Idris et al. SUPPLEMENTARY FIGURE S1

Supplementary Figure S1: Schematic illustration of the β -catenin dependent Wnt signaling pathway and the mechanism that governs Wnt ligand secretion. The binding of Wnt ligands to the FZD-LRP receptor disengages the β -catenin destruction complex leading to increased β -catenin protein abundance. β -catenin can translocate into the nucleus to bind to the TCF/LEF transcription factors and recruit other coactivators to induce the expression of Wnt responsive genes such as *AXIN2* and *NOTUM*. Note that the palmitoleation of the Wnt ligand by the PORCN enzyme (which is inhibited by the chemical ETC-159) is required for its binding to WLS (to facilitate the secretion of the Wnt ligand) and its interaction with the FZD receptor. The FZD receptor abundance is down-regulated by the membrane-bound E3 ubiquitin ligase, RNF43/ZNRNF3. RSPO ligand binds to the LGR receptor to form a complex that sequesters the RNF43/ZNRNF3 enzyme and suppresses its activity.

Human Gene	Forward Primer	Reverse Primer
EPN1 (Reference)	CTCTGACTTTGACCGACTCC	TGACCCCACTCATGTCAAAC
CTNNB1	AGCTTCCAGACACGCTATCAT	CGGTACAACGAGCTGTTTCTAC
AXIN2	CTGGCTCCAGAAGATCACAAAG	CATCCTCCCAGATCTCCTCAAA
HNRNPA1	TCAGAGTCTCCTAAAGAGCCC	ACCTTGTGTGGCCTTGCAT
HNRNPA2B1	ATTGATGGGAGAGTAGTTGAGCC	AATTCCGCCAACAAACAGCTT
HNRNPM	GCGGCGACGGAGATCAAAA	CTCATTCTGAGCAGGTCGTTC
NOTUM	CTTCATGGCGCAAGTCAAGAG	CGAGGTGTTGAGTAGGAGGTG
SRSF1	CCGCAGGGAACAACGATTG	GCCGTATTTGTAGAACACGTCCT
SRSF3	TGGCAACAAGACGGAATTGGA	CAAAGCCGGGTGGGTTTCTA
SRPK1	ATGGAGCGGAAAGTGCTTG	GAGCCTCGGTGCTGAGTTT
SRI Constitutive Exon 4 to Exon 6	GGCATTGCTGGAGGATACAAAC	CCCATTGTGCCAGACATATCTC
SRI Exon 1 to Exon 3	CCAGCTTCTACCTATAAGACTTCAACTC	GTCCAGCTACAGCAGCAAAG
SRI Exon 2 to Exon 3	ATGGCGTACCCGGGGCATC	GTCCAGCTACAGCAGCAAAG
CD46 Constitutive Exon 2	ACCAACATTTGAAGCTATGGAGC	GCCATGTATGATTCCGATCACAA
<i>CD46</i> Exon 8 to Exon 10	CGACTTCTTCCACTACAAAATCTCC	CTGTCAAGTATTCCTTCCTCAGG
RECQL5 Constitutive Exon 7	GTTTGTCGCCCATTGGAATATTGCC	CTTCCTTCCTGATCAGGAAGCTGAC
<i>RECQL5</i> α Exon 7 to Exon 8.2	GTCAGCTTCCTGATCAGGAAGGAAG	CTTTGCTCCACATATAAAATAAGTCACTTACC
<i>RECQL5</i> γ Exon 7 to Exon 8.3	GTCAGCTTCCTGATCAGGAAGGAAG	CTGACTACACCAAGCAGCCCTCAGACTC
<i>RECQL5</i> β Exon 9 to Exon 9	CGCTGCCTGCCTGCGCCAAAG	GCTGAAGTCCCCGTAGCCCTTGCG

Supplementary Figure S2: Table of primers used for *in vitro* validation of Wnt regulated gene and isoform expression.

Supplementary Figure S3: Wnt score was calculated to sort the tumor types extracted from The Cancer Genome Atlas (TCGA), as seen in main Figure 4. Tumors with high a Wnt score indicate strong influence of Wnt/ β -catenin signaling. The Wnt score was calculated based on the gene expression of 10 well-established Wnt target genes (shown in the heatmap). The rightmost and center heatmaps show the expression of these Wnt target genes in the colorectal PDX (ColoPDX) dataset and the HPAF-II orthotopic dataset respectively. For these heatmaps, red indicates high expression while blue indicates low expression. The expression of these Wnt target genes decreases with ETC-159 treatment in both of the *in vivo* datasets. The leftmost heatmap shows the gene expression fold change (of the tumors relative to the matched normal samples) for the tumors shown in the TCGA dataset for the indicated Wnt target genes. A positive fold change (shown in green) indicates that the expression of the gene is higher in the normal samples relative to the tumors.

Supplementary Figure S5: Gene expression changes driven by the siRNA-mediated knockdown of β -catenin using 6 biological replicates. HPAF-II cells were transfected with 25 nM of non-targeting control (Dharmcon; D-001810-10) or two independent β -catenin (siRNA #1: GCGUUUGGCUGAACCAUCA; siRNA #2: GGUACGAGCUGCUAUGUUC) siRNAs using the Dharmacon Reagent according to the manufacturer's protocol. After 3 days, RNA was extracted from the cells using the RNeasy MiniKit (Qiagen) and quantitative PCR (qPCR) was performed using the primers listed in the table in Supplementary Figure S2. Both of the siRNAs for β -catenin were able to significantly suppress the gene expression of β -catenin and, consequently, the Wnt target genes, *AXIN2* and *NOTUM*. A two-tailed t-test was performed between the indicated samples. p > 0.05: ns; p ≤ 0.05: *; p ≤ 0.01: **; p ≤ 0.001: ***; p ≤ 0.0001: ****.

Supplementary Figure S6: Schematic illustrations of the gene structure and the effect of ETC-159 treatment on the variable exon expression induced in the two *in vivo* tumor models (shown in the heatmap). The heatmaps show the magnitude of the variable exon expression (measure in Δ PSI). A positive Δ PSI value (shown in red) suggests that Wnt signaling promotes the expression of the variable exon while a negative Δ PSI value (shown in blue) suggests that Wnt signaling suppresses the expression of the variable exon. (A) Wnt signaling induces the expression of mutually exclusive exon 6 of *SLC39A14*. This splicing event and its association with Wnt signaling have been previously established. (B) Wnt signaling induces the expression of *CD44* isoforms that include variable exons 5 and 6. This splicing event and its association with Wnt signaling have been previously established. (C) Wnt signaling suppresses transcription of *UNG* originating at a promoter proximal to exon 2.1. The connection between Wnt signaling and this alternative promoter usage event in *UNG* was not previously established.

Gene	Splice ID for our study	Time Point (ETC-159 Treatment)	Splice ID for Shinde et al.			
DEDD2	ENSG00000160570:E021	8 hours	ENSMUSG00000054499:25219764- 25219859:target			
TSC22D1	ENSG00000102804:E020	0 110013	ENSMUSG00000022010:76438933- 76439108:target			
CUEDC1	ENSG00000180891:E010		ENSMUSG00000018378:88188783- 88188850:source			
E2F4	ENSG00000205250:E015	32 hours	ENSMUSG00000014859:105298072- 105298182:source			
TLCD1	ENSG00000160606:E010	52 110015	ENSMUSG00000019437:78179273- 78179452:target			
TSC22D1	ENSG00000102804:E020		ENSMUSG00000022010:76438933- 76439108:target			
PRPF39	ENSG00000185246:E016	56 bours	ENSMUSG00000035597:65044006- 65044124:target			
RGS3	ENSG00000138835:E051	So hours	ENSMUSG00000059810:62689499- 62690626:target			
ABR	ENSG00000159842:E086		ENSMUSG00000017631:76508888- 76509419:source			
PARP9	ENSG00000138496:E018		ENSMUSG00000022906:35943369- 35943805:source			
RGS3	ENSG00000138835:E051	7 days	ENSMUSG00000059810:62689499- 62690626:target			
SNRNP70	ENSG00000104852:E022		ENSMUSG0000063511:45381224- 45381234:target			
ZDHHC4	ENSG00000136247:E009		ENSMUSG0000001844:143328295- 143328570:source			
TACC2	ENSG00000138162:E018	Colorectal PDX	ENSMUSG0000030852:130674602- 130674739:target			

Supplementary Figure S7: A tabulation of the isoform expression changes that were detected in our analysis from the two *in vivo* human tumor models and the analysis by Shinde and colleagues with a *GSK3* double-knockout model in mouse embryonic stem cells.

			△PSI (Untreated Samples - ETC-159 Treated Samples						
									Colorectal
featureID	GeneID	Symbol	HPAF-II Orthotopic Dataset			PDX			
						Dataset			
			3 hours	8 hours	16 hours	32 hours	56 hours	7 days	56 hours
ENSG00000078304:E021	ENSG0000078304	PPP2R5C	///¥///	((()\$1())	()))Ø()))	15	16		15
ENSG00000091436:E021	ENSG0000091436	MAP3K20	/// <i>XX</i> ////		XX	/// <i>XX///</i>	16	1120111	28
ENSG00000091436:E022	ENSG0000091436	MAP3K20	///////////////////////////////////////	())(Ø)())	1118111	1118111	13	16	24
ENSG0000092978:E011	ENSG0000092978	GPATCH2	111141111	α		10	1118111	20	29
ENSG00000111652:E026	ENSG00000111652	COPS7A	¥	11114111	Ø	1118111	13	116111	18
ENSG00000118564:E035	ENSG00000118564	FBXL5	Q	α		10	()()4()()	111-10/11	11
ENSG00000138434:E009	ENSG00000138434	SSFA2	///¥////	()))Ø))))		()()#()()		11	18
ENSG00000138434:E010	ENSG00000138434	SSFA2	1115111	1114111	11161111	1111421111	12	11	20
ENSG00000138434:E013	ENSG00000138434	SSFA2	///¥////	1114111	1116111	1114011	1118/111	11	28
ENSG00000144560:E026	ENSG00000144560	VGLL4	1118111	10		16	21	20	14
ENSG00000152767:E070	ENSG00000152767	FARP1	1110/111	111121111	() (¥) ()	())(0))))	12	11	15
ENSG00000153944:E049	ENSG00000153944	MSI2	///////////////////////////////////////	11163111		(11)X(11)	111784111	11	14
ENSG00000154639:E013	ENSG00000154639	CXADR	11114111	1115111	11144111		14	19	16
ENSG00000160218:E008	ENSG00000160218	TRAPPC10	///////////////////////////////////////	-16	()(3)))	(()(#X())	11	()))X()))	20
ENSG00000178177:E005	ENSG00000178177	LCORL	11144111	11.00	(<i>8</i>)	11	1118/11	X2	22
ENSG0000079616:E033	ENSG0000079616	KIF22	1114111	11174111	()()\$()(111-6111	111747111	-13	-22
ENSG0000089177:E006	ENSG0000089177	KIF16B	11144111	11112111	1118111	-19	() +8))	11178/11	-18
ENSG0000094914:E043	ENSG0000094914	AAAS	/// <i>X///</i> /	-10	111211	-22	-18	-14	-24
ENSG00000100105:E009	ENSG00000100105	PATZ1	11114111	-12	() 6	-20	-13	-10	-20
ENSG00000101158:E039	ENSG00000101158	NELFCD	11116111	-10	() <i> \$</i>	11184111	¥////	1118111	-17
ENSG00000104129:E005	ENSG00000104129	DNAJC17	1114111		()))#()))	11114111	-10	1114111	-11
ENSG00000108469:E040	ENSG00000108469	RECQL5	1110	((();4)())	11114111	-15	-14	-12	-35
ENSG00000112081:E011	ENSG00000112081	SRSF3	11144111	////¥////	1114111	11118/11	-10	1118	-21
ENSG00000112081:E012	ENSG00000112081	SRSF3	11114111	////¥///	.)))\¥\)))	-11	-13	-10	-27
ENSG00000131389:E016	ENSG00000131389	SLC6A6	1111421111	-14		-18	1110111	112	-12
ENSG00000133703:E004	ENSG00000133703	KRAS	////X////	11122111	1112111	1118111	-12	-14	-18
ENSG00000138600:E010	ENSG00000138600	SPPL2A	////¥////	111X111		11115111	111-8111	-10	-15
ENSG00000156787:E025	ENSG00000156787	TBC1D31	11118111	-15	1118/11/	111744111	¥///	-24	-53
ENSG00000166508:E033	ENSG00000166508	MCM7	111HX111	11112111	()))&)))	-19	-14	-12	-29
ENSG00000166508:E034	ENSG00000166508	MCM7	11114111	////¥///	1116111	-34	-35	-22	-46
ENSG00000166851:E009	ENSG00000166851	PLK1	III WIII	11113111	1112111	1115111	-15	1111X111	-58
ENSG00000168056:E053	ENSG00000168056	LTBP3	11114111	-14	-14	-24	-15	() 42)	-17
ENSG00000172167:E019	ENSG00000172167	MTBP	111147111	111143111	11112211	-13	111-6/11	1111-81111	-83
ENSG00000177463:E020	ENSG00000177463	NR2C2	IIIKIII	111141111	()()#/()).	-11	1118111	(((\ \X (())	-16
ENSG00000187147:E032	ENSG0000187147	RNF220	<u>111741111</u>	1111431111	111141111	-14	///////////////////////////////////////	1111651111	-10

Supplementary Figure S8: A tabulation of the 35 isoform expression changes from 30 genes that were shared between the pancreatic and colorectal cancers from the RNA-seq datasets. This list was generated with the filters shown in main Figure 3A ($|PSI| \ge 10\%$ & adjusted p-value ≤ 0.1). The magnitude of the differential variable exon usage (measured in ΔPSI) is shown in the table. The data that did not pass the aforementioned filters have been shaded out. More detailed information about these Wnt regulated isoform expression changes can be found in Supplementary Table 2.

Supplementary Figure S9: Genes involved in Wnt regulated variable exon usage have important biological functions. Gene Ontology (GO) analysis of the genes that were found to be differentially spliced in at least one time point in either the HPAF-II orthotopic or colorectal PDX (ColoPDX) tumor models. Genes associated with two of the categories in the GO analysis are shown in the heatmaps below together with the magnitude of splicing change (Δ PSI) or the ETC-159 treated time points relative to the untreated controls. (A) Molecular function GO. (B) Cellular component GO. Hierarchical clustering was applied to each heatmap.

Supplementary Figure S10: Genomic maps of the splicing Quantitative Trait Loci (sQTLs) and their associated exons for (A) the alternative promoter usage of *SRI* exon 2, (B) exon skipping of *CD46* exon 8 and (C) alternative termination of *RECQL5* exon 8.3. Genomic coordinates show the relative position of all the exons in the gene (highlighted in grey with the variable exon highlighted in red) and the sQTLs. The R2 values indicate the magnitude of the splicing (in terms of PSI values) that can be explained by the sQTL. The larger the R2 value, the stronger the association between the sQTL and the variable exon expression. sQTLs that overlap with known transcriptional regulator (in the case of *SRI* exon 2 (A)) and RNA-binding protein (for *CD46* exon 8 (B) and *RECQL5* exon 8.3 (C)) binding sites have been labelled.