1). In addition, detachment is also an absorbing state when kinesin is in the 1HB state.

By obtaining the stationary solution of the following sets of master equations, with the

conditions P1 + P2 = 1 and P3 + P4 = 1,

dP1

dt
= −k12P1 + (k23 + k21)P2,

dP2

dt
= k12P1 − (k21 + k23)P2,

(S58)

dP3

dt
= −k34P3 + (k43 + k41 + γ)P2,

dP4

dt
= k34P3 − (k41 + k43 + γ)P2,

(S59)
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we obtain,

J2HB→1HB =
k12k23

k12 + k21 + k23
,

J1HB→2HB =
k34k41

γ + k34 + k41 + k43
,

Jγ =
γk34

γ + k34 + k41 + k43
,

(S60)

ATP binds with the rate k23 in the 2HB waiting state (upper panel in Fig.S2), which we

parametrize as k23 = [T]k023, where [T] is the ATP concentration. On the other hand, ATP

binding occurs with rate k34 in the 1HB model with detached TH. Thus, we include ATP

dependence in k34 = [T]k034. With these assumptions, the expressions for the fluxes are given

by,

J2HB→1HB =
k12[T]k023

k12 + k21 + [T]k023
,

J1HB→2HB =
k34k41

γ + k34 + k41 + k43
,

Jγ =
γk34

γ + k34 + k41 + k43
,

(S61)

in the 2HB mdoel. The analogous expressions in the 1HB model are,

J2HB→1HB =
k12k23

k12 + k21 + k23
,

J1HB→2HB =
[T]k034k41

γ + [T]k034 + k41 + k43
,

Jγ =
γ[T]k034

γ + [T]k034 + k41 + k43
,

(S62)

Thus, the Michaelis-menten (MM) kinetics naturally arises from this coarse grained proce-

dure in J2HB→1HB (Eq.S61) and J1HB→2HB (Eq.S62). Since the MM constant in J1HB→2HB

and Jγ for the 1HB waiting model are identical, we used the functional form k+ =
k+0 [T]

KT+[T]
e−βFd

+
, k− =

k−0 [T]

KT+[T]
eβFd

−
, and γ = γ0[T]

KT+[T]
eF/Fd . Using identical MM constant

in k+, k−, and γ in 1HB waiting model leads to ATP independent ratio of probability of

forward step, backward step, and detachment. This is realized in 2the HB waiting model as

well, and is in accord with experimental observation [11, 12].
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k0 244.0(s−1) d+ 2.2 (nm)
k+0 303.1(s−1) d− 0.7(nm)
k−0 1.3(s−1) Fd 3.0(pN)
γ0 2.4(s−1) KT 16.0(µM)

TABLE S1. Extracted parameters for the variant of 1HB model

V. VARIANT OF 1HB MODEL: k− IS INDEPENDENT OF [T]

It appears logical that the backward step should be the reverse of the forward step,

which implies that it too should occur by a hand-over-hand mechanism with the rate being

dependent on ATP. For reasons discussed in the main text, depending on the pathway that

kinesin takes to go take a backward step, it is possible that rate of backward step k− does

not depend on ATP binding. Therefore, we created a variant of the 1HB model [Fig.1(c)

in the main text] in which k− is independent of [T]. The load dependence is identical to

the original 1HB model, namely k− = k−0 eβF
−
d . We followed the same procedure described

in the main text to obtain the parameters for the variant of 1HB model, which are listed

in Table.S1. Interestingly, the values of the many parameters extracted using the 1HB and

variant 1HB models are not that dissimilar (compare Table.S1 and Table 2 in the main text).

We show in Fig.S4 that our main prediction about the qualitative behavior of randomness

parameters are robust: the randomness parameters for the variant of 1HB waiting model

also show monotonic decrease as [T] is increased. Thus, regardless of the mechanism of the

backward step we conclude that measurements of the randomness parameter as a function of

load and ATP concentration using currently available high temporal resolution experiments

should resolve the nature of waiting states for ATP.
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FIG. S4. Theoretical predictions for the ATP concentration dependence of the three randomness

parameters, rM , rC , and r̄C at different external loads for the 2HB model (blue) and the variant

of 1HB model (green). Filled circles, filled squares and lines denote rM , r̄C , and rC , respectively.

Red circles with error bar in (a) are the experimentally measured randomness parameter at F = 0

in [2]. Red circles with error bar in (b)-(d) are the randomness parameters measured in [3]; (b)

for 1.05 pN, (c) for 3.59 pN, and (d) for 5.69 pN. As explained in the discussion section in the

main text, randomness parameters in our schemes are always equal or grater than 0.5. The results

for the 1HB model are obtained by assuming that the rate for the backward step is a constant

independent of the ATP concentration.

VI. FITTING THEORY TO EXPERIMENTAL DATA

In order to obtain the parameters for the model, we analyzed the distribution of run

length and velocity at F = 0 using the data reported in Ref.[13]. For Kin1, the measured

mean velocity at 0 load is 1089 nm/s, which implies J+ − J− = 132.8 step/s. Since J+/J−

is not given in Ref.[13], we used the value of J+/J− obtained in Ref.[11], J+/J− = 221. We

set Fd = 3pN [14, 15] and used the constraint |d+| + |d−| = 2.9nm [11]. By fitting to the
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FIG. S5. Fits of the of average velocity as a function of load to the experiment [11]. (a) 2HB

waiting model [Fig.1(c) in the main text]. (b) 1HB waiting model [Fig.1(d) in the main text]. The

agreement between theory and experiment is good.

run length distribution using our theory [Eq.(S3)] along with the 4 constraints described

above are used to determine the model parameters at zero load, k0, k
+
0 , k−0 , γ0, and KT .

Subsequently, we used the data for average velocity vs load at different ATP concentrations

in Ref.[11] to obtain d+ and d−. The best fit parameters are listed in Table.1 and Table.2

in the main text for the 2HB waiting and 1HB waiting model, respectively.
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