## **Supplementary Material**

Introgression of QTLs for constitutive aerenchyma formation from *Zea nicaraguensis* improves tolerance of root-zone oxygen deficiency in maize

Fangping Gong, Hirokazu Takahashi, Fumie Omori, Wei Wang, Yoshiro Mano, Mikio Nakazono

|                               | 0         |      |              |          | <u> </u> |          |        | <u> </u> |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
|-------------------------------|-----------|------|--------------|----------|----------|----------|--------|----------|----------|---------|---------|---------|----------|---------|---------|---------|--------------|---------|----------|---------|---------|---------|----------|----------|----------|---------|----------|---------|----------|---------|---------|----------|
|                               |           |      | Chromosome 1 |          |          |          |        |          |          |         |         |         |          |         |         |         | Chromosome 2 |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
|                               |           | Bin  | 1.01         | 1.01     | 1.02     | 1.03     | 1.03   | 1.04     | 1.05     | 1.06    | 1.06    | 1.06-7  | 1.07     | 1.07    | 1.07    | 1.07    | 1.07         | 1.07    | 1.10     | 1.11    | 1.11    | 1.12    | 2.00     | 2.01     | 2.02     | 2.02    | 2.03     | 2.04    | 2.06     | 2.07    | 2.07    | 2.08     |
|                               |           | Code | *P21         | *P41L    | *P22     | *P1110   | *PA    | *P81     | *P140    | *P1104  | *P1008  | *P1226Q | *P1003   | *P1903Q | *P1906Q | *P1908Q | *P1010Q      | *P1006  | *P103Q   | *P1123Q | *P1125  | *P197   | *P198    | *P83     | *P2001   | *P2004Q | *P144    | *P2101  | *P105    | *P2017  | *P106   | *P2008   |
|                               | Plant No. | Name | bnlg1014     | bnlg1112 | bnlg1007 | bnlg1484 | phi001 | bnlg1016 | bnlg1832 | umc1754 | umc1254 | umc2396 | bnlg1556 | IDP8950 | IDP8577 | IDP7842 | umc1278      | umc1128 | bnlg1347 | umc1500 | umc1862 | umc1819 | phi96100 | bnlg1092 | bnlg2277 | umc1422 | bnlg2248 | umc1541 | bnlg1887 | umc2402 | mmc0271 | bnlg1662 |
| #268 (BC3F2#268) <sup>a</sup> | 463       |      | Α            |          | Α        | В        | В      | С        | В        | В       | В       | В       | В        |         |         | Н       | Н            | Н       | Н        | Α       | Α       | Α       | Α        | Α        | Α        | Α       | Α        | Α       | Α        | A       | Α       | Α        |
| <sup>↓</sup> self             |           |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
| #268-463                      | 135       |      | Α            | Α        | Α        | В        | В      | В        | В        | В       | В       | В       | В        | В       |         | Η       | Н            | Н       | Η        | Α       | Α       | Α       | Α        | Α        | Α        | Α       | Α        | Α       | -        | Α       | Α       | Α        |
| S72                           | 36        |      | Α            | Α        | Α        | Α        | Α      | Α        | Α        | Α       | Α       | В       | Α        |         |         | Α       | Α            | Α       | Α        | В       | В       | Α       | Α        | Α        | Α        | Α       | Α        | Α       | Α        | Α       | Α       | Α        |
|                               |           |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
| #268-463-135×\$72-36          | •24       |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
| <sup>↓</sup> self             |           |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         | 1        |
| AE-24 (F2)                    | 50        |      |              |          |          |          | Α      |          | Η        | Η       | Η       |         | Η        | Η       |         | Η       | Η            | В       |          |         | В       |         |          |          |          |         |          |         |          |         |         | I        |
| <sup>↓</sup> self             |           |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         | I        |
| AE-24-50                      | 44        |      |              |          |          |          | Α      |          | Α        | Η       | Η       |         | Η        | Η       |         | В       | В            | В       |          |         | В       |         |          |          |          |         |          |         |          |         |         |          |
| <sup>↓</sup> self             |           |      |              |          |          |          |        |          |          |         |         |         |          |         |         |         |              |         |          |         |         |         |          |          |          |         |          |         |          |         |         |          |
| AE-24-50-44 (AE91)            | 91        |      | Α            | Α        | Α        | В        | Α      | Α        | Α        | B       | В       | В       | В        | В       | В       | В       | В            | В       | B        | В       | В       | Α       | А        | Α        | Α        | Α       | Α        | Α       | Α        | Α       | Α       | Α        |

Table S1. Scheme used for the development of IL-AE91, possessing chromosome segments of *Qaer1.06-1.07*, *Qaer1.11*, *Qaer5.09n* and *Qaer8.05* from *Z. nicaraguensis* in the genetic background of Mi29.

| Chromosome 3 |          |          |         |         |           |         |         |          |         |       |        | (      | Chro    | mose    | ome 4   | 1        |          |         |       |         |         | Ch      | romo    | osom    | e 5     |         |         |         |        |          | Ch      | romo    | osom    | e 6     |         |          |
|--------------|----------|----------|---------|---------|-----------|---------|---------|----------|---------|-------|--------|--------|---------|---------|---------|----------|----------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|----------|---------|---------|---------|---------|---------|----------|
| 3.00         | 3.023    | 3.04     | 3.05    | 3.05    | 3.06      | 3.06    | 3.07    | 3.09     | 3.10    | 4.01  | 4.03   | 4.04   | 4.05    | 4.06    | 4.06    | 4.07     | 4.10     | 4.11    | 5.00  | 5.02    | 5.01    | 5.03    | 5.04    | 5.05    | 5.05    | 5.06    | 2.07    | 5.09    | 6.00   | 6.01     | 6.02    | 6.04    | 6.05    | 6.06    | 6.07    | 6.078    |
| *P215        | *P222    | *P42     | *P28    | *P3017  | *P224     | *P148   | *P3003  | *P86     | *P150   | *P237 | *P47   | *P67   | *P4010  | *P4005  | *P4105  | *P152    | *P114    | *P4003  | *P116 | *P5112  | *P5113  | *P259   | *P5016  | *P5307  | *P5108  | *P5109  | *P266   | *P118   | *PB    | *P71     | *P119   | *P277Q  | *P6015  | *P6010  | *P6108  | *P6114   |
| phi404206    | bnlg1325 | bnlg1113 | mmc0022 | umc1973 | phi102228 | bnlg197 | umc1825 | bnlg1182 | umc1136 | nc135 | phi021 | phi096 | umc1662 | mmc0371 | umc1299 | bnlg1784 | bnlg1917 | umc1716 | nc130 | umc1587 | umc1894 | bnlg557 | umc1747 | umc1155 | umc1853 | umc1019 | umc2013 | umc1153 | phi126 | bnlg1371 | umc1006 | umc2006 | umc1751 | umc1520 | umc1350 | bnlg1521 |
| Α            | Α        | Α        | Α       | Α       | Α         | Α       | Α       | Η        | В       | D     | Α      | Α      | Α       | Α       | Α       | Α        | Α        |         | Α     | Α       | Α       | Α       | Α       | Α       | Α       | Α       | Α       | В       | Α      | Α        | Α       | Α       |         | Α       | Α       | Α        |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         |         |        |          |         |         |         |         |         |          |
| Α            | Α        | Α        | Α       | Α       | Α         | Α       | Α       | Α        | В       | Α     | Α      | Α      | Α       | Α       | Α       | Α        | Α        | Α       | Α     | Α       | Α       | Α       | Α       | Α       | Α       | Α       | Α       | В       | Α      | Α        | Α       | Α       | Α       | Α       | Α       | Α        |
| Α            | А        | Α        | Α       | A       | A         | A       | A       | Α        | В       | Α     | Α      | Α      | Α       | Α       | A       | Α        | Α        | Α       | Α     | Α       | A       | Α       | Α       | Α       | A       | А       | А       | Α       | Α      | Α        | Α       | Α       | Α       | Α       | Α       | Α        |
|              |          |          |         |         |           |         |         |          |         | _     |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         |         |        |          |         |         |         |         |         |          |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         |         |        |          |         |         |         |         |         |          |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         | D       |        |          |         |         |         |         |         |          |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         | D       |        |          |         |         |         |         |         |          |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         | B       |        |          |         |         |         |         |         |          |
|              |          |          |         |         |           |         |         |          |         |       |        |        |         |         |         |          |          |         |       |         |         |         |         |         |         |         |         | Б       |        |          |         |         |         |         |         |          |
| A            | Α        | A        | Α       | A       | A         | A       | A       | Α        | В       | Α     | A      | A      | Α       | A       | A       | Α        | Α        | Α       | A     | A       | A       | A       | A       | A       | A       | А       | А       | В       | A      | A        | Α       | A       | A       | A       | A       | A        |

|         |         | Ch      | rom     | osom     | e 7     |          |         | Chromosome 8 |         |          |         |         |          |         |        |         |         |         |           |          | Chromosome 9 Chromosome 10 |          |         |         |          |          |        |         |         |        |         |          |          |          |
|---------|---------|---------|---------|----------|---------|----------|---------|--------------|---------|----------|---------|---------|----------|---------|--------|---------|---------|---------|-----------|----------|----------------------------|----------|---------|---------|----------|----------|--------|---------|---------|--------|---------|----------|----------|----------|
| 7.00    | 7.01    | 7.01    | 7.02    | 7.03     | 7.03    | 7.04     | 7.06    | 8.00         | 8.01    | 8.01     | 8.02    | 8.02    | 8.02     | 8.03    | 8.05   | 8.05    | 8.06    | 8.06    | 8.09      | 9.01     | 9.02                       | 9.04     | 9.04    | 9.05    | 9.07     | 9.07-8   | 10.00  | 10.01-2 | 10.03   | 10.03  | 10.04   | 10.05    | 10.06    | 10.07    |
| *P7019  | *P7003  | *P7001  | *P7005  | *P73     | *P7010  | *P94     | *P35    | *P294        | *P8319  | *P75     | *P8302  | *P8304  | *P173Q   | *P8043  | *P52   | *P8110  | *P8021  | *P8316  | *P299     | *P131    | *P9012                     | *P9002   | *P9005  | *P9006  | *P78     | *P98     | *P57   | *P0103  | *P58    | *P10   | *P0002  | *P99     | *P335    | *P0007   |
| mmc0171 | umc1159 | umc1270 | umc1983 | bnlg1305 | umc1134 | dupssr13 | phil 16 | umc1359      | umc1592 | bnlg1194 | umc1790 | umc1872 | bnlg1352 | umc2075 | phi014 | umc1712 | umc1960 | umc1724 | phi233376 | bnlg1724 | umc1170                    | bnlg1209 | umc1771 | umc1078 | bnlg1191 | bnlg1129 | phi118 | umc1152 | bnlg210 | phi050 | umc1911 | bnlg1074 | umc1045  | bnlg1839 |
| А       | Α       | Α       | Α       | Α        | Α       | Α        | Α       | Α            | Α       |          | Α       |         |          | Α       | Α      | В       | Α       | Α       | Α         | Α        | Α                          | Α        | Α       | Α       | Α        | Α        | Α      | Α       | Α       | Α      | Α       | Α        | А        | Α        |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        |         |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         |          |          |          |
| А       | Α       | Α       | Α       | Α        | Α       | Α        | Α       | Α            | Α       | Α        | Α       | Α       | Α        | Α       | Α      | В       | Α       | Α       | Α         | Α        | Α                          | Α        | Α       | Α       | Α        | Α        | Α      | Α       | Α       | Α      | Α       | Α        | Α        | Α        |
| А       | Α       | Α       | Α       | Α        | Α       | Α        | В       | Α            | Α       | Α        | Α       | Α       | Α        | Α       | Α      | Α       | Α       | Α       | Α         | Α        | Α                          | Α        | Α       | Α       | Α        | Α        | Α      | А       | Α       | Α      | Α       | Α        | Α        | Α        |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        |         |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | <u> </u> |          |          |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        |         |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | <u> </u> |          | <u> </u> |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        | D       |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | ──       | <u> </u> |          |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        | В       |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | <u> </u> |          |          |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        | D       |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | <u> </u> |          |          |
|         |         |         |         |          |         |          |         |              |         |          |         |         |          |         |        | В       |         |         |           |          |                            |          |         |         |          |          |        |         |         |        |         | <u> </u> | <u> </u> |          |
| А       | Α       | А       | Α       | Α        | Α       | Α        | В       | Α            | Α       | А        | Α       | Α       | Α        | Α       | Α      | В       | Α       | Α       | Α         | Α        | Α                          | А        | Α       | Α       | Α        | Α        | Α      | Α       | Α       | Α      | Α       | A        | Α        | A        |

"A", "B", and "H" indicate Mi29 allele, Z. nicaraguensis allele and heterozygous, respectively.

Line #268 was obtained from segregant during the development of a library of introgression lines, each containing a chromosome segment from *Z. nicaraguensis* in the genetic background of Mi29 (Mano & Omori, 2013*b*).



Time after transfer to stagnant conditions (days)

**Figure S1.** Cross-sections of Mi29, IL-AE91 and *Z. nicaraguensis* roots under stagnant deoxygenated conditions. Seedlings with around 100 mm long 4<sup>th</sup> nodal roots grown under aerated conditions were transferred to stagnant deoxygenated conditions for four days (days 0, 1, 2, 3 and 4). Distances from the root tip (mm) are displayed on the left side of figures. Arrows indicate aerenchyma. Bar = 100  $\mu$ m.



Time after transfer to stagnant conditions (days)



Time after transfer to stagnant conditions (days)



Time after transfer to stagnant conditions (days)

**Figure S2.** Aerenchyma formation at 30 mm, 60 mm and 80 mm from the root tips of Mi29, IL-AE91 and *Z. nicaraguensis* (*Z. nica.*) roots under stagnant deoxygenated conditions for four days (days 0, 1, 2, 3 and 4). Data was selected from Figure 6. Statistical analyses were performed using one-way ANOVA followed by Dunnett's multiple comparisons test. \*, \*\* and \*\*\* indicate significant differences between the value of each line at day 0 and those of days 1-4 at the P < 0.05, P < 0.01 and P < 0.001 levels, respectively.



**Figure S3.** ROL from aerobically grown roots of Mi29, IL-AE91 and *Z. nicaraguensis* on day 4 under stagnant deoxygenated conditions. Different letters indicate significant difference within each line at each root position (P < 0.05, one-way ANOVA and then Tukey's test for multiple comparisons). Values are means  $\pm$  SD (n = 3).



**Figure S4.** ROL from roots of Mi29, IL-AE91 and *Z. nicaraguensis* emerged after transfer to stagnant deoxygenated conditions. The total root lengths were 40-60 mm. Three root points including root tip (5-10 mm from the root tips), root middle (25-30 mm from the root tips) and root base (45-50 mm from the root tips) were used to measure the ROL amount. Different letters indicate significant difference between distances (P < 0.05, one-way ANOVA and then Tukey's test for multiple comparisons). Values are means  $\pm$  SD (*n* = 3).