
Supplementary Information: The problem of detrending when

analysing potential indicators of disease elimination

1 Deviation of the Fokker-Planck equation for SIS dynamics:

For the SIS model without metapopulations, the mean-field equations are given by dφ
dt = βφ(1 −

φ)− γφ where φ = 〈I〉
N .

The following deviation follows from van Kampen (Chapter 8 and 10). The linear noise approx-
imation for the discrete infectious state I is given by:

I = Nφ(t) +N1/2ζ. (1)

The general form of the master equation for the SIS model based on the transition probabilities
given in Table 1 is,

dP (I, t)

dt
= T (I|I − 1)P (I − 1, t) + T (I|I + 1)P (I + 1, t)− T (I − 1|I)P (I, t)− T (I + 1|I)P (I, t)

=
β(t) (N − (I − 1)(I − 1))

N
P (I − 1, t) + γ(I + 1)P (I + 1, t)− γIP (I, t)− β(t)(N − I)I

N
P (I, t)

(2)

The master equation can be written using step operators which act on an arbitrary function of n,
defined as Ef(n) = f(n+ 1) and E−1f(n) = f(n− 1).

dP (I, t)

dt
= E−1T (I + 1|I)P (I, t) + ET (I − 1|I)P (I, t)− T (I − 1|I)P (I, t)− T (I + 1|I)P (I, t)

= (E−1 − 1)T (I + 1|I)P (I, t) + (E− 1)T (I − 1|I)P (I, t)

= (E−1 − 1)
β(t)(N − I)I

N
P (I, t) + (E− 1)γIP (I, t) (3)

P (I, 0) = δI,I0 .

The step operators have a simple expansion involving powers of N−1/2∂/∂ζ. Since the operators

take I to I + 1 then it follows that it takes, ζ = I−Nφ(t)

N1/2 to I+1−Nφ(t)

N1/2 = ζ + 1
N1/2 . From here, we

can perform a Taylor expansion and derive the following expression for E:

Ef(ζ) = f(ζ +N−1/2)

= f(ζ) +N−1/2f ′(ζ) +
1

2
(N−1/2)2f ′′(ζ) + ...

E = 1 +N−1/2 ∂

∂ζ
+

1

2
N−1 ∂

2

∂ζ2
+ ...

E−1 = 1−N−1/2 ∂

∂ζ
+

1

2
N−1 ∂

2

∂ζ2
− ...
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Define a new probability distribution function Π by P (I, t) = Π(ζ, t). The derivative of the proba-
bility distribution function with respect to t,

∂P (I, t)

∂t
=
∂Π

∂ζ

dζ

dt
+
∂Π

∂t
= −N1/2dφ

dt

∂Π

∂ζ
+
∂Π

∂t
(4)

is needed for deriving the continuous space master equation.
Combining equations 3 and 4 together, we can write down the continuous space master equation:

−N1/2dφ

dt

∂Π

∂ζ
+
∂Π

∂t
= (E−1 − 1)T (I + 1|I)P (I, t) + (E− 1)T (I − 1|I)P (I, t)

= (−N−1/2 ∂

∂ζ
+

1

2
N−1 ∂

2

∂ζ2
− ...)T (I + 1|I)Π(ζ, t)

+ (N−1/2 ∂

∂ζ
+

1

2
N−1 ∂

2

∂ζ2
+ ...)T (I − 1|I)Π(ζ, t)

and substitute the linear approximation

≈ (−N1/2 ∂

∂ζ
+

1

2

∂2

∂ζ2
)β(1− φ−N−1/2ζ)(φ+N−1/2ζ)Π(ζ, t)

+ (N1/2 ∂

∂ζ
+

1

2

∂2

∂ζ2
)γ(φ+N−1/2ζ)Π(ζ, t). (5)

We collect powers of N in equation 5 and substitute the mean-field deterministic approximation
as N →∞ ( macroscopic description which ignores fluctuations). This results in the linear Fokker-
Planck equation for this system:

∂Π

∂t
= N1/2(βφ(1− φ)− γφ)

∂Π

∂ζ
+ (N1/2 ∂

∂ζ
+

1

2

∂2

∂ζ2
+ ...)γ(φ+N−1/2ζ)Π(ζ, t)

+ (−N1/2 ∂

∂ζ
+

1

2

∂2

∂ζ2
− ...)(βφ(1− φ) + β(1− 2φ)N−1/2ζ − βφN−1/2ζ)Π(ζ, t)

we collect terms of order N0,

∂Π

∂t
= −(β − 2βφ− γ)

∂ζΠ

∂ζ
+

1

2
(β(1− φ)φ+ γφ)

∂2Π

∂ζ2
.

The solution for the analytical variance can be deduced from the following equations,

∂〈ζ〉t
∂t

= (β − γ − 2βφ)〈ζ〉t, (6)

∂〈ζ2〉t
∂t

= 2(β − γ − 2βφ)〈ζ2〉t + β(1− φ)φ+ γφ

= N
dV

dt
= (β − γ − 2βφ)NV + β(1− φ)φ+ γφ. (7)

At steady state when dφ
dt = 0 and dV

dt = 0, we obtain φ∗ = 1− γ
β and V ∗ = 1

N
1
R0
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2 Single Population Model

2.1 Potential Indicators: variance and coefficient of variation

(a) Variance, windowed detrending using 200
timepoints

(b) Variance, detrending using 50 realisations
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(c) CV over 50 realisations (d) CV, windowed detrending using 50 time-
points

(e) CV, windowed detrending using 200 time-
points

Figure 1: Single population: comparing predictions to simulations for: (a) variance, over a
moving window of size 200 timepoints; (b) variance, over a moving window of size 50 timepoints
after detrending using 50 simulations; (c) CV, over 50 realisations; (d) CV, over a moving window
of size 50 timepoints; and (e) CV, over a moving window of size 200 timepoints. Each figure shows:
steady state predictions (green line); dynamic predictions (purple line); simulations of the model
going extinct (Ext, blue line); simulations of the model not going extinct (NExt, red line); and
simulations of the model with fixed β (FBeta, yellow line). For repeated simulations each line is
the mean value obtained over 50 simulations and the shaded area represents one standard deviation
about the mean.
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2.2 ROC curve analysis
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(a) Variance ROC, detrending using 4 realisa-
tions
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(b) Variance ROC, detrending using 50 reali-
sations
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(c) CV ROC, detrending using 4 realisations
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(d) CV ROC, detrending using 50 realisations
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(e) Variance Kendall-tau, windowed detrend-
ing using 200 timepoints
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(f) Variance Kendall-tau, detrending using 50
realisations

Figure 2: Single population: ROC curves calculated over 50 realisations at various timepoints
by thresholding in variance ((a), (b)); thresholding in CV ((c), (d)); or using Kendall’s tau ((e) and
(f)). Each curve calculates the statistic on a moving window of size 50 timepoints after detrending
using: (a) and (c) mean values over 4 realisations; (b), (d) and (f) mean values over 50 realisations;
and (e) windowed detrending with a window of size 200 timepoints. Each ROC curve the legend
gives the area under the curve (AUC), suggesting how predictive that indicator is (AUC closer to
1 are more predictive).
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3 Deviation of the Fokker-Planck equation for metapopulation dy-
namics:

3.1 Derivation for 4 populations

We write the transition probabilities as given in Table 3 in terms of the step operators. For
example, the transition probability of an susceptible individual in population 1 becoming infected
can be written as T (I1, ...|I1−1, ...) = EI1T (I1 +1, ...|I1). The total population size was taken to be
20, 000 and we divide this equally (depending on the number of subpopulations M2) assuming that
the size of each subpopulation, NM , is the same. The master equation for M2 = 4 subpopulations
on a lattice, P (I1, I2, I3, I4, t), is the probability observing I infectives at time t,

dP (I1, I2, I3, I4, t)

dt
= (E−1

I1
− 1)T (I1 + 1, ...|I1, ...)P (I1, ..., t) + (E−1

I2
− 1)T (I2 + 1|I2)P (..., t)

+ (E−1
I3
− 1)T (I3 + 1|I3)P (..., t) + (E−1

I4
− 1)T (I4 + 1|I4)P (..., t)

+ (EI1 − 1)T (I1 − 1, ...|I1, ...)P (I1, ..., t) + (EI2 − 1)T (I2 − 1|I2)P (..., t)

+ (EI3 − 1)T (I3 − 1|I3)P (..., t) + (EI4 − 1)T (I4 − 1|I4)P (..., t)

+ (E−1
I1

EI2 − 1)T (I1 + 1, I2 − 1, ...|I1, I2, ...)P (I1, I2, .., t)

+ (E−1
I2

EI1 − 1)T (I1 − 1, I2 + 1|I1, I2)P + (E−1
I3

EI1 − 1)T (I1 − 1, I3 + 1|I1, I3)P

+ (E−1
I1

EI3 − 1)T (I1 + 1, I3 − 1|I1, I3)P + (E−1
I4

EI2 − 1)T (I2 − 1, I4 + 1|I2, I4)P

+ (E−1
I2

EI4 − 1)T (I2 + 1, I4 − 1|I2, I4)P + (E−1
I4

EI3 − 1)T (I3 − 1, I4 + 1|I3, I4)P

+ (E−1
I3

EI4 − 1)T (I3 + 1, I4 − 1|I3, I4)P

=

4∑
i=1

(
(E−1

Ii
− 1)T (Ii + 1, ...|Ii, ...)P (..., t) + (EIi − 1)T (Ii − 1, ...|I1, ...)P (..., t)

)
+

4∑
i=1

∑
j∈Ni

(E−1
Ii

EIj − 1)T (Ii + 1, Ij − 1|Ii, Ij)P (..., t)

dP (I1, I2, I3, I4, t)

dt
=

4∑
i=1

(
(E−1

Ii
− 1)β

(NM − Ii)Ii
NM

P (..., t) + (EIi − 1)γIiP (..., t)

)

+
4∑
i=1

∑
j∈NMi

(E−1
Ii

EIj − 1)ρ
(NM − Ii)Ij

NM
P (..., t) (8)

The step operators are defined for each subpopulation i, depending on the linear noise approx-

imation: Ii = NMφi +N
1/2
M ζi,

Ei = 1 +N
−1/2
M

∂

∂ζi
+

1

2
N−1
M

∂2

∂ζ2
i

+ ...

E−1
i = 1−N−1/2

M

∂

∂ζi
+

1

2
N−1
M

∂2

∂ζ2
i

+ ...

EiE−1
j − 1 = N

−1/2
M

(
∂

∂ζi
− ∂

∂ζj

)
+
N−1
M

2

(
∂

∂ζi
− ∂

∂ζj

)2

+ ...

Similarly to the simple SIS model, we define a new probability distribution function Π by P (I1, I2, I3, I4, t) =
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Π(ζ1, ζ2, ζ3, ζ4, t). The derivative of the probability distribution function with respect to t,

∂P (I1, I2, I3, I4, t)

∂t
=

∂Π

∂ζ1

dζ1

dt
+
∂Π

∂ζ2

dζ2

dt
+
∂Π

∂ζ3

dζ3

dt
+
∂Π

∂ζ4

dζ4

dt
+
∂Π

∂t

= −N1/2dφ1

dt

∂Π

∂ζ1
−N1/2dφ2

dt

∂Π

∂ζ2
−N1/2dφ3

dt

∂Π

∂ζ3
−N1/2dφ4

dt

∂Π

∂ζ4
+
∂Π

∂t

Substitute the master equation (Equation 8) and step operators into the above equation. Evaluating
∂Π
∂t in the limit NM →∞,

∂Π

∂t
=

Derivative with respect to: ζ1︷ ︸︸ ︷
[βζ1(1− 2ρ)φ1 + γζ1]

∂

∂ζ1
Π + ρ [2ζ1 − (ζ2 + ζ3)]

∂

∂ζ1
Π

+
1

2
[β(1− φ1)φ1 + γ + ρ(2φ1 + φ2 + φ3 − 2φ1φ2 − 2φ1φ3)]

∂2

∂ζ2
1

Π

+

Derivative with respect to: ζ2︷ ︸︸ ︷
[βζ2(1− 2ρ)φ2 + γζ2]

∂

∂ζ2
Π + ρ [2ζ2 − (ζ1 + ζ4)]

∂

∂ζ2
Π

+
1

2
[β(1− φ2)φ2 + γ + ρ(2φ2 + φ1 + φ4 − 2φ2φ1 − 2φ2φ4)]

∂2

∂ζ2
2

Π

+

Derivative with respect to: ζ3︷ ︸︸ ︷
[βζ3(1− 2ρ)φ3 + γζ3]

∂

∂ζ3
Π + ρ [2ζ3 − (ζ1 + ζ4)]

∂

∂ζ3
Π

+
1

2
[β(1− φ3)φ3 + γ + ρ(2φ3 + φ1 + φ4 − 2φ3φ1 − 2φ3φ4)]

∂2

∂ζ3
2

Π

+

Derivative with respect to: ζ4︷ ︸︸ ︷
[βζ4(1− 2ρ)φ4 + γζ4]

∂

∂ζ4
Π + ρ [2ζ4 − (ζ2 + ζ3)]

∂

∂ζ4
Π

+
1

2
[β(1− φ4)φ4 + γ + ρ(2φ4 + φ2 + φ3 − 2φ4φ2 − 2φ4φ3)]

∂2

∂ζ2
4

Π

−

Covariance terms︷ ︸︸ ︷
ρ(φ1 + φ2 − 2φ1φ2)

∂2

∂ζ1∂ζ2
Π− ρ(φ1 + φ3 − 2φ1φ3)

∂2

∂ζ1∂ζ3
Π

− ρ(φ2 + φ4 − 2φ2φ4)
∂2

∂ζ2∂ζ4
Π− ρ(φ3 + φ4 − 2φ3φ4)

∂2

∂ζ3∂ζ4
Π (9)

The multivariate Fokker-Planck Equation is fully described in terms of matrices A and B, where
B is symmetric and positive definite. If both A and B are constant matrices then the solution is
Gaussian (linear Fokker-Planck Equation),

∂Π(ζ, t)

∂t
= −

∑
i,j

Aij
∂

∂ζi
(ζjΠ) +

1

2

∑
i,j

Bij
∂2Π

∂ζi∂ζj
. (10)

We assume that the mean-field solution is the same for all populations, φi = φ. Collecting
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terms in Equation 9 into the format of the FPE (Equation 10), we arrive at:

Aii = −(β(2φ− 1) + γ + 2ρ),

Aij = ρ, if i and j are adjacent,

Bii = (β + 2ρ2)φ(1− φ) + γφ,

Bij = −2ρφ(1− φ), if i and j are adjacent,

3.2 Derivation for general M2 subpopulations

The general master equation for M2 subpopulations, P ({Ii, i ∈ [1,M2]}, t), is the probability
observing I infectives at time t and depends on the number of neighbours, Ni, of each subpopulation
i where the degree of each subpopulation i (total number of neighbours) is given by di,

dP ({Ii, i ∈ [1,M2]})
dt

=
M2∑
i=1

(
(E−1

Ii
− 1)T (Ii + 1, ...|Ii, ...)P (..., t) + (EIi − 1)T (Ii − 1, ...|I1, ...)P (..., t)

)

+
M2∑
i=1

∑
j∈Ni

(E−1
Ii

EIj − 1)T (Ii + 1, Ij − 1|Ii, Ij)P (..., t)

=
M2∑
i=1

(
(E−1

Ii
− 1)β

(NM − Ii)Ii
NM

P (..., t) + (EIi − 1)γIiP (..., t)

)

+

M2∑
i=1

∑
j∈NMi

(E−1
Ii

EIj − 1)ρ
(NM − Ii)Ij

NM
P (..., t)

Define a new probability distribution function Π by P ({Ii, i ∈ [1,M2]}, t) = Π({ζi, i ∈ [1,M2]}, t).
The derivative of the probability distribution function with respect to t,

∂P ({Ii, i ∈ [1,M2]}, t)
∂t

=
M2∑
i=1

∂Π

∂ζi

dζi
dt

+
∂Π

∂t
=

M2∑
i=1

−N1/2dφi
dt

∂Π

∂ζi
+
∂Π

∂t

Then following a similar analysis as above (when M2 = 4),

∂Π

∂t
=

M2∑
i=1

[β(1− 2ρ)φi + γ] ζi
∂

∂ζi
Π + ρ

diζi − (
∑
j∈Ni

ζj)

 ∂

∂ζi
Π

+
1

2

β(1− φi)φi + γφi + ρ(diφi + (1− φi)
∑
j∈Ni

φj)

 ∂2

∂ζ2
i

Π

− ρφi
∑
j∈Ni

(1− φj)
∂2

∂ζi∂ζj
Π
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We assume that the mean-field solution is the same for all populations, φi = φ.

∂Π

∂t
=

M2∑
i=1

[β(1− 2ρ)φ+ γ + diρφ] ζi
∂

∂ζi
Π− ρ(

∑
j∈Ni

ζj)
∂

∂ζi
Π

+
1

2
[(β + 2diρ)(1− φ)φ+ γφ]

∂2

∂ζ2
i

Π

− ρφ(1− φ)
∑
j∈Ni

∂2

∂ζi∂ζj
Π


Then it follows in the form of the Fokker-Planck Equation 10:

Aii = −(β(2φ− 1) + γ + diρ),

Aij = ρ, if i and j are adjacent,

Bii = (β + 2ρdi)φ(1− φ) + γφ,

Bij = −2ρφ(1− φ), if i and j are adjacent,
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4 Metapopulation Model: simulations and predictions

4.1 Variance
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(a) 9 populations - Variance over 50 realisations
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(b) 9 populations - Variance, one realisation
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(c) 4 populations - Variance, one realisation

Figure 3: Metapopulation: Comparing predictions to simulations of the variance calculated: (a)
over 50 realisations; (c), (b) by detrending using the mean of M2 subpopulations before calculating
variance over a moving window of size 200 timepoints (single realisation, averaged over all subpop-
ulations). Each figure shows: steady state predictions (green line); dynamic predictions (purple
line); simulations of the model going extinct (Ext, blue line) and simulations of the model not going
extinct (NExt, red line). For repeated simulations each line is the mean value obtained over 50
simulations and the shaded area represents one standard deviation about the mean.
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4.2 Parameter sensitivity analysis for movement rate and transmission in the
metapopulation model
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Figure 4: Metapopulation: heatmap assessing how the movement rate between populations
(ρ) and the transmission rate (β) compare when calculating the L2 error between the analytical
solution and simulations produced by the Gillespie algorithm. L2 Norm error between the analytical
prediction and simulations of the variance calculated over realisations, after detrending using the
mean of the subpopulations for M = 3.
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4.3 Coefficient of Variation
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(a) 9 populations - CV over 50 realisations
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(b) 4 populations - CV over 50 realisations
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(c) 9 populations - CV, detrending between 9
subpopulations
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(d) 4 populations - CV, detrending between 4
subpopulations
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Figure 5: Metapopulation: Comparing predictions to simulations of the CV calculated: (a), (b)
over 50 realisations; (c), (b) by detrending using the mean of M2 subpopulations before calculat-
ing CV over a moving window of size 50 timepoints (averaged over 50 realisations); and (e) by
detrending using the mean of M2 subpopulations before calculating CV over a moving window
of size 200 timepoints (single realisation, averaged over all subpopulations)). Each figure shows:
steady state predictions (green line); dynamic predictions (purple line); simulations of the model
going extinct (Ext, blue line) and simulations of the model not going extinct (NExt, red line). For
repeated simulations each line is the mean value obtained over 50 simulations and the shaded area
represents one standard deviation about the mean.
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4.4 ROC curve analysis

The ROC curves below were calculated using the Kendall’s tau rank correlation coefficient. Kendall-
tau coefficient is a test of statistical significance that is widely used in the literature for early
warning signals of critical transitions. The statistic was calculated on a moving window for 50∗M2

realisations of NExt and Ext, for M2 subpopulations. We calculated the Kendall-tau coefficient for
each realisation as measure if the increasing trend in the variance and CV is statistically significant.
We evaluated this for our simulations up to a variety of endpoints: t = 400 to t = 450. We
considered different endpoints since the dynamics (and therefore the increasing trend) of NExt and
Ext are the same up until R0 = 1 at t = 400.
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Figure 6: Metapopulation: ROC curves calculated over 50 realisations using Kendall’s tau rank
correlation coefficient for the timeseries up to various timepoints ((e),(f)). Each curve calculates
the statistic on a window of size 50 timepoints after detrending: (c), (d) using the mean of M2

subpopulations; and (e), (f) using the mean over 50 realisations.
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using 50 simulations
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Figure 7: Metapopulation: ROC curves calculated over 50 realisations using Kendall’s tau rank
correlation coefficient for the timeseries up to various timepoints. Each curve calculates the statis-
tic on a moving window of size 50 timepoints after detrending: (a), (b) using the mean of M2

subpopulations; and (c), (d) using the mean over 50 realisations.
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