Supplemental Material

HNRNPH1-dependent splicing of a fusion oncogene reveals a

targetable RNA G-quadruplex interaction

Carla Neckles¹, Robert Boer², Nicholas Aboreden¹, Allison M. Cross¹, Robert L. Walker³, Bong-Hyun Kim⁴, Suntae Kim¹, John S. Schneekloth Jr.², Natasha J. Caplen^{1*}

¹ Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

² Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA

³ Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

⁴ CCR Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA

* To whom correspondence should be addressed. Tel: 240-760-7366; Fax: 240-541-4481; Email: <u>ncaplen@mail.nih.gov</u>

Present Address:

Bong-Hyun Kim, Bioinformatics Division, Kite, a Gilead Company, Santa Monica, CA 90404, USA Suntae Kim, Clinical Operations, KCRN Research, LLC, Germantown, MD 20874, USA

METHODS

Protein expression and purification by IMAC

Briefly, a glycerol stock of BL21(DE3) Star pRare *E. coli* cells transformed with appropriate plasmid was used to inoculate 3 ml of MDAG-135 medium in a 15-ml snap-cap polypropylene tube (Studier 2005). The seed culture was grown for 16 hours, shaking at 250 rpm and 37°C. A 500-ml baffled shake flask containing 100 ml Dynamite broth was inoculated with 2 ml of the seed (1:50 dilution of the production culture volume). The culture was grown in a 37°C shaker at 250 rpm to an OD_{600} of 6.0-7.0 before shifting the temperature to 16°C. IPTG was added to a final concentration of 0.5 mM and the cultures were grown overnight for a total growth time of 24 hours after inoculation. The culture was centrifuged at 4,000 x *g* (Beckman JS-5.3 rotor) for 20 minutes at 4°C and the pellets were frozen at -80°C.

E. coli cell pellet was resuspended in a lysis buffer of 25 mM HEPES, pH 7.3, 375 mM NaCl, 1.25 mM TCEP, and Complete protease inhibitor (Sigma-Aldrich, St. Louis, MO) as per the manufacturer's instructions. The volume of lysis buffer was calculated based on achieving a final concentration of 100 OD units/ml. Each sample was lysed by a microfluidizer (Microfluidics, Newton, MA) and clarified at 100,000 x g for 30 minutes. The clarified supernatant was frozen at -80°C until purification. The clarified lysate was thawed at room temperature, filtered (0.45 micron), and adjusted to contain 50 mM imidazole. Using a Bio-Rad NGC FPLC, the sample was applied to a 2-mL HisTrap column (GE Healthcare, Chicago, IL) that had been pre-equilibrated in 20 mM HEPES, pH 7.3, 300 mM NaCl, 1 mM TCEP, 50 mM imidazole. The column was washed with the equilibration buffer to baseline. Proteins were eluted with a linear elution gradient to 500 mM imidazole over 20 column volumes, and the fractions analyzed by SDS-PAGE. Pooled fractions were dialyzed twice for at least 4 hours at 4°C against at least 20 sample volumes of 20 mM HEPES, pH 7.3, 300 mM NaCl, 1 mM TCEP using 3.5 kDa MWCO Snakeskin dialysis membrane (Pierce).

CRISPR-Cas9-mediated mCherry tagging of NR0B1 in TC32 cells

Design of sgRNA and donor plasmid. A sgRNA targeting the C-terminus of *NR0B1* (ACTGCACTACTGCACTTGTG) was designed using Benchling software (San Francisco, CA) and cloned into the Cas9-containing plasmid PX459 (plasmid #62988, Addgene, Cambridge, MA). Forward and reverse oligonucleotides (**Table S3**) containing the sgRNA sequence were

phosphorylated using T4 PNK (New England Biolabs, Ipswich, MA), annealed, and ligated into a *BbsI* digested PX459 plasmid using Quick Ligase (New England Biolabs).

The NR0B1-T2A-mCherry donor vector was generated by insertion of the left homology arm (X:30322699-30323598), right homology arm (X:30321796-30322695), and T2A-mCherry cassette into the pUC19 vector (plasmid #50005, Addgene) using Gibson Assembly® (New England Biolabs). Briefly, for generation of the left and right homology arms, TC32 genomic DNA was isolated using the Maxwell® 16 Cell LEV DNA purification kit (Promega, Madison, WI) and 900 bp fragments upstream and downstream of the stop codon in NR0B1 exon 2 were amplified using two sequential PCR reactions. To allow for linearization of the donor vector after cotransfection with the CRISPR-Cas9 plasmid (Zhang et al. 2017), the primers used in the initial round of amplification contained adapters for the sgRNA sequence at the 5' end of the left homology arm and the 3' end of the right homology arm (**Table S3**). Primers containing 30 bp of the overlapping sequence to *Hincll*-digested pUC19 were used in the second round of amplification and are listed in Table S3. Similarly, the T2A-mCherry cassette was amplified from the Cas9-T2A-mCherry plasmid (plasmid #64324, Addgene) using primers containing 30 bp overlap to the adjacent homology arm and are listed in Table S3. All PCR fragments were amplified using Platinum[™] PCR SuperMix High Fidelity (Invitrogen) and gel purified (Qiagen). Plasmids were sequenced using the Sanger method (CCR Genomics Core, CCR, NCI).

Generation of TC32 cells expressing mCherry tagged NR0B1. TC32 cells (6 x 10⁵) were resuspended with 4 µg donor plasmid and 6 µg of sgRNA-containing PX459 plasmid in Nucleofector solution R (Lonza, Walkersville, MD) and electroporated using the D-032 program of the Amaxa Nucleofector II (Lonza). Following electroporation, cells were treated with a nonhomologous end joining inhibitor, 1 µM SCR7 pyrazine (Sigma-Aldrich), for 24 hours to enhance the efficiency of CRISPR-Cas9 genome editing. We expanded the electroporated cells, and bulk sorted for mCherry expression on a BD FACSariaTM fusion flow cytometer (BD Biosciences, San Jose, CA).

TABLES AND FIGURES

Vendor	Application	RNA samples	Sequence (5' – 3')	Modifications
	EMSA, antibody- based RNA- binding assay	rG1	ACCGGGGCAGGGGAAGAGGGGGAUU	
		rG1 mt 1	ACCGAAGCAGAAGAAGAAGGAUU	
Integrated		rG2a	AGCAGAGGUGGGCGGGGGAGGAGGAC	
DNA	CD scans,	rGa mt 1	AGCAGAGGUAAGCGAAGAAAAGGAC	3'-biotinylation
lechnologies	Thioflavin T assays, and transfection studies	rG2b	GUGGGCGGGGAGGAGGACGCGGUGGAAU	
		rG2b mt 1	GUAAGCGGAAAGGAAAACGCAAUGGAAU	
		Linker	GAUCGUGGAGGCAUGAGCAGAGGUG	
	Fluorescent intensity assay	rG1	ACCGGGGCAGGGGAAGAGGGGG	5′-Alexa Fluor 647
Dharmacon	Surface plasmon	rG1	ACCGGGGCAGGGGAAGAGGGGG	
	resonance studies and CD melt curves	rG1 mt 1	ACCGAAGCAGAAGAAGAAGGAUU	5'-biotinylation

Table S1.	Sequences	of RNAs	used in	this studv
	e e que ne e e	••••••		une etaaly

Table S2. siRNA sequences

siRNA	Vendor	Vendor ID	Sequence (5' – 3')
siNegative	Qiagen	SI03650318	Proprietary
siFLI1	Ambion	s5266	CAAACGAUCAGUAAGAAUAtt
siHNRNPH1	Ambion	s6730	GGAUUUGGGUCAGAUAGAUtt
siHNRNPH2	Ambion	145362	GCACUAAAUAGCUACUCCAtt
siHNRNPF	Qiagen	SI00300461	AAGCGTTCGTGCAGTTTGCCT

Gene target	Gene	Primer	Primer sequence (5' – 3')	Amplicon length (bp)
	symbol			
RNAi targets	HNRNPH1	Hs_HNRNPH1 F	TACACATGCGGGGATTACCTT	120
				(ENST00000639490.1,
		Hs_HNRNPH1	CTTCACCAGTTACTCTGCCATC	ENST00000644339.1,
		R		ENST00000393432.8,
				ENST00000356731.9,
				ENST00000639162.1,
				ENST00000329433.10,
				ENST00000643310.1,
				ENST00000523921.1,
				ENS10000519033.5,
				ENS10000442819.6,
				ENS10000638505.1,
				ENS10000521173.5,
				ENS100000510411.5)
	ΠΝΚΝΡΠΖ		CCCCCCCTCAAACCCACTC	(ENST0000316504.5)
		R	CGCCCTGAAAGICCACIG	(ENS10000310394.3)
	HNRNPF	Hs_HNRNPF_1	NM_001098204,	150 (all variants)
		_SG QuantiTect	NM_001098205,	
		Primer Assay	NM_001098206,	
			NM_001098207,	
			NM_001098208, NM_004966	
EVVS-FLI1 7/6	EWS-FLI1 (EE7 7)		ATCCTACAGCCAAGCTCCAA	type 1 (7/6): 177
	(EF7-7)	FIII even 7 P	СССССТТССТСТАТТСТАС	type 2 (7/5). 245
Protein-coding	EW/SR1	FW/SR1 evon 7		279 (NM 013986 and
FWSR1	(EE7-9/10)	F		NM 001163285)
variants		EWSR1 exon	GGTCCACCAGGCTTATTGAA	282 (NM 001163286.
(EWSR1-001)		9/10 R		and NM_005243)
Reference	ACTB	Hs_ACTB F	GGCACCCAGCACAATGAAG	66
genes		Hs_ACTB R	CCGATCCACACGGAGTACTTG	(ENST00000464611.1,
				ENST00000493945.6,
				ENST00000646664.1)
	RPL27	Hs_RPL27 F	ATCGCCAAGAGATCAAAGATAA	123
		HS_RPL27 R	TCTGAAGACATCCTTATTGACG	(ENS10000253788.11,
				ENST00000589913.6,
				ENS10000589037.5,
	NACA			ENS10000586277.5)
	NACA	HS_NACA_F		02 (ENST0000256760 7
		HS_NACA_R	CIGGGCIIGIIGIGIGGIIG	(ENST0000546302.5
				ENST00000540392.3,
				ENST00000546862 5
				ENST00000550920 5
				ENST00000552055.5
				ENST00000550952.5
				ENST00000454682.5.
				ENST00000549259.5,

Table S3. qPCR primers – EWS-FLI1, RNAi targets, Reference genes

ENST0000393891.8, ENST00000552540.5, ENST00000548563.5)

EWS-FLI1	NR0B1	Hs_NR0B1 F	AGCACAAATCAAGCGCAGG	150
target genes		Hs_NR0B1 R	GAAGCGCAGCGTCTTCAAC	(ENST00000378970.4)
	PRKCB	Hs_PRKCB F	AGCCCCACGTTTTGTGACC	117
		Hs_PRKCB R	GCTGGGAACATTCATCACGC	(ENST00000643927.1, ENST00000321728.12)
	VRK1	Hs VRK1 F	TGCACCTTGTGTTGTAAAAGTGG	81
		Hs_VRK1 R	TTTGCAGCTCGTTGGTAGAAC	(ENST00000216639.7)
	GRK5	Hs_GRK5 F	CCAACACGGTCTTGCTGAAAG	133
		Hs_GRK5 R	TCTCTGTCTATGGTCCTTCGG	(ENST00000392870.2)
	FCGRT	Hs FCGRT F	CAACAAGGAGCTCACCTTCC	92
		Hs FCGRT R	GCTCCTTCCACTCCAGGTTT	(ENST00000593381.5,
				ENST00000426395.7,
				ENST00000221466.9)
	NKX2.2	Hs_NKX2.2 F	TCTACGACAGCAGCGACAAC	74
		Hs_NKX2.2 R	ACCGTGCAGGGAGTACTGAA	(ENST00000377142.4)
	EZH2	Hs_EZH2 F	GGACCACAGTGTTACCAGCAT	79
		Hs_EZH2 R	GTGGGGTCTTTATCCGCTCAG	(ENST00000350995.6,
				ENST00000483967.5,
				ENST00000320356.6,
				ENST00000460911.5,
				ENST00000478654.5,
				ENST00000476773.5)
	CDKN1A	Hs_CDKN1A F	TGTCCGTCAGAACCCATGC	
		Hs_CDKN1A R	AAAGTCGAAGTTCCATCGCTC	(ENS100000405375.5,
				ENS10000615513.4,
				ENS100000244741.9,
				ENST00000448526 6)
				EING 100000440020.0)
	FILDAT		GGAGATEGACITIEGGIGEE	_ 05 /ENST0000602540.5
			GGCCIGACGATICIIGIACIG	ENST000002540.5,
				ENST0000619060 1)
	FOXO1	Hs FOXO1 F	GGATGTGCATTCTATGGTGTACC	86
		Hs FOXO1 R	TTTCGGGATTGCTTATCTCAGAC	(ENST00000379561.5)
	FOSL2	Hs FOSL2 F	CAGAAATTCCGGGTAGATATGCC	130
		Hs FOSL2 R	GGTATGGGTTGGACATGGAGG	(ENST00000379619.5.
				ENST00000436647.1.
				ENST00000264716.8)

	Application	Primer	Primer sequence (5' – 3')	PCR product size (bp)
	Convension	T3 TAG	ATTAACCCTCACTAAAGGG	N/A
	Sequencing	T7 TAG	AATACGACTCACTATAGG	
EWS-FLI1	Splicing	EWSR1 exon 7 F	ATCCTACAGCCAAGCTCCAA	177
(EF7-7)	assay	FLI1 exon 7 R	GGCCGTTGCTCTGTATTCTTAC	
EWS-FLI1	Splicing	EWSR1 exon 7 F	TATTCCTCTACACAGCCGACTAGTTATGAT	377
(EF7-8)	assay and sequencing	FLI1 exon 7 R	GCTAGGCGACTGCTGGTC	
<i>EWS-FLI1</i> (EF7-8)	Convension	T7- EWSR1 exon 7 F	AATACGACTCACTATAGGTATTCCTCTACAC AGCCGACTAGTTATGAT	414
	Sequencing	T3-FLI1 exon 7 R	ATTAACCCTCACTAAAGGGGGCTAGGCGACTG CTGGTC	
sgRNA		sgRNA F	CACCGACTGCACTACTGCACTTGTG	N/A
targeting the C- terminus of <i>NR0B1</i>	sgRNA plasmid	sgRNA R	AAACCACAAGTGCAGTAGTGCAGTC	
Left		LHA_first round F	ACTGCACTACTGCACTTGTGTGGTTTTGAAC	First round
homology arm (LHA)			ACTCATTAGAATCATTCTT	PCR: 953
		LHA_second round F	GATTACGCCAAGCTTGCATGCCTGCAGGTCA	
			CTGCACTACTGCACTTGTGTGG	Second
		LHA R	ACCGCATGTTAGCAGACTTCCTCTGCCCTCT	round PCR:
	-		ATCTTTGTACAGAGCATTTCCA	983
Right	Demen	RHA_F		First round
	Donor	DUA first round D		PCR. 955
апп (КПА)	plasmid	RHA_IIISt TOUTIO R		Second
		RHA second round P		
			CTGCACTACTGCACTTGTGTGG	983
mCherry	-	T2A-mCherry cassette	ATGATGCTGGAAATGCTCTGTACAAAGATAG	831
cassette		F	AGGGCAGAGGAAGTCTG	
		T2A-mCherry cassette	CACTACTGCACTTGTGTGCCCCACATGACTT	
		R	TACTTGTACAGCTCGTCCAT	
CRISPR plasmid sgRNA	Sequencing	Human U6 promoter F	GACTATCATATGCTTACCGT	N/A
pUC19	Sequencing	pUC19_Addgene#	AGCGGATAACAATTTCACACAGG	N/A
vector		50005_M13 F		
		pUC19_Addgene# 50005_M13 R	CCCAGTCACGACGTTGTAAAACG	
Donor	Sequencing	LHA-T2A	GGGAACTCAGCAAATACTCAGTG	N/A
plasmid		mCherry_junction		
		mCherry_RHA_junction	GACTACTTGAAGCTGTCCTTCC	
		primer		

Table S4. PCR primers – Primers for splicing assay, sequencing and the design of sgRNA and donor plasmids

Domain	Sequence (5' to 3')	Encoded protein	Residues*
qRRM1	ATGAGATCTGGATCCCACCATCACCATCAC	MRSGSHHHHHHRSDITSLYKKVGE	1-102
	CATAGATCTGATATCACAAGTTTGTACAAA	NLYFQGMLGTEGGEGFVVKVRGLP	
	AAAGTTGGCGAAAACCTGTACTTCCAAGGC	WSCSADEVQRFFSDCKIQNGAQGI	
	ATGTTGGGCACGGAAGGTGGAGAGGGATTC	RFIYTREGRPSGEAFVELESEDEV	
	GTGGTGAAGGTCCGGGGCTTGCCCTGGTCT	KLALKKDRETMGHRYVEVFKSNNV	
	TGCTCGGCCGATGAAGTGCAGAGGTTTTTT	EMDWVLKHTGP	
	TCTGACTGCAAAATTCAAAATGGGGCTCAA		
	GGTATTCGTTTCATCTACACCAGAGAAGGC		
	AGACCAAGTGGCGAGGCTTTTGTTGAACTT		
	GAATCAGAAGATGAAGTCAAATTGGCCCTG		
	AAAAAAGACAGAGAAACTATGGGACACAGA		
	TATGTTGAAGTATTCAAGTCAAACAACGTT		
	GAAATGGATTGGGTGTTGAAGCATACTGGT		
	ССАТАА		
qRRM2	ATGAGATCTGGATCCCACCATCACCATCAC	MRSGSHHHHHHRSDITSLYKKVGE	103-194
	CATAGATCTGATATCACAAGTTTGTACAAA	NLYFQGNSPDTANDGFVRLRGLPF	
	AAAGTTGGCGAAAACCTGTACTTCCAAGGC	GCSKEEIVQFFSGLEIVPNGITLP	
	AATAGTCCTGACACGGCCAATGATGGCTTT	VDFQGRSTGEAFVQFASQEIAEKA	
	GTACGGCTTAGAGGACTTCCCTTTGGATGT	LKKHKERIGHRYIEIFKSSRAEVR	
	AGCAAGGAAGAAATTGTTCAGTTCTTCTCA	TH	
aDDM2		MDCCCUUUUUUDCDTTCI VKKVCE	077 201
YNNIJ		NLYFOGODGCSTFOSTTCHCVHMR	211-301
		GLPYRATENDIYNEESPLNPVRVH	
	GGGGATGGTGGCTCTACTTTCCAGAGCACA	TEIGPDGRVTGEADVEFATHEDAV	
	ACAGGACACTGTGTACACATGCGGGGATTA	AAMSKDKANMOHRYVELFLNSTAG	
	CCTTACAGAGCTACTGAGAATGACATTTAT	ASGGAYEHRYVELFL	
	AATTTTTTTTCACCGCTCAACCCTGTGAGA		
	GTACACATTGAAATTGGTCCTGATGGCAGA		
	GTAACTGGTGAAGCAGATGTCGAGTTCGCA		
	ACTCATGAAGATGCTGTGGCAGCTATGTCA		
	AAAGACAAAGCAAATATGCAACACAGATAT		
	GTAGAACTCTTCTTGAATTCTACAGCAGGA		
	GCAAGCGGTGGTGCTTACGAACACAGATAT		
	GTAGAACTCTTCTTGTAA		
qRRM1-2	ATGAGATCTGGATCCCACCATCACCATCAC	MRSGSHHHHHHRSDITSLYKKVGE	1-194
	CATAGATCTGATATCACAAGTTTGTACAAA	NLYFQGMLGTEGGEGFVVKVRGLP	
	AAAGTTGGCGAAAACCTGTACTTCCAAGGC	WSCSADEVQRFFSDCKIQNGAQGI	
	ATGTTGGGCACGGAAGGTGGAGAGGGATTC	RFIYTREGRPSGEAFVELESEDEV	
	GTGGTGAAGGTCCGGGGCTTGCCCTGGTCT	KLALKKDRETMGHRYVEVFKSNNV	
	TGCTCGGCCGATGAAGTGCAGAGGTTTTTT	EMDWVLKHTGPNSPDTANDGFVRL	
	TCTGACTGCAAAATTCAAAATGGGGGCTCAA	RGLPFGCSKEEIVQFFSGLEIVPN	
	GGTATTCGTTTCATCTACACCAGAGAAGGC	GITLPVDFQGRSTGEAFVQFASQE	
	AGACCAAGTGGCGAGGCTTTTGTTGAACTT	IAEKALKKHKERIGHRYIEIFKSS	
	GAATCAGAAGATGAAGTCAAATTGGCCCTG	RAEVRTH	
	TATGTTGAAGTATTCAAGTCAAACAACGTT		

Table S5. Sequences of DNA used to express truncated HNRNPH1 proteins*Numbering based on wild-type HNRNPH1 protein sequence

	GAAATGGATTGGGTGTTGAAGCATACTGGT		
	CCAAATAGTCCTGACACGGCCAATGATGGC		
	TTTGTACGGCTTAGAGGACTTCCCCTTTGGA		
	ACGGGGGGGGGGCCTTCGTGCAGTTTGCTTCA		
	CAGGAAATAGCTGAAAAGGCTCTAAAGAAA		
	CACAAGGAAAGAATAGGGCACAGGTATATT		
	GAAATCTTTAAGAGCAGTAGAGCTGAAGTT		
	AGAACTCATTAA		
gRRM2-3	ATGAACTCTCCGGATACTGCTAATGATGGT	MNSPDTANDGFVRLRGLPFGCSKE	103-381
	TTCGTACGTCTGCGTGGTCTGCCATTCGGT	EIVQFFSGLEIVPNGITLPVDFQG	
	TGTTCTAAAGAGGAGATCGTTCAGTTCTTC	RSTGEAFVQFASQEIAEKALKKHK	
	TCTGGCCTGGAGATCGTACCGAACGGCATC	ERIGHRYIEIFKSSRAEVRTHYDP	
	ACCCTGCCGGTGGACTTTCAGGGTCGTTCT	PRKLMAMORPGPYDRPGAGRGYNS	
		GMSDHRIGDGGSIFQSIIGHCVHM	
	GAAATCTTCAAATCTTCCCGTGCTGAGGTG	RGLPYRATENDIYNFFSPLNPVRV	
	CGTACCCATTACGATCCACCACGTAAACTG	HIEIGPDGRVTGEADVEFATHEDA	
	ATGGCTATGCAACGTCCGGGTCCGTACGAC	VAAMSKDKANMQHRYVELFLNSTA	
	CGTCCGGGTGCCGGTCGCGGTTACAACTCT	GASGGAYEHRYVELFLHHHHHH	
	ATCGGTCGCGGTGCTGGCTTCGAACGTATG		
	CGTCGTGGTGCGTATGGTGGTGGTTACGGT		
	GGTTACGATGACTATAACGGCTACAACGAT		
	GGCTATGGCTTCGGCTCTGACCGCTTCGGT		
	CGCGACCTGAACTACTGCTTCTCTGGTATG		
	TCCGATCACCGTTACGGTGATGGTGGCTCC		
	ACCTTTCAGAGCACCACTGGTCACTGTGTT		
	CACATGCGTGGCCTGCCGTACCGTGCAACT		
	GAGAACGACATCTATAACTTCTTCTCTCCG		
	CTGAACCCGGTTCGTGTTCATATTGAGATC		
	GGTCCGGATGGCCGTGTGACTGGTGAAGCC		
			404.440
Δ1-103	HNRNPH1-138/1H (Creative BioMart)	MGSSHHHHHHSSGLVPRGSHMASM	104-449
		TGGQQMGRGSSPDTANDGFVRLRG	
		LPFGCSKEEIVQFFSGLEIVPNGI	
		TLPVDFQGRSTGEAFVQFASQEIA	
		EKALKKHKERIGHRYIEIFKSSRA	
		EVRTHYDPPRKLMAMQRPGPYDRP	
		GAGRGYNSIGRGAGFERMRRGAYG	
		GGYGGYDDYNGYNDGYGFGSDRFG	
		RDLNYCFSGMSDHRYGDGGSTFQS	
		TTGHCVHMRGLPYRATENDIYNFF	
		SPLNPVRVHIEIGPDGRVTGEADV	
		EFATHEDAVAAMSKDKANMOHRYV	
		ELFLNSTAGASGGAYEHRYVELFT	
		NSTAGASGGAYGSOMMGGMGLSNO	
		SSYGGPASOOLSGGYGGGYGGOSS	
		MSGYDOVLOENSSDFOSNIA	
1		~ ~	

Table S6. Homo sapiens EWSR1 transcripts from the GRCh37 assembly -ENSG00000182944

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	RefSeq
EWSR1-001	ENST00000397938.2	2654	656aa	Protein coding	CCDS13851	Q01844	NM_001163285 NM_001163286 NM_005243 NM_013986 NP_001156757 NP_001156758 NP_005234 NP_053733
EWSR1-002	ENST00000406548.1	2207	655aa	Protein coding	CCDS54513	Q01844	-
EWSR1-021	ENST00000414183.2	2189	661aa	Protein coding	CCDS13852	Q01844	-
EWSR1-008	ENST00000332035.6	1989	600aa	Protein coding	CCDS54514	B0QYJ7 Q01844	-
EWSR1-004	ENST00000333395.6	1265	354aa	Protein coding	CCDS54512	Q01844	NM_001163287 NP 001156759
EWSR1-201	ENST00000332050.6	2443	583aa	Protein coding	-	C9JGE3	-
EWSR1-007	ENST00000331029.7	2267	618aa	Protein coding	-	B0QYK0	-
EWSR1-019	ENST00000360091.3	1289	308aa	Protein coding	-	-	-
EWSR1-013	ENST00000437155.2	933	292aa	Protein coding	-	F8WC90	-
EWSR1-018	ENST00000455726.1	710	233aa	Protein coding	-	B0QYJ7	-
EWSR1-017	ENST00000415761.1	587	180aa	Protein coding	-	B0QYJ6	-
EWSR1-014	ENST00000447973.1	582	166aa	Protein coding	-	B0QYJ4	-
EWSR1-016	ENST00000444626.1	560	77aa	Protein coding	-	B0QYJ5	-
EWSR1-012	ENST00000436425.1	553	156aa	Protein coding	-	B0QYJ3	-
EWSR1-005	ENST00000479135.1	7285	No protein	Retained intron	-	-	-
EWSR1-006	ENST00000483415.1	3231	No protein	Retained intron	-	-	-
EWSR1-009	ENST00000469669.1	2630	No protein	Retained intron	-	-	-
EWSR1-011	ENST00000490315.1	2301	No protein	Retained intron	-	-	-
EWSR1-010	ENST00000483629.1	1818	No protein	Retained intron	-	-	-
EWSR1-015	ENST00000493426.1	581	No protein	Retained intron	-	-	-
EWSR1-003	ENST00000485037.1	479	No protein	Retained intron	-	-	-

Table S7 qPCR additional experimental details (see separate pdf)

Figure S1 related to Figure 1. HNRNPH1-mediated processing of *EWSR1* exon 8 containing pre-mRNAs.

(A) qPCR assessment of *RPL27* (control), *HNRNPH1*, *EWS-FLI1* and *EWSR1* mRNA expression in *HNRNPH1*-silenced EWS cell lines (SKMNC, TC71 and RD-ES) and HEK-293T cells. Data

normalized to *ACTB* are expressed relative to siNeg-transfected cells (48 hours, mean ± SEM, n=3). * p<0.05; ** p<0.01; *** p<0.001 compared to siNeg-transfected cells. For additional experimental details, refer to **Table S7**.

(B) Immunoblot analysis of whole cell lysates prepared from TC32 EWS cells 48 hours post transfection of *HNRNPH1*, *HNRNPH2*, and *HNRNPF* siRNAs using antibodies against the proteins indicated.

(C) Expression of all *EWSR1* transcript variants from targeted RNA-seq data analyzed using RSEM for *HNRNPH1*-transfected HEK-293T cells (top) and TC32 EWS cells (bottom). Data are expressed relative to siNeg-transfected cells (48 hours, mean ± SEM, n=3).

(D) Expression of highly expressed *EWSR1* transcript variants from targeted RNA-seq data analyzed using RSEM for *HNRNPH1*-transfected HEK-293T cells (top) and TC32 EWS cells (bottom). Data are expressed relative to siNeg-transfected cells (48 hours, mean ± SEM, n=3).

(E) Expression of rare *EWSR1* transcript variants from targeted RNA-seq data analyzed using RSEM for *HNRNPH1*-transfected HEK-293T cells (top) and TC32 EWS cells (bottom). Data are expressed relative to siNeg-transfected cells (48 hours, mean ± SEM, n=3).

(F) Expression of protein-coding *EWSR1* transcript variants from targeted RNA-seq data analyzed using RSEM for *HNRNPH1*-transfected HEK-293T cells (top) and TC32 EWS cells (bottom). Data are expressed relative to siNeg-transfected cells (48 hours, mean ± SEM, n=3).

Figure S2 related to Figure 1. Expression of *EWSR1* **transcript variants vary across tissues.** Data obtained from the Genotype-Tissue Expression (GTEx) portal on April 17, 2018.

Figure S3 related to Figure 1. *EWSR1-007* transcript variant is more readily expressed in tissues containing lower HNRNPH1 expression levels.

(A) Expression of total *HNRNPH1* (top) and *EWSR1-007* variant (bottom) transcripts in neuronal tissues, skeletal muscle, and skin.

(B) Comparison of total *EWSR1* transcript expression level and its transcript variants in indicated tissues.

Data obtained from the Genotype-Tissue Expression (GTEx) portal on May 5, 2018.

Figure S4 related to Figure 3. Kinetic analysis of different HNRNPH1 domains and rG1 interactions by SPR. The binding of different HNRNPH1 domains to a rG1 RNA target surface is shown. Black lines represent the binding responses for each protein at the indicated concentrations on each sensorgram. HNRNPH1 was exposed to the surface for 2 minutes (association phase) followed by 10 minutes flow of running buffer (dissociation phase). Data for qRRM1-2 were fit globally to a 1:1 binding model with mass transfer and all other data were fitted using a 1:1 binding model. The respective fits are shown in red. The resulting parameter values are provided in Table 1.

Figure S5 related to Figure 4. HNRNPH1 directly binds to unstructured G-tracts and RNA G-quadruplex structures within *EWSR1* exon 8 rG1.

(A) Binding curve for rG1-BG4 immunocomplex determined by the antibody-based RNA binding assay using BG4 antibody. Apparent dissociation constants (K_d^{app}) for each immunocomplex are indicated. Data are shown as the mean ± SEM of 3 technical replicates.

(B) Binding curve for rG1-HNRNPH1 immunocomplex determined by the antibody-based RNA binding assay using HNRNPH1 antibody. Apparent dissociation constants (K_d^{app}) for each immunocomplex are indicated. Data are shown as the mean ± SEM of 3 technical replicates.

CI = confidence interval.

Figure S6 related to Figure 5. A subgroup of RNA guanine quadruplex regions are enriched near HNRNPH1 binding sites in the human genome.

(A) Coverage plots (left) and read density heat maps (right) represent binding read count for HNRNPH1 near RNA guanine quadruplex sites (±1 Kb). The RNA targets and binding sites for HNRNPH1 were obtained from RIP seq dataset (Uren et al. 2016). The RNA guanine quadruplex sites were obtained from the sequencing dataset GSE77282 (Kwok et al. 2016).

(B) Coverage plots (left) and read density heat maps (right) represent binding read count for the indicated hnRNPs near RNA guanine quadruplex sites (± 1 Kb). The RNA targets and binding sites for each hnRNP were obtained from iCLIP or eCLIP datasets (Uren et al. 2016, Van Nostrand et al. 2016). The RNA guanine quadruplex sites were obtained from the sequencing dataset GSE83617 (Guo and Bartel 2016).

TC32/ siHNRNPH1 and 15 μM PDS: 7/6 fusion, retained exon 8 APSQYSQQSSSYGQQSSFRQDHPSSMGVYGQESGGFSGPGENRSMSGPDNRGRGRGGF DRGGMSRGGRGGGRGGMGPFL*

В

Figure S7 related to Figure 7. In TC32 cells, PDS modulates *EWS-FLI1* mRNA processing, decreases EWS-FLI1 protein levels, and restores mRNA expression of EWS-FLI1 deregulated targets.

(A) Representative sequence chromatograms show retention of *EWSR1* exon 8 for the additional PCR product amplified from siHNRNPH1-transfected and PDS-treated TC32 cells. The exon junctions are indicated by arrows. The predicted translation of a fusion transcript that retains *EWSR1* exon 8 results in the introduction of a premature stop codon.

(B) qPCR assessment of EWS-FLI1-regulated genes in PDS-treated (top) or *HNRNPH1*-silenced (bottom) TC32 EWS cells (48 hours). Data normalized to *ACTB* are expressed relative to control, 0.1% DMSO or siNeg-transfected cells (mean ± SEM, n=3). ** p<0.01; *** p<0.001 compared to control. For additional experimental details, refer to **Table S7**.

SUPPLEMENTAL REFERENCES

Guo, J.U. and Bartel, D.P. 2016. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. *Science* 353: aaf5371.

Kwok, C.K., Marsico, G., Sahakyan, A.B., Chambers, V.S. and Balasubramanian, S. 2016. rG4seq reveals widespread formation of G-quadruplex structures in the human transcriptome. *Nat Methods* 13: 841-844.

Studier, F.W. 2005. Protein production by auto-induction in high density shaking cultures. *Protein Expr Purif* 41: 207-234.

Uren, P.J., Bahrami-Samani, E., de Araujo, P.R., Vogel, C., Qiao, M., Burns, S.C., Smith, A.D. and Penalva, L.O. 2016. High-throughput analyses of hnRNP H1 dissects its multi-functional aspect. *Rna Biol* 13: 400-411.

Van Nostrand, E.L., Pratt, G.A., Shishkin, A.A., Gelboin-Burkhart, C., Fang, M.Y., Sundararaman, B., Blue, S.M., Nguyen, T.B., Surka, C., Elkins, K. et al. 2016. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). *Nat Methods* 13: 508-514.

Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W. et al. 2017. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. *Genome Biol* 18: 35.