

www.sciencemag.org/content/349/6253/1224/suppl/DC1

Supplementary Materials for

Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone

Warren Lau and Elizabeth S. Sattely*

*Corresponding author. E-mail: sattely@stanford.edu

Published 11 September 2015, *Science* **349**, 1224 (2015) DOI: 10.1126/science.aac7202

This PDF file includes

Materials and Methods Figs. S1 to S38 Table legends S1 and S2 References

Other Supplementary Material for this manuscript includes the following: (available at www.sciencemag.org/content/349/6253/1224/suppl/DC1)

Table S1. Hierarchical cluster Table S2. Primers.

Correction (16 September 2005): In forming the PDF, the Table of Contents was garbled, and page 5 is impossible to read. These translation errors are corrected in the revised SM. The originally posted version can be seen <u>here</u>.

TABLE of CONTENTS

Materials and Methods	5
Transcriptomics data mining and analysis of the Medicinal Plants Consortium data sets	5
mRNA extraction and cDNA template preparation	5
RNA-Seq library preparation, next-generation sequencing and co-expression analysis	6
RNA-Seq co-expression analysis and candidate selection	6
Cloning of podophyllotoxin biosynthetic genes and candidate genes	7
Transient expression and candidate gene screening in <i>N. benthamiana</i>	8
Pathway reconstitution in <i>N. benthamiana</i>	8
Metabolite extraction	8
LC-MS analysis of metabolite extracts	9
Metabolomics and MS data analysis	9
Heterologous expression and purification of OMT3, OMT1 and 2-ODD	9
Expression of cytochromes P450 and microsome isolation from S. cerevesiae WAT11	10
In vitro characterization of recombinant OMT3	10
In vitro assays of CYP71CU1, OMT1, 2-ODD and CYP71BE54	11
Chemicals	11
Commercially available chemicals	11
General procedures	11
Isolation of (–)-matairesinol and (–)-arctigenin from <i>Forsythia x intermedia</i>	12
Synthesis of (–)-nluviatolide using S <i>cerevisige</i> WAT11 cells expressing CYP719A23	12
Isolation of OMT3 enzymatic product $[(-)-5'-desmethoxy-vatein]$	12
Isolation of (–)-deoxypodophyllotoxin and (–)-vatein from <i>Anthriscus sylvestris</i>	13
Synthesis of (–)-epipodophyllotoxin and (–)-4'-desmethyl-epipodophyllotoxin	13
Supplementary Figures	15
Fig. S1. Transient expression of early (–)-podophyllotoxin biosynthetic genes in <i>N. benthamiana</i> .	15
Fig. S2. ($-$)-Matairesinol infiltration enhances ($-$)-pluviatolide production in tobacco leaves expres	sing
CYP719A23	16
Fig. S3. Candidate genes selected for initial screening from the Medicinal Plants Consortium P.	
hexandrum transcriptome.	17
Fig. S4. Screening of OMT enzyme candidates in <i>N. benthamiana</i> by co-expression with CYP719A2	3
and (–)-matairesinol infiltration	18
Fig. S5. N. benthamiana transient expression of CYP719A23 and OMT3 and (–)-matairesinol infiltration	ation
produces (–)-5'-desmethoxy-yatein	19
Fig. S6. N. benthamiana transient expression of CYP719A23 and OMT3 or OMT3 alone and (–)-	
matairesinol infiltration produces doubly methylated (–)-matairesinol	20
Fig. S7. In vitro characterization of (–)-pluviatolide O-methyltransferase (OMT3)	21
Fig. S8. Gene expression profiling of a <i>P. hexandrum</i> leaf after wounding	22
Fig. S9. Metabolite profiling of <i>P. hexandrum</i> leaves after wounding.	23

	Fig. S10. Co-expression analysis of <i>P. hexandrum</i> leaf RNA-Seq expression data after wounding using	
	DIR as a bait gene	ł
	Fig. S11. Co-expression analysis of <i>P. hexandrum</i> leaf RNA-Seq expression data after wounding using <i>CYP719A23</i> as a bait gene25	5
	Fig. S12. RNA-Seq expression profiles and metabolite data after leaf wounding of all known (–)-	
	podophyllotoxin genes and genes discovered in this report	5
	Fig. S13. <i>N. benthamiana</i> transient expression of CYP719A23, OMT3, and CYP71CU1 and (–)-	
	matairesinol leaf infiltration produces (–)-5'-desmethyl-yatein.	7
	Fig. S14. <i>N. benthamiana</i> transient expression of CYP719A23, OMT3, CYP71CU1, and OMT1 and (–)-	
	matairesinol leaf infiltration produces (–)-yatein	3
	Fig. S15. <i>N. benthamiana</i> transient expression of CYP719A23, OMT3 and 2-ODD and (–)-matairesinol	
	leaf infiltration produces (–)-5'-desmethoxy-deoxypodophyllotoxin.)
	Fig. S16. Proposed reaction mechanism of the conversion of (–)-yatein to (–)-deoxypodophyllotoxin	
	catalyzed by 2-ODD)
	Fig. S17. <i>N. benthamiana</i> transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, and 2-ODD	
	and (–)-matairesinol leaf infiltration produces (–)-deoxypodophyllotoxin	L
	Fig. S18. Enzymatic assays of heterologously expressed CYP71CU1, OMT1 and 2-ODD	2
	Fig. S19. Substrate specificity of OMT3, CYP71CU1, OMT1 and 2-ODD as determined by in vitro	
	characterization	3
	Fig. S20. Rhizome-specific candidate genes selected for screening from the Medicinal Plants	
	Consortium P. hexandrum transcriptome	ļ
	Fig. S21. N. benthamiana transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD and	
	CYP71BE54, and (–)-matairesinol infiltration produces (–)-4'-desmethyl-deoxypodophyllotoxin35	5
	Fig. S22. Enzymatic assays of CYP71BE54-enriched microsomal fractions isolated from WAT1136	5
	Fig. S23. N. benthamiana transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD and	
	CYP82D61, and (–)-matairesinol infiltration produces (–)-epipodophyllotoxin	7
	Fig. S24. N. benthamiana transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD,	
	CYP71BE54 and CYP82D61, and (–)-matairesinol infiltration produces (–)-4'-desmethyl-	
	epipodophyllotoxin, the etoposide alglycone	3
	Fig. S25. In planta reconstitution of (–)-deoxypodophyllotoxin biosynthesis from (+)-pinoresinol39)
	Fig. S26. In planta reconstitution of (-)-epipodophyllotoxin biosynthesis from (+)-pinoresinol40)
	Fig. S27. Ion abundance of intermediates from <i>in planta</i> reconstitution of (–)-epipodophyllotoxin and	
	(-)-4'-desmethyl-epipodophyllotoxin biosynthesis from (+)-pinoresinol41	L
	Figure S28. Biosynthetic route to (–)-4'-desmethyl-epipodophyllotoxin, the etoposide alygcone42	2
	Figure S29. Golden Gate assembly strategy for multiple-gene constructs for transient expression in N.	
	benthamiana43	3
	Figure S30. XCMS analysis summary of in planta candidate enzyme screening44	1
Ν	IMR Spectra of Authentic Standards45	5
	Figure S31. (–)-matairesinol45	5
	Figure S32. (–)-arctigenin	5
	Figure S33. (–)-pluviatolide	1

References	
Table S1 and S2 Legends	53
Figure S38. (–)-4'-desmethyl-epipodophyllotoxin	52
Figure S37. (–)-epipodophyllotoxin	51
Figure S36. (–)-deoxypodophyllotoxin	
Figure S35. (–)-yatein	
Figure S34. (–)-5'-desmethoxy-yatein	

Materials and Methods

Transcriptomics data mining and analysis of the Medicinal Plants Consortium data sets

RNA-Sequencing data from P. hexandrum was downloaded from the Medicinal Plants Consortium database (http://www.medplantrnaseq.org/, Podophyllum hexandrum 2.tgz) (16). The number of fragments per kilobase of contig per million mapped reads (FPKM) for each contig and condition (leaf-1, leaf-2, rhizome-1, rhizome-2, stem-1, stem-2, stem-3) was determined using the number of paired aligned reads provided in the .counts files. Contigs representing known (-)-podophyllotoxin biosynthetic genes were determined and annotated by tblastn with query sequences obtained from the NCBI database: (DIR, AIA24413.1; PLR, ABY75535.2; SDH, ABN14311.1; CYP719A23, AGC29953.1). Contigs were also annotated by blastx using an Arabidopsis proteome (The Arabidopsis Information Resource) database. Approximately 100 O-methyltransferase (OMT) and 300 cytochrome P450 (CYP) contigs were identified. Multiple contigs were found to represent the same gene. OMT gene candidates from this data set were chosen based on the availability of full coding sequence, similar expression profiles to known biosynthetic genes, and similarity (best blastx hit and % identity) to known plant genes involved in secondary metabolism (OMT1, Ph13451 [Contig number, Ph refers to contigs from the Medicinal Plants Consortium dataset]; OMT2, Ph14232; OMT3, Ph18546; OMT4, Ph6083). CYP gene candidates (See Table S2 for primers) were chosen similarly. For biosynthetic steps that occur downstream of (-)deoxypodophyllotoxin formation, CYP contigs with rhizome-specific expression were considered.

mRNA extraction and cDNA template preparation

RNA was extracted from *P. hexandrum* var. chinense ex MD97150 (Far Reaches Farm, Port Townsend, WA) and *P. hexandrum* (Dancing Oaks Nursery, Monmouth, OR) leaf and rhizome tissues using the Spectrum Plant Total RNA Kit (Sigma-Aldrich) according to the manufacturer's instructions. cDNA was prepared from extracted mRNA using the SuperScript III First-Strand Synthesis System (Invitrogen).

qRT-PCR analysis of *OMT3* and known podophyllotoxin biosynthetic genes after *P. hexandrum* leaf wounding

A *P. hexandrum* (Dancing Oaks Nursery, Monmouth, OR) leaf was removed from the stem with scissors and 0 h time point (control) tissue samples were collected (one from each leaflet, three total from a single leaf), flash frozen with liquid nitrogen and stored at -80° C for later manipulation. The leaf was then immediately wounded by piercing the leaf approximately a hundred times with fine tweezers throughout the entire surface of the leaf. The wounded leaf was placed in a petri dish with distilled water and moved to a growth chamber under a 16 h light cycle (photon flux of 100 µmol m⁻² s⁻¹, 22°C, 50% relative humidity) approximately an hour after the start of the light cycle. Three tissue samples, one from each leaflet, were removed from the leaf 3, 6, 9, 12 and 24 h after wounding, flash frozen by liquid nitrogen and stored at -80° C for later use in metabolomics analysis, gene profiling and RNA-Sequencing.

cDNA templates were prepared from the isolated tissues as described above. Quantitative RT-PCR was performed using cDNA templates and gene-specific primers for *DIR*, *PLR*, *SDH*, *CYP719A23*, *OMT3* and *ACTIN* (Table S2 for primers), (25) . Each cDNA was amplified by real-time PCR using SensiMix SYBR Hi-ROX Kit (Bioline) and the ABI StepOnePlus (Applied Biosystems). *ACTIN* expression was used to normalize the expression values in each sample, and relative expression values were determined against the 0 h time point (before wounding) using the comparative Ct method $(2^{-\Delta\Delta Ct})$, (26). Analysis was repeated once with another biological sample; similar results were obtained.

RNA-Seq library preparation, next-generation sequencing and co-expression analysis

A multiplexed RNA-Seq cDNA library was prepared from RNA isolated from the P. hexandrum wounding experiment (three biological replicates of 0, 3, 9 and 12 h after wounding, 12 samples total) using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs) according to the manufacturer's instructions. The quality and average length (insert size was approximately 200 bp) of cDNAs in the library were determined using a High Sensitivity DNA chip on a 2100 Bioanalyzer (Agilent Technologies). Libraries were sequenced (paired-end, 100 bp) on a single lane of HiSeq2000 (Illumina) at the Sequencing Service Center by the Stanford Center for Genomics and Personalized Medicine. The FASTX-toolkit (27) was used for quality assessment and cleaning of reads. Reads were trimmed at the 5'-end by 13 bp to remove biases associated with random priming. Reads with Phred quality scores of less than 20 were trimmed from the 3'-end; reads were discarded if resulting length was less than 50 bp. Low complexity sequences were removed. A transcriptome was assembled de novo using Velvet and Oases (28) with a k-mer of 71. The clustering tool CD-HIT-EST (29) was used to identify sequences with greater than 99% identity from the assembly; only the longest representative transcript was kept. The set of transcripts was further assembled with CAP3 (30) to combine contigs with significant overlaps (minimum 95% identity over at least 100 bp). Assembled transcripts were annotated by blastx using the Arabidopsis proteome (The Arabidopsis Information Resource) as a database and the NCBI non-redundant database, if necessary. eXpress (31) was used to quantify gene expression levels under each experimental condition by mapping paired reads to assembled transcripts. Effective counts were TMM (Trimmed Mean of M-values) normalized by edge (32). Contigs assembled using this data are annotated Phex followed by the contig number.

RNA-Seq co-expression analysis and candidate selection

On the basis of the predicted enzyme activities required for the missing pathway steps, the transcriptome data was mined for gene sequences annotated O-methyltransferases (OMT), cytochromes P450 (CYP), 2oxoglutarate/Fe(II)-dependent dioxygenases (2-ODD), and polyphenol oxidases (PPO). For these 336 genes, linear regression analysis (33) of TMM-normalized reads was performed using DIR as a bait gene (fig. S10). Genes were ranked in order of increasing p-value. OMT3 (rank 2 and 3) and SDH (rank 28) were among the genes whose expression profiles most closely matched that of DIR. Statistical tests were considered significant using the Benjamini–Hochberg (34) procedure with a false discovery rate of 0.05 (multiple testing corrections). For DIR, genes ranked less than 33 were significant. Known pathway genes were highly expressed compared to other genes (1-2 orders of magnitude difference in number of normalized read counts; median TMM normalized effective counts were greater than 500). An expression level cutoff was used (contigs with median TMM normalized effective counts < 500 were removed). After filtering by median expression level, 14 genes remained. From these candidates, four potential gene candidates were chosen: Phex30848 (2-ODD), Phex32688 (CYP), Phex13114 (OMT1, previously tested), and Phex359 (PPO). We chose to focus on the identification of an oxidative enzyme first based on the next predicted biosynthetic step and therefore, additional OMT candidates were not chosen. The qRT-PCR gene profiling after leaf wounding from above revealed two similar but distinct expression patterns (DIR, SDH and OMT3 vs. PLR and CYP719A23), suggesting separate transcriptional regulons. Therefore, linear regression analysis was also performed using CYP719A23 as a bait gene as above (fig. S11). Genes ranked less than 26 were considered significant using the Benjamini–Hochberg procedure with a false discovery rate of 0.05. After filtering by expression level cutoff (contigs with median TMM normalized effective counts < 500 were removed), 13 genes remained. Two additional candidates were chosen from this list: Phex34339 (PPO) and Phex524 (CYP71CU1). As before, we chose to focus on the identification of an oxidative enzyme first based on the next predicted biosynthetic step and therefore, additional OMT candidates were not chosen.

Phex15199 (CYP) was also chosen because it showed an interesting elicitation pattern distinct from that observed from known pathway genes; this candidate did not satisfy any of the prior criteria.

To further validate candidate selection, average linkage, hierarchical clustering analysis was performed with CLUSTER (version 3.0) using expression data (TMM normalized, log₂-scaled, and median-centered effective counts) from transcript sequences annotated as cytochromes P450 (*CYP*), O-methyltransferases (*OMT*), Fe(II) and 2-oxoglutarate dependent dioxygenases (2-ODD), polyphenol oxidases (*PPO*) and known (–)-podophyllotoxin biosynthetic genes (*DIR, PLR, SDH, CYP719A23* and *OMT3*) (Fig. 2B and Table S1). Contigs with median TMM normalized effective read counts less than 500 were removed. Six of our seven candidates, three of four known pathway genes and *OMT3* were contained in a single clade of 22 genes. As before, multiple transcripts were found to represent the same gene. The heat map was visualized by Treeview. When computationally taxing, bioinformatics work was performed on a computational cluster operated by the Stanford Genetics Bioinformatics Service Center.

Cloning of podophyllotoxin biosynthetic genes and candidate genes

Phusion High-Fidelity DNA Polymerase (Thermo Scientific) was used for all PCR amplification steps according to the manufacturer's instructions. All other enzymes used for cloning were purchased from New England Biolabs. Oligonucleotide primers were purchased from Integrated DNA Technologies. DNA excised from agarose gels was purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research). *E. coli* TOP10 cells (Invitrogen) were used for plasmid isolation prior to transformation into other heterologous hosts. Plasmid DNA was isolated from *E. coli* cultures using the QIAprep Spin Miniprep Kit (Qiagen). For a list of primers used for cloning, see Table S2.

For *N. benthamiana* transient expression, all gene sequences were amplified from *P. hexandrum* cDNA template. Purified amplicons were inserted into pEAQ-HT (35) (Kan^R) plasmid digested with AgeI and XhoI in an isothermal DNA assembly reaction, as described by Gibson et al (36).

For *N. benthamiana* transient expression of multiple genes from the same *Agrobacterium* strain, a multigene construct was created using Golden Gate assembly. A Golden Gate dedicated pEAQ-HT plasmid (pEAQ-HT-GG) was constructed by PCR amplification and Gibson assembly to remove the region containing promoter, 5' UTR, multi-cloning site, 3' UTR and terminator sequences, and to insert two XbaI restriction sites linked to two distinct recognition sites separated by a linker sequence. Gene sequences were amplified from pEAQ-HT vectors carrying the gene of interest starting from promoter and ending with terminator and flanked with XbaI restriction sites linked with distinct recognition sites. Purified amplicons were inserted into pEAQ-HT-GG by Golden Gate assembly as described by Engler et al. (37) to construct pEAQ-HT-GG:*DIR-PLR-SDH* and pEAQ-HT-GG:*CYP719A23-OMT3* (Figure S29).

For the expression of CYPs in *S. cerevisiae*, the sequences were amplified from cloned pEAQ-HT vectors carrying the *CYP* sequence of interest and the purified amplicons were individually inserted into pYeDP60 (Amp^R) plasmid digested with BamHI and XhoI in a Gibson assembly reaction.

For the expression of OMT3 in *E. coli*, the sequence was amplified from pEAQ-HT:*OMT3*. The purified amplicon was inserted into pET28a (Kan^R) plasmid digested with NdeI and XhoI by Gibson assembly. The final construct was designed to express OMT3 with an N-terminal 6xHis tag.

For the expression of OMT1 and 2-ODD in *E. coli*, the sequences were amplified from their respective pEAQ-HT vectors. The purified amplicons were individually inserted into pET24b (Kan^R) plasmid digested with NdeI and XhoI by Gibson assembly. The final constructs were designed to express the enzymes with a C-terminal 6xHis tag.

The assembly reaction mixtures were used directly to transform *E. coli* TOP10 cells and the isolated plasmids harboring the desired insert were confirmed by Sanger DNA sequencing performed by Elim Biopharm.

Transient expression and candidate gene screening in N. benthamiana

pEAQ-HT constructs were transformed into *Agrobacterium tumafaciens* (GV3101) using the freeze-thaw method. Transformants were grown on LB plates containing 50 µg/mL kanamycin and 30 µg/mL gentamicin at 30°C. Cells were removed with a 1 mL pipette tip and resuspended in 1 mL of LB medium, centrifuged at 5000 g for 5 min and supernatant removed. Pellet was resuspended in 10 mM MES buffer, pH = 5.6, 10 mM MgCl₂, 150 µM acetosyringone and incubated at room temperature for 1 h. *Agrobacterium* suspensions (OD₆₀₀ = 0.3 for each strain) were infiltrated into the underside of *N*. *benthamiana* leaves with a needleless 1 mL syringe. Plants were grown 4-5 weeks under a 16 h light cycle prior to infiltration. Leaves were harvested 5 days post-infiltration, flash frozen and stored at -80°C for later processing. Biological replicates consisted of several leaves all from different tobacco plants. Infiltrated leaf areas typically showed some signs of chlorosis or yellowing; leaves expressing GFP as a control also showed a similar phenotype.

For substrate infiltration studies, generally, 100 μ M of (–)-matairesinol in 0.1% DMSO in water was infiltrated into the underside of previously *Agrobacterium*-infiltrated leaves with a needleless 1 mL syringe 4 days post-infiltration. Substrate infiltration was no more difficult than *Agrobacterium* infiltration. Leaves were harvested 1 day later, flash frozen and stored at -80°C for later processing.

Pathway reconstitution in N. benthamiana

Full reconstitution of the (–)-deoxypodophyllotoxin pathway starting from (+)-pinoresinol in *N. benthamiana* was achieved by transient expression of DIR (not required), PLR, SDH, CYP719A23, OMT3, CYP71CU1, OMT1 and 2-ODD (fig. S25) following the transient expression procedure above using an $OD_{600} = 0.3$ for each strain. Transient expression of GFP ($OD_{600} =$ total OD_{600} for all pathway genes) was used as a control. For substrate infiltration, 100 μ M (+)-pinoresinol (~10 μ g per leaf) in 0.1% DMSO in water was infiltrated into the underside of previously *Agrobacterium*-infiltrated leaves with a needleless 1 mL syringe 4 days post-infiltration. Leaves were harvested 1 day later, flash frozen and stored at -80°C for later processing.

Full reconstitution of the (–)-epipodophyllotoxin (fig. S26) and (–)-4'-desmethyl-epipodophyllotoxin pathway (Fig. 3B) starting from (+)-pinoresinol in N. *benthamiana* was achieved by the additional transient expression of CYP82D61, and CYP82D61 and CYP71BE54, respectively.

Standard curves for (–)-deoxypodophyllotoxin and (–)-epipodophyllotoxin based on UV absorption at 280 nm, and (–)-4'-desmethyl-epipodophyllotoxin based on ion abundance were constructed and used to quantify amounts produced in N. *benthamiana*.

Metabolite extraction

Frozen leaf tissues were lyophilized to dryness. The samples were homogenized on a ball mill (Retsch MM 400) using 5 mm diameter stainless steel beads, shaking at 25 Hz for 2 min. 20 μ L for tobacco or 250 μ L for *P. hexandrum* of an 80:20 MeOH/H₂O solution was added per milligram of dry tissue, and the mixture was heated at 65°C for 10 min and filtered through 0.45 μ m PTFE filters before liquid chromatography-mass spectrometry (LC-MS) analysis.

For initial studies in the reconstitution of the (–)-pluviatolide pathway in tobacco, β -glucosidase treatment was performed before metabolite analysis. The leaf extracts from above were briefly spun in a microcentrifuge and 200 µL of supernatant was removed and dried under a stream of nitrogen. Residues were resuspended with 200 µL of 0.1 M sodium acetate, pH = 5.0 with 2 mg/mL of β -glucosidase from almonds (Sigma-Aldrich) and incubated at 37°C for 16 h. The solutions were extracted with 2 volumes of ethyl acetate and the organic phase was dried under a stream of nitrogen. 200 µL of an 80:20 MeOH/H₂O

solution was added to the residue, and the mixture was heated at 65°C for 10 min and analyzed by LC-MS analysis.

LC-MS analysis of metabolite extracts

Metabolomics samples were analyzed by reversed-phase chromatography on an Agilent 1260 HPLC, using a 5 μ m, 2 × 100 mm Gemini NX-C18 column (Phenomenex). Water with 0.05% acetic acid (A) and ACN with 0.05% acetic acid (B) [negative ion mode] or water with 0.1% FA (A) and ACN with 0.1% FA (B) [positive ion mode] were used as the mobile phase components at a flow rate of 0.4 mL/min with the following 41 min gradient: 0-30 min, 3-50% B; 30-31 min, 50-97% B; 31-36 min, 97% B; 36-37 min, 97-3% B; 37-41 min, 3% B. A coupled Agilent 6520 Accurate-Mass Q-TOF ESI mass spectrometer was used to collect MS data in either positive ion mode or negative ion mode (parameters: mass range: 100-1700 m/z; drying gas: 300°C, 1 L/min; nebulizer: 25 psig; capillary: 3500 V; fragmentor: 150 V; skimmer: 65 V; octupole 1 RF Vpp: 750 V; 1000 ms per spectrum). The first minute of each run was discarded to avoid salt contamination of the MS apparatus. For tandem mass spectrometry (MS/MS) analysis, 5, 10, 20 and 40 V collision energies were used with an m/z window of 1.3 centered on the m/z analyzed.

Metabolomics and MS data analysis

HRMS data were analyzed using MassHunter Qualitative Analysis software (Agilent) and XCMS (Scripps Center for Metabolomics) (38). For untargeted metabolomics, MassHunter (Agilent) data files were converted to mzXML format using trapper (Seattle Proteome Center). Grouped mzXML files were preprocessed and analyzed by XCMS, using the following sample R script:

```
library(xcms)
xset<-xcmsSet()
xset<-group(xset)
xset2<-retcor(xset,family="s",plottype="m")
xset2<-group(xset2)
xset3<-retcor(xset2,family="s",plottype="m")
xset3<-group(xset3)
xset4<-retcor(xset3,family="s",plottype="m")
xset4<-group(xset4,bw=10)
xset5<-fillPeaks(xset4)
reporttab<-diffreport(xset5,"cyp719a23+omt3","cyp719a23","cyp719a23+omt3 vs cyp719a23",2000)</pre>
```

The resulting report contains a mass peak list with m/z values, peak intensity fold change, statistical significance (p value, two-tailed unequal variance Student's t-test), retention times and extracted peak intensities. The list was filtered using cutoff criteria (generally, p value less than 0.05, t value greater than 0, fold change greater than 5, retention time less than 1800 s and average peak intensity greater than 5×10^4 in the experimental sample group [in the above case, cyp719a23+omt3]) to yield a narrow list for further analysis. A summary of XCMS results can be found in Figure S30.

Generally, ion abundances were determined by manual integration of EICs using the MassHunter Qualitative Analysis software. For Fig. S4, they were derived from XCMS analysis.

Heterologous expression and purification of OMT3, OMT1 and 2-ODD

pET28a:*OMT3* was transformed into BL21 (DE3) *E. coli*. Transformants were grown on LB plates containing 50 µg/mL kanamycin. A single colony was inoculated into 40 mL of LB medium containing 50 µg/mL kanamycin and grown for 16 h at 30°C. The overnight culture was inoculated into 2 L of LB medium containing 50 µg/mL kanamycin and grown at 37°C until $OD_{600} = 0.6$, at which point the culture

was cooled to 25°C, and induced with 500 μ M IPTG. The culture was further incubated at 25°C for 6 h, cooled in ice water and centrifuged at 10,800 g for 10 min at 4°C. The supernatant was discarded and the pellet was resuspended in 40 mL of lysis buffer (50 mM sodium phosphate, pH = 8.0 and 300 mM NaCl) containing 10 mM imidazole and 20 mM of β -mercaptoethanol. The cell slurry was passed through a French press (Thermo) three times and centrifuged at 38,700 g for 30 min at 4°C. All subsequent manipulations were performed at 4°C. The supernatant was incubated with 1 mL of Ni-NTA agarose resin (Qiagen) pre-equilibrated with lysis buffer containing 10 mM imidazole for 1 h. The slurry was run through a fritted column and protein was eluted with lysis buffer containing increasing imidazole concentrations up to 400 mM. Fractions containing purified protein as determined by SDS-PAGE gel were combined, concentrated and buffer exchanged into 50 mM sodium phosphate, pH = 7.5, 100 mM NaCl, 2 mM DTT and 10% glycerol using Amicon Ultra-15 centrifugal filter units, 10kDa cutoff (Millipore). Total protein content was estimated by measuring UV absorbance at 280 nm on a NanoDrop 1000 spectrophotometer. Purified protein was flash-frozen as pellets in liquid nitrogen and kept at -80°C for long term storage.

The above protocol was also followed for the expression and purification of OMT1 from BL21 (DE3) *E. coli* harboring pET24b:*OMT1*.

The above protocol was also followed for the expression and purification of 2-ODD from BL21 (DE3) *E. coli* harboring pET24b:2-*ODD* except for the following changes: the 2 L culture at $OD_{600} = 0.6$ was cooled to 16°C and induced with 100 μ M IPTG. The culture was further incubated at 16°C for 24 h and cooled in ice water before proceeding with purification.

Expression of cytochromes P450 and microsome isolation from S. cerevesiae WAT11

The pYeDP60 constructs were individually transformed into *Saccharomyces cerevisiae* WAT11 (carrying a chromosomal copy of the *A. thaliana* ATR1 cytochrome P450 reductase gene) using the lithium acetate method (39). Yeast growth, induction and microsome preparation were performed according to Pompon et al (40). Microsomes enriched with P450 were isolated in 50 mM Tris-Cl, pH = 7.4, 20% glycerol, 1 mM EDTA, flash-frozen as pellets in liquid nitrogen and kept at -80° C for long term storage. Total protein content was estimated by measuring UV absorbance at 280 nm on a NanoDrop 1000 spectrophotometer.

In vitro characterization of recombinant OMT3

For steady state enzyme kinetics, enzyme assays (140 µl reaction volume) contained 10 µg/mL of purified OMT3, 1 mM SAM, (-)-pluviatolide at various concentrations (0.5, 1, 1.5, 2, 3, 5, 10 and 20 µM from a 100% DMSO stock; final concentration of DMSO was kept constant at 5%) and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4). Reactions were initiated by the addition of enzyme and incubated at 22°C. Assays lacking enzyme or SAM served as negative controls. 20 µL aliquots from the reaction were quenched by the addition of 1 volume of acetonitrile with 0.1 % TFA at various time points (0.5, 1, 1.5, 2, 3, 4, 6, 8 and 16 min; time points were chosen based on the starting substrate concentration), and clarified by centrifugation for 10 min at 17,000 g. Quenched samples were analyzed by reversed-phase chromatography on an Agilent 1100 HPLC with an Agilent 1260 diode array detector and a 2.7 μ m, 3 \times 50 mm Poroshell 120 EC-C18 column (Agilent). Water with 0.1% TFA (A) and ACN with 0.1% TFA (B) were used as the mobile phase components at a flow rate of 0.6 mL/min with the following gradient: 0-2 min, 3-20% B; 2-8 min, 20-60% B; 8-8.5 min, 60-97% B; 8.5-10 min, 97% B; 10-11 min, 97-3% B; 11-15 min, 3% B. The absorption at 280 nm was monitored to detect (-)-pluviatolide and (-)-5'-desmethoxyvatein, and the peak area response observed was analyzed by Chemstation software (Agilent). A standard curve for (-)-pluviatolide was made in order to determine its extinction coefficient. Because the extinction coefficient for (-)-5'-desmethoxy-vatein was estimated to be similar to (-)-pluviatolide due to a similar change in absorbance during kinetic assays, kinetic rates were determined by measuring the rate

of (–)-pluviatolide consumption. Experiments were repeated in triplicate and the data points were fit to a linear line using linear regression with GraphPad Prism 6. Only the linear portion of the data, dependent on initial substrate concentration, was used. The initial velocity of the reaction was determined from the slope of the fitted line. The kinetic constants for OMT3 and (–)-pluviatolide, apparent K_m and v_{max} , were determined by non-linear regression.

For determining substrate specificity, (+)-pinoresinol (400 μ M), (-)-matairesinol (40 μ M) and (-)-arctigenin (40 μ M) were also tested as substrates under the same assay conditions. Reactions were quenched after 2 h.

In vitro assays of CYP71CU1, OMT1, 2-ODD and CYP71BE54

CYP71CU1-microsome assays contained 1 mg/mL of CYP71CU1-microsomes, 1 mM NADPH, 30 or 50 μ M of substrate and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4). Assays with microsomes from WAT11 harboring an empty vector or lacking NADPH served as negative controls. OMT1 enzyme assays contained 10 μ g/mL of purified OMT1, 1 mM SAM, 30 or 50 μ M of substrate and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4). Assay lacking SAM served as negative control. Enzyme assays with both CYP71CU1-microsomes and OMT1 contained 1 mg/mL of CYP71CU1-microsomes, 1 mM NADPH, 10 μ g/mL of purified OMT1, 1 mM SAM, 30 or 50 μ M of substrate and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4).

2-ODD enzyme assays contained 5 μ g/mL of purified 2-ODD, 10 mM 2-oxoglutarate, 10 mM ascorbic acid, 0.5 mM FeSO₄, 30 μ M of substrate and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4). Assays lacking enzyme or 2-oxoglutarate served as negative controls.

CYP71BE54-microsome assays contained 4 mg/mL of CYP71BE54-microsomes, 1 mM NADPH, 50 µM of substrate and 100 mM NaCl in sodium phosphate buffer (50 mM, pH 7.4). Assays with microsomes from WAT11 harboring an empty vector or lacking NADPH served as negative controls.

All substrates [(–)-matairesinol, (–)-arctigenin, (–)-pluviatolide, (–)-5'-desmethoxy-yatein, (–)-yatein, (–)-deoxypodophyllotoxin, and (–)-podophyllotoxin] were derived from a 100% DMSO stock; final concentration of DMSO in enzyme assays was kept constant at 5%. Total reaction volumes were 50 μ L. Reactions were initiated by the addition of enzyme and incubated at 30°C. After 2 h of incubation, reactions were quenched by the addition of 1 volume of acetonitrile with 0.1 % TFA and clarified by centrifugation for 10 min at 17,000 g. Quenched samples were either analyzed by HPLC as above for the *in vitro* characterization of OMT3 or by LC-MS as above for the analysis of plant metabolite extracts.

Chemicals

Commercially available chemicals

(+)-pinoresinol was purchased from ArboNova (Turku, Finland). (-)-podophyllotoxin was purchased from Sigma-Aldrich. NMR solvents were purchased from Cambridge Isotope Laboratories.

General procedures

Compounds were assayed for purity by LC-MS and ¹H NMR. ¹H NMR spectra were acquired at room temperature on a Varian 400 MHz spectrometer. Shifts are reported in parts per million downfield from tetramethylsilane and referenced to the residual solvent peak. All NMR spectra can be found in Figures S31-S38.

Isolation of (-)-matairesinol and (-)-arctigenin from Forsythia x intermedia

Leaves from *Forysthia x intermedia* 'Northern Sun' (Forestfarm, Williams, OR) were harvested, flash frozen and lyophilized (5.6 g). Leaves were crushed into powder form with mortar and pestle in liquid nitrogen and heated at 65°C for 45 min in 300 mL of methanol. The extract was filtered and dried under reduced pressure. The residue was resuspended with 100 mL of 0.1 M sodium acetate, pH = 5.0 containing 1 mg/mL of β -glucosidase from almonds (Sigma-Aldrich) and incubated at 37°C for 24 h. The solution was extracted 3 times with 1 volume of ethyl acetate and the organic phase was filtered and dried under reduced pressure. The residue was further purified by preparative HPLC using an Agilent 1260 Infinity preparative-scale HPLC system with an Agilent 1100 diode array detector and a TARGA C18 10 μ m 250 \times 20 mm column (Higgins Analytical). Water with 0.1% TFA (A) and acetonitrile with 0.1% TFA (B) were used as the mobile phase components at a flow rate of 36 mL/min with the following method: 0-5 min, 3-25% B; 5-20 min, 25-40% B; 20-22 min, 40% B; 22-23 min, 40-97% B; 23-25 min, 97% B; 25-26 min, 97-3% B. 84 mg of (–)-matairesinol and 94 mg of (–)-arctigenin were isolated.

(-)-matairesinol: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.40 – 2.64 (m, 4H), 2.87 (dd, J = 14.1, 6.9 Hz, 1H), 2.95 (dd, J = 14.1, 5.2 Hz, 1H), 3.80 (s, 3H), 3.81 (s, 3H), 3.88 (dd, J = 9.1, 7.3 Hz, 1H), 4.07 – 4.19 (m, 1H), 5.57 (s, 1H), 5.59 (s, 1H), 6.40 (d, J = 1.9 Hz, 1H), 6.50 (dd, J = 8.0, 1.9 Hz, 1H), 6.58 – 6.60 (m, 1H), 6.61 (s, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H); UV/Vis: Relative absorbance maximum at $\lambda = 282$ nm; HRMS (m/z): [M + H]⁺ calcd. for C₂₀H₂₃O₆⁺, 359.1489; found, 359.1490; [α]_D = -32.3 (c = 0.62, acetone) {lit (41). [α]_D = -44 (c = 0.62, acetone)}.

(-)-arctigenin: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.40 – 2.68 (m, 4H), 2.89 (dd, *J* = 14.1, 6.6 Hz, 1H), 2.94 (dd, *J* = 14.1, 5.3 Hz, 3H), 3.80 (s, 6H), 3.84 (s, 3H), 3.88 (dd, *J* = 9.6, 1.8 Hz, 1H), 4.06 – 4.17 (m, 1H), 5.60 (s, 1H), 6.45 (d, *J* = 2.1 Hz, 1H), 6.54 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.58 – 6.64 (m, 2H), 6.74 (d, *J* = 8.1 Hz, 1H), 6.81 (d, *J* = 7.9 Hz, 1H); UV/Vis: Relative absorbance maximum at λ = 280 nm ; HRMS (m/z): [M + H]⁺ calcd. for C₂₁H₂₅O₆⁺, 373.1646; found, 373.1641.

Synthesis of (-)-pluviatolide using S. cerevisiae WAT11 cells expressing CYP719A23

Following Pompon et al. ⁽⁴⁰⁾ and Giddings et al. ⁽⁴²⁾, a 1 L culture of *S. cerevisiae* WAT11 harboring pYeDP60:*CYP719A23* was grown and induced, and 6 h after induction, the culture was supplemented with (–)-matairesinol at a final concentration of 100 μ M from a 100 mM stock in DMSO. 24 h after induction, the culture was centrifuged at 10,800 g for 15 min at 4°C. The supernatant was extracted 3 times with 1 volume of ethyl acetate and the organic phase was filtered and concentrated under reduced pressure. The desired product was further purified from the crude mixture by silica gel flash column chromatography with ethyl acetate:hexanes (1:1) and preparative HPLC using the same method used for (–)-matairesinol and (–)-arctigenin isolation. Compound was assayed for purity by LC-MS and ¹H NMR. 5 mg of (–)-pluviatolide was isolated.

(-)-pluviatolide: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.39 – 2.65 (m, 4H), 2.88 (dd, *J* = 14.1, 6.8 Hz, 1H), 2.95 (dd, *J* = 14.0, 5.0 Hz, 1H), 3.84 (s, 3H), 3.85 – 3.91 (m, 1H), 4.06 – 4.15 (m, 1H), 5.92 (s, 2H), 6.41 – 6.48 (m, 2H), 6.58 – 6.71 (m, 3H), 6.83 (d, *J* = 8.0 Hz, 1H); UV/Vis: Relative absorbance maximum at λ = 284 nm; HRMS (m/z): [M + H]⁺ calcd. for C₂₀H₂₁O₆⁺, 357.1333; found, 357.1326.

Isolation of OMT3 enzymatic product [(-)-5'-desmethoxy-yatein]

A scaled-up enzyme reaction was utilized to generate sufficient amounts of product for ¹H NMR analysis. The reaction mixture, containing 50 mM sodium phosphate (pH=7.4), 100 mM NaCl, 280 μ M pluviatolide, 1 mM SAM and 50 μ g/mL of OMT3, was incubated at room temperature for 3 h. The reaction was extracted 3 times with 1 volume of ethyl acetate and the organic phase was dried with sodium sulfate, filtered and dried under reduced pressure. The residue was further purified by preparative

HPLC using the same method used for (–)-matairesinol and (–)-arctigenin isolation. Compound was assayed for purity by LC-MS and ¹H NMR. 4.4 mg of (–)-5'-desmethoxy-yatein was isolated.

(-)-5'-desmethoxy-yatein: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.39 – 2.65 (m, 4H), 2.89 (dd, *J* = 14.1, 7.0 Hz, 1H), 2.97 (dd, *J* = 14.1, 5.1 Hz, 1H), 3.83 (s, 3H), 3.86 (s, 3H), 3.87 – 3.89 (m, 1H), 4.12 (dd, J = 9.1, 6.7 Hz, 1H), 5.92 (d, J = 1.5 Hz, 1H), 5.93 (d, J = 1.4 Hz, 1H), 6.42 – 6.48 (m, 2H), 6.63 – 6.71 (m, 3H), 6.76 – 6.81 (m, 1H); Relative absorbance maximum at λ = 284 nm ; HRMS (m/z): [M + H]⁺ calcd. for C₂₁H₂₃O₆⁺, 371.1489; found, 371.1480.

Isolation of (-)-deoxypodophyllotoxin and (-)-yatein from Anthriscus sylvestris

Shoots and rhizomes from *A. sylvestris* (Digging Dog Nursery, Albion, CA) were harvested, washed to remove soil, and lyophilized (~20 g dry weight). Dried plant material was soaked in ~10 mL of methanol per g of tissue for 16 h and then sonicated for 30 min. Methanolic extracts were removed and an additional 10 mL of methanol per g of tissue was added, sonicated for 30 min and repeated once more. The combined methanolic extracts were filtered and dried under reduced pressure. The residue was partially purified by preparative HPLC as above using the following method: 0-30 min, 3-50% B; 30-31 min, 50-97% B; 31-35 min, 97% B; 35-36 min, 97-3% B. The crude mixture was further purified by silica gel flash column chromatography with a mobile phase of ethyl acetate:hexanes (3:7 \rightarrow 1:1). The remaining crude product was separated once more by preparative HPLC yielding 29.4 mg of (–)-deoxypodophyllotoxin and 3.5 mg of (–)-yatein. Compounds were assayed for purity by LC-MS and ¹H NMR.

(-)-yatein: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.41 – 2.66 (m, 4H), 2.83 – 2.97 (m, 2H), 3.83 (s, 9H), 3.88 (dd, J = 9.2, 7.5 Hz, 1H), 4.18 (dd, J = 9.1, 7.2 Hz, 1H), 5.93 (d, J = 1.5 Hz, 1H), 5.94 (d, J = 1.4 Hz, 1H), 6.35 (s, 2H), 6.43 – 6.50 (m, 2H), 6.69 (d, J = 7.7 Hz, 1H); Relative absorbance maximum at $\lambda = 286$ nm ; HRMS (m/z): [M + H]⁺ calcd. for C₂₂H₂₅O₇⁺, 401.1595; found, 401.1586; [α]_D = -16.6 (c = 0.32, chloroform) {lit (43). [α]_D = -28.4 (c = 0.32, chloroform)}.

(-)-deoxypodophyllotoxin: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.69 – 2.82 (m, 3H), 3.01 – 3.12 (m, 1H), 3.73 (s, 6H), 3.79 (s, 3H), 3.85 – 3.97 (m, 1H), 4.41 – 4.51 (m, 1H), 4.58 (d, *J* = 3.2 Hz, 1H), 5.92 (d, *J* = 1.3 Hz, 1H), 5.94 (d, *J* = 1.4 Hz, 2H), 6.33 (s, 2H), 6.50 (s, 1H), 6.66 (s, 1H); Relative absorbance maximum at λ = 292 nm; HRMS (m/z): [M + H]⁺ calcd. for C₂₂H₂₃O₇⁺, 399.1438; found, 399.1435; [α]_D = -81.8 (c = 0.63, methanol) {lit (44). [α]_D = -66.6 (c = 0.63, methanol)}.

Synthesis of (–)-epipodophyllotoxin and (–)-4'-desmethyl-epipodophyllotoxin

Following Kamal et al. (45), (–)-epipodophyllotoxin and (–)-4'-desmethyl-epipodophyllotoxin were synthesized in two separate reactions starting with 10 mg (–)-podophyllotoxin. Crude reactions were purified by silica gel flash column chromatography with a mobile phase of ethyl acetate:hexanes (3:2), and further purified by preparative HPLC using the same method used for (–)-yatein and (–)-deoxypodophyllotoxin isolation, yielding 7.9 mg of (–)-epipodophyllotoxin and 1.3 mg of (–)-4'-desmethyl-epipodophyllotoxin. Compounds were assayed for purity by LC-MS and ¹H NMR.

(-)-epipodophyllotoxin: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.76 – 2.90 (m, 1H), 3.28 (dd, *J* = 14.1, 5.2 Hz, 1H), 3.73 (s, 6H), 3.79 (s, 3H), 4.31 – 4.43 (m, 2H), 4.61 (d, *J* = 5.2 Hz, 1H), 4.87 (d, *J* = 3.4 Hz, 1H), 5.97 (d, *J* = 1.3 Hz, 1H), 6.00 (d, *J* = 1.3 Hz, 1H), 6.27 (s, 2H), 6.54 (s, 1H), 6.88 (s, 1H); Relative absorbance maximum at λ = 288 nm; HRMS (m/z): [M + H]⁺ calcd. for C₂₂H₂₃O₈⁺, 415.1387; found, 415.1388.

(-)-4'-desmethyl-epipodophyllotoxin: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.73 – 2.86 (m, 1H), 3.25 (dd, J = 14.2, 5.1 Hz, 1H), 3.75 (s, 6H), 4.30 – 4.41 (m, 2H), 4.59 (d, J = 5.0 Hz, 1H), 4.82 – 4.87 (m,

1H), 5.38 (s, 1H), 5.95 (d, J = 1.7 Hz, 1H), 5.98 (d, J = 1.7 Hz, 4H), 6.27 (s, 2H), 6.53 (s, 1H), 6.85 (s, 1H); Relative absorbance maximum at $\lambda = 284$ nm; HRMS (m/z): $[M + H]^+$ calcd. for $C_{21}H_{21}O_8^+$, 401.1231; found, 401.1235.

Supplementary Figures

Fig. S1. Transient expression of early (-)-podophyllotoxin biosynthetic genes in N. benthamiana.

Transient expression of combinations of PLR, SDH and CYP719A23 in *N. benthamiana* leaves produces (–)-matairesinol (m/z = 357) and (–)-pluviatolide (m/z = 355), which are not normally observed in tobacco leaves (GFP only control). Data bars indicate the mean ion abundance [(–)-mode] ± 1 standard deviation, based on three biological replicates. (+)-pinoresinol (m/z = 357) and (–)-secoisolariciresinol (m/z = 361, no authentic standard) are natively produced in *N. benthamiana* leaves. Metabolite extracts were treated with β -glucosidase before LC-MS analysis.

Fig. S2. (-)-Matairesinol infiltration enhances (-)-pluviatolide production in tobacco leaves expressing CYP719A23

(A) Infiltration of (–)-matairesinol (m/z = 357) into *N. benthamiana* leaves transiently expressing CYP719A23 alone drastically increases (–)-pluviatolide (m/z = 355) levels. No substrate infiltration and GFP only controls are shown for comparison. Data bars indicate the mean ion abundance $[(-)-mode] \pm 1$ standard deviation, based on three biological replicates. (B) Extracted ion chromatograms (EIC) of (–)-pluviatolide (m/z = 357) from the infiltration of (–)-matairesinol into *N. benthamiana* leaves transiently expressing CYP719A23 are shown and compared to GFP control and authentic standard [(+)-mode]; peaks observed at earlier labeled retention times (1 and arrows) are in-source fragments of (–)-pluviatolide glucosylated derivatives produced by endogenous tobacco enzymes. Only chromatograms from *in planta* experiments are to scale. (C) MS/MS (10 V) spectra of (–)-pluviatolide produced *in planta* (retention times, 1 and 2) compared to authentic standard [(+)-mode] (D) Table of MS/MS peak assignments and (E) putative ion structures.

Contig Cene Bets blasts hit as of March 2015 % Identity 14232 OMT2 norcoclaurine 6-O-methyltransferase [Podophyllum peltatum] 65 13451 OMT3 norcoclaurine 6-O-methyltransferase [Podophyllum peltatum] 65 13451 OMT1 caffeic acid O-3-methyltransferase [Podophyllum peltatum] 65 3089 CYP PREDICTED: cytochrome P450 CYP738A12 [Vitis vinifera] 66 8214 CYP PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 79 9 9 79 PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 79 9 9 787 CYP PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 73 9 9 787 CYP PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 73 9 4466 CYP PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 73 9 9 9 PAEDICTED: cytochrome P450 [Cytis isponica var. dissecta] 73 9 4466 CYP PREDICTED: cytochrome P450 TA14.lke [Nelumbo nucifera] 73 9 9		le'	å	v •ɔ			
14232 OMT2 norcoclaurine 6-0-methyltransferase [Podophyllum peltatum] 83 18546 OMT3 norcoclaurine 6-0-methyltransferase [Podophyllum peltatum] 65 13451 OMT4 caffeic acid 0-3-methyltransferase [Podophyllum peltatum] 65 13451 OMT7 prococlaurine 6-0-methyltransferase [Podophyllum peltatum] 65 13451 OMT4 prococlaurine 6-0-methyltransferase [Podophyllum peltatum] 66 13451 OMT7 prococlaurine 6-0-methyltransferase [Podophyllum peltatum] 66 13421 CVP PREDICTED: cytochrome P450 CYP736A12 [Vitis vinifera] 66 8083 OMT4 PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 66 13787 CVP PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 73 13787 CVP PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 63 1478 CVP PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 73 14266 CVP PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 73 15630 2-OD PREDICTED: cytochrome P450 TA14-like [Nelumbo nucifera] 73 <	leafe,	ear control of the co	len,	č Contig	Gene	Best blasty bit as of March 2015	% Identity
18846 OMT3 norcoclaurine 6 - O-methyltransferase [Podophyllum peltatum] 65 13451 OMT4 caffeic acid 0-3-methyltransferase [Pidophyllum peltatum] 65 1943 CVP PREDICTED: cytochrome P450 CYP736A12 [Vitis vinifera] 69 1944 CVP PREDICTED: cytochrome P450 T1A1-like [Nelumbo nucifera] 69 1945 6083 OMT4 PREDICTED: cytochrome P450 T3A1-like [Nelumbo nucifera] 79 1945 6083 OMT4 PREDICTED: cytochrome P450 S07 T1A1-like [Nelumbo nucifera] 79 1945 7377 CVP PREDICTED: cytochrome P450 S0A2-Like [Nelumbo nucifera] 63 1945 7377 CVP CYP81B57 [Sinopodophyllum hexandrum] 100 1945 747 PREDICTED: cytochrome P450 S0A2-Like [Nelumbo nucifera] 63 1945 7478 CVP CYP81B57 [Sinopodophyllum hexandrum] 100 1945 7406 CVP PREDICTED: cytochrome P450 [Coptis japonica var. dissecta] 73 1945 6090 2-ODD PREDICTED: cytochrome P450 [Coptis paponica var. dissecta] 73 1945 5400 CVP PREDICTED: cytochrome P450 [Coptis paponica var. dissecta]				14232	OMT2	norcoclaurine 6-0-methyltransferase [Podophyllum nettatum]	83
13451 OMT1 caffeic acid 0-3-methyltransferase [Pinus pinaster] 59 11943 CYP PREDICTED: cytochrome P450 CYP73AA12 [Vitis vinifera] 55 3089 CYP PREDICTED: cytochrome P450 CYP13AA12 [Vitis vinifera] 66 8214 CYP PREDICTED: cytochrome P450 T1A1-like [Nelumbo nucifera] 66 8214 CYP PREDICTED: cytochrome P450 T1A1-like [Nelumbo nucifera] 79 3787 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 79 3787 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 4466 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] <td< th=""><th></th><th></th><th></th><th>18546</th><th>OMT3</th><th>norcoclaurine 6-O-methyltransferase [Podophyllum petatum]</th><th>65</th></td<>				18546	OMT3	norcoclaurine 6-O-methyltransferase [Podophyllum petatum]	65
11943 CYP PREDICTED: cytochrome P450 CYP736A12 [Vitis vinifera] 55 3089 CYP PREDICTED: flavonoid 3:-monoxygenase-like [Nelumbo nucifera] 69 8214 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 68 6083 OMT4 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 79 3787 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 79 3787 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 2327 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 2327 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 2446 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5690 2-ODD PREDICTED: t-aminocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2446 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 2443 CYP PREDICTED: flavonoid 3:-monoxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP PREDICTED: flavonoid 3:-monoxygenase-like [Fragaria vesca subsp. vesca] 53 172938 CYP				13451	OMT1	caffeic acid O-3-methyltransferase [Pinus pinaster]	59
3089 CYP PREDICTED: flavonoid 3'-monooxygenase-like [Nelumbo nucifera] 69 8214 CYP PREDICTED: cytochrome P450 T1A1-like [Nelumbo nucifera] 79 9 6083 OMT4 PREDICTED: caffeic acid 3-O-methytransferase [Nelumbo nucifera] 79 9 7377 CYP PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 79 9 2327 CYP CYPEIDICTED: cytochrome P450 80A2-like [Nelumbo nucifera] 63 9 4478 CYP PREDICTED: cytochrome P450 80A2-like [Nelumbo nucifera] 63 9 4466 CYP PREDICTED: cytochrome P450 [Cottis isponica var. dissecta] 73 9 5690 2-ODD PREDICTED: t-aminocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: tytochrome P450 [T1A1-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: tytochrome P450 [T1A1-like [Regrana vesca subsp. vesca] 54 2002 CYP PREDICTED: thavonoid 3'-monooxygenase-like [Fragaria vesca subsp. vesca] 54 2002 CYP (YP181B56 [Sinopodophyllum hexandrum] 100 2002 CYP patative N-methylococlaurine 3-hydroxylase				11943	CYP	PREDICTED: cvtochrome P450 CYP736A12 [Vitis vinifera]	55
8214 CYP PREDICTED: cytochrome P450 71Å1-like [Nelumbo nucifera] 56 6083 OMT4 PREDICTED: caffeic acid 3-O-methyltransferase [Nelumbo nucifera] 79 3787 CYP PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 3787 CYP PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 3787 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 4178 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 4466 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5690 2-ODD PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5690 2-ODD PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5690 2-ODD PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 2456 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 2456 CYP PREDICTED: flavonoid 3'-monoxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP CYPB1B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3-hydroxylase [Podophyll				3089	CYP	PREDICTED: flavonoid 3'-monooxygenase-like [Nelumbo nucifera]	69
6083 OMT4 PREDICTED: caffeic acid 3-O-methyltransferase [Nelumbo nucifera] 79 78 787 CYP PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 79 79 PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 79 79 PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 70 79 PREDICTED: cytochrome P450 89A2.like [Nelumbo nucifera] 63 70 7466 CYP PREDICTED: cytochrome P450 89A2.like [Nelumbo nucifera] 63 70 7466 CYP PREDICTED: cytochrome P450 [Coptis japonica var. dissecta] 73 70 74 7466 CYP PREDICTED: cytochrome P450 [Nelumbo nucifera] 63 74 74 7466 CYP PREDICTED: cytochrome P450 [Nelumbo nucifera] 73 75 74 74 PREDICTED: flavonoid 3'-monoxygenase-like [Fragaria vesca subsp. vesca] 54 74 74 74 PREDICTED: flavonoid 3'-monoxygenase-like [Fragaria vesca subsp. vesca] 53 76 741 74 7443 CYP CYPE18423 53 77 779 779 79				8214	CYP	PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera]	56
3787 CYP PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera] 83 2327 CYP CYP81B57 [Sinopodophyllum hexandrum] 100 4178 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 5690 2-ODD PREDICTED: cytochrome P450 [Coptis japonica var. dissecta] 73 5690 2-ODD PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5423 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 5444 CYP PREDICTED: flavonoid 3'-monoxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP (CYP81565 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase [Podophyllum peltatum] 84 8051 DIR 225796 CYP719A23 17736 212985 CYP719A23 212985 CYP719A23 212985				6083	OMT4	PREDICTED: caffeic acid 3-0-methyltransferase [Nelumbo nucifera]	79
2327 CYP CYP81B57 [Sinopodophyllum hexandrum] 100 4178 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 4466 CYP cytochrome P450 [Coptis japonica var. dissecta] 73 5690 2-ODD PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: 1-aninocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 73 2402 CVP PREDICTED: 1-aninocyclopropane-1-carboxylase isozyme 2 [Morus notabilis] 53 172938 CYP putative N-methylcoclaurine 3-hydroxylase [Podophyllum petatum] 84 25599 SDH				3787	CYP	PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera]	83
4178 CYP PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera] 63 4466 CYP cytochrome P450 [Coptis japonica var. dissecta] 73 73 PREDICTED: cytochrome P450 [Coptis japonica var. dissecta] 73 74 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 63 74 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 75 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 76 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 77 PREDICTED: cytochrome P450 71A23 70 7002 CYP PREDICTED: cytochrome P450 71A23 73 77 PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 7002 CYP Pytocha23 74 777				2327	CYP	CYP81B57 [Sinopodophyllum hexandrum]	100
4466 CYP cytochrome P450 [Coptis japonica var. dissecta] 73 5690 2-ODD PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 63 5422 CYP PREDICTED: cytochrome P450 714-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: diavonoid 3'-monooxygenase-like [Fragaria vesca subsp. vesca] 54 2002 CYP CYP81B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 2002 CYP (S)-N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum] 84 2003 CYP719A23 putative N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum] 84 2004 CYP719A23 212985 CYP719A23 212985 2005 CYP719A23 212985 CYP719A23 212985 2003 212985 CYP719A23 212985 212985 2003 212985 CYP719A23 21288 21288 2004 212985 CYP19A23 21288 21288 2005 CYP19A23 33318 CYP719A23 2005 SDH <th></th> <th></th> <th></th> <th>4178</th> <th>CYP</th> <th>PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera]</th> <th>63</th>				4178	CYP	PREDICTED: cytochrome P450 89A2-like [Nelumbo nucifera]	63
5690 2-ODD PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera] 63 5422 CVP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 2443 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 54 2443 CYP PREDICTED: flavonoid 3'-monoxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP CYP81B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 9 0 225796 CYP719A23 9 102408 CYP719A23 26599 SDH 212985 CYP719A23 26599 SDH 112148 SDH 31365 CYP719A23 121288 SDH 38318 CYP719A23 122826 SDH 38318 CYP719A23				4466	CYP	cytochrome P450 [Coptis japonica var. dissecta]	73
5422 CYP PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera] 73 2456 CYP PREDICTED: flavonoid 3'-monooxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP CYP81B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 172938 CYP putative N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum] 84 25796 CYP719A23 102408 CYP719A23 102408 CYP719A23 26599 SDH 212985 CYP719A23 140193 PLR 1140193 PLR 12248 SDH 122826 SDH 38318 CYP719A23 14524 SDH 12826 SDH 145245 CYP719A23 145248				5690	2-ODD	PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase homolog 4-like [Nelumbo nucifera]	63
2456 CYP PREDICTED: flavonoid 3'-monooxygenase-like [Fragaria vesca subsp. vesca] 54 2443 CYP CYP81B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 201 202 CYP (S)-N-methylcoclaurine 3'-hydroxylase [Podophyllum petatum] 84 201 225796 CYP719A23 102408 CYP719A23 202 202 CYP Sinopodophyllum hexandrum] 84 203 102408 CYP719A23 84 204 212985 CYP719A23 54 20599 SDH 212985 CYP719A23 205 212985 CYP719A23 54 205 212985 CYP719A23 55 205 140193 PLR 53 205 140193 PLR 54 205 140193 PLR 53 205 140193 PLR 53 205 140193 PLR 54 205 140193 140193 140193 205 14				5422	CYP	PREDICTED: cytochrome P450 71A1-like [Nelumbo nucifera]	73
2443 CYP CYP81B56 [Sinopodophyllum hexandrum] 100 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 putative N-methylcoclaurine 3'-hydroxylase [Podophyllum peltatum] 84 2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase [Podophyllum peltatum] 84 2003 CYP719A23 225796 CYP719A23 84 2004 CYP719A23 102408 CYP719A23 84 2005 CYP719A23 26599 SDH 9001 PLR 2005 CYP719A23 140193 PLR 140193 PLR 2005 CYP719A23 34018 CYP719A23 12248 SDH 2005 SDH 12248 SDH 12248 12248 SDH 2004 333186 CYP719A23 34018 CYP719A23 14526 SDH 14526 SDH 14526 SDH 14526 SDH 14527 CYR714A23 14527 CYR714A23 14527 14527 CYR714A23 14528 14527 14527 14527 14527 14527 14527 14527 145				2456	CYP	PREDICTED: flavonoid 3'-monooxygenase-like [Fragaria vesca subsp. vesca]	54
2002 CYP (S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis] 53 172938 CYP putative N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum] 84 225796 CYP719A23 102408 CYP719A23 84 102408 CYP719A23 102408 CYP719A23 84 26599 SDH 212985 CYP719A23 84 140193 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12248 SDH 12248 SDH 12248 SDH 12826 SDH 12826 SDH 12826 SDH 12826 SDH 12826 SDH				2443	CYP	CYP81B56 [Sinopodophyllum hexandrum]	100
172938 CYP putative N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum] 84 225796 CYP719A23 225796 CYP719A23 102408 CYP719A23 102408 CYP719A23 26599 SDH 26599 SDH 212985 CYP719A23 6901 PLR 140193 PLR 12248 SDH 12248 SDH 33316 CYP719A23 33318 CYP719A23 12826 SDH 12248 SDH 12248 SDH 12248 SDH 12248 SDH 12248 SDH 12248 SDH 12247 T2248 SDH 12248 12248 SDH 12248 SDH 12247 T2248 SDH 12826 12826 SDH 12826 SDH 12826 SDH 12826 SDH 145247 CVB719A23 145247 CVB719A23				2002	CYP	(S)-N-methylcoclaurine 3'-hydroxylase isozyme 2 [Morus notabilis]	53
8051 DR 225796 CYP719A23 102408 CYP719A23 17736 CYP719A23 26599 SDH 212985 CYP719A23 6901 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12826 SDH 12826 SDH				172938	CYP	putative N-methylcoclaurine 3-hydroxylase [Podophyllum peltatum]	84
225796 CYP719A23 102408 CYP719A23 17736 CYP719A23 26599 SDH 212985 CYP719A23 6901 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12827 SDH				8051	DIR		
102408 CYP719A23 17736 CYP719A23 26599 SDH 212985 CYP719A23 6901 PLR 12248 SDH 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12826 SDH				225796	CYP719A23		
17/736 CYP/19A23 26599 SDH 212985 CYP719A23 6901 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12826 SDH				102408	CYP719A23		
26599 SDH 212985 CYP719A23 6901 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12826 SDH 145247 CYP714A23				1//36	CYP/19A23		
212985 CYP/19A23 6901 PLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 12826 SDH				26599	SDH		
0907 FLR 140193 PLR 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 14527 CYP714A23				212985	CYP719A23		
140193 FLK 12248 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 145347 CYP714A23				0901			
1/2246 SDH 31365 CYP719A23 34018 CYP719A23 38318 CYP719A23 12826 SDH 145347 CYP714A23				12249			
34018 CYP719A23 38318 CYP719A23 12826 SDH 145347 CYP714A23				21265	CVP710A22		
38318 CYP719A23 12826 SDH 145347 CYP710A23				3/018	CVP710423		
12826 SDH 145347 CVB740.32				38318	CVP719A23		
14247_CVP710A22				12826	SDH		
140347 617719423				145347	CYP719A23		
193171 CYP719A23				193171	CYP719A23		
	_						
0 10 60 EDVM	0		60				

Fig. S3. Candidate genes selected for initial screening from the Medicinal Plants Consortium P. hexandrum transcriptome.

Candidates (grey and red) were chosen based on similar expression profiles to known (–)-podophyllotoxin biosynthetic genes (black), similarity to known enzymes involved in plant secondary metabolism based on best blastx hit, and percent identity and availability of full coding sequences. In red are (–)-podophyllotoxin biosynthetic genes that were discovered in this report. Multiple contigs were found to represent the same gene for known pathway enzymes. Contigs labeled *CYP* are distinct. Heat map shows FPKM (fragments per kilobase of transcript per million mapped reads) levels of transcripts.

Fig. S4. Screening of OMT enzyme candidates in *N. benthamiana* by co-expression with CYP719A23 and (–)-matairesinol infiltration.

Tobacco leaves expressing CYP719A23 individually with OMT candidates were infiltrated with (–)matairesinol. Average LC-MS [(–)-mode] ion abundance \pm one S.D. from three biological replicates of (–)-matairesinol and reaction products, (–)-pluviatolide and (–)-5'-desmethoxy-yatein are shown.

Fig. S5. *N. benthamiana* transient expression of CYP719A23 and OMT3 and (–)-matairesinol infiltration produces (–)-5'-desmethoxy-yatein.

(A) Aligned EICs of (-)-5'-desmethoxy-yatein [m/z = 371, (+)-mode] from the transient expression of CYP719A23 and OMT3, compared to CYP719A23 alone, GFP alone and an authentic standard. Only chromatograms from *in planta* experiments are to scale. (B) MS/MS (10 V) spectra of (-)-5'-desmethoxy-yatein produced *in planta* compared to authentic standard. (C) Table of MS/MS peak assignments and (D) putative ion structures.

Fig. S6. *N. benthamiana* transient expression of CYP719A23 and OMT3 or OMT3 alone and (–)-matairesinol infiltration produces doubly methylated (–)-matairesinol.

(A) Proposed reactions occurring *in planta* from the expression of OMT3 (B) Aligned EICs of the product [m/z = 387, (+)-mode] from the transient expression of CYP719A23 and OMT3, compared to expression of OMT3 alone and GFP alone, and *in vitro* assay with purified OMT3 from *E. coli*, SAM and (-)-matairesinol. Only chromatograms from *in planta* expression of CYP719A23 + OMT3 and GFP alone are to scale (approximately 100x magnified with respect to chromatogram from *in planta* expression of OMT3). (C) MS/MS (10 V) spectra of the product produced *in planta* compared to *in vitro* product formed by incubation of purified OMT3 from *E. coli*, SAM and (-)-matairesinol. (D) Table of MS/MS peak assignments and (E) putative ion structures.

Fig. S7. In vitro characterization of (-)-pluviatolide O-methyltransferase (OMT3).

(A) Michaelis-Menten kinetic parameters were derived from initial rates of (–)-pluviatolide consumption by HPLC-DAD (280 nm) analysis with heterologously expressed and purified OMT3 from *E. coli*. Error bars represent the standard deviation from three independent assays. (B) HPLC-DAD (280 nm) profile of an *in vitro* reaction.

Fig. S8. Gene expression profiling of a *P. hexandrum* leaf after wounding.

qRT-PCR gene expression analysis of *OMT3* and other known podophyllotoxin biosynthetic genes after *P. hexandrum* leaf wounding (biological replicate distinct from sample used in Figure 3A). Relative expression levels were determined with respect to 0 h time point (before wounding). Data show average values (n = 3 technical replicates) \pm one S.D.

Fig. S9. Metabolite profiling of *P. hexandrum* leaves after wounding.

P. hexandrum leaf wounding induces changes in lignan levels over time. Ion abundances [(+)-mode] are shown for triplicate samples from three plants for **(A)** (–)-yatein (m/z = 401) and **(B)** (–)-deoxypodophyllotoxin (m/z = 399). Plant 1, which showed the strongest metabolite response, was used for qRT-PCR analysis (results in Figure 3A) and RNA Sequencing.

rank	Gene Name	0h-1	0h-2	0h.3	3h-1	3h-2	3h-3	9h-1	9h-2	9h-3	12h-1	12h-2	12h-3	p-value	r ²	MEDIAN>500	Tested
0	Phex2312 DIR 1															Y	
1	Phex2467 DIR 2													5.89E-09	0.97	Y	
2	Phex2403 OMT3 1													4.71E-08	0.95	Y	Y
3	Phex2402 OMT3 2													3.56E-07	0.93	Y	Y
4	Phex1550 2-ODD2 1													2.41E-06	0.90	Y	Y
5	Phex30848 2-ODD2_2													3.18E-06	0.90	Y	Y
6	Phex22935 OMT													9.41E-06	0.87		
7	Phex32127 OMT													1.03E-05	0.87	Y	
8	Phex30149 CYP													1.52E-05	0.86		
9	Phex28056 OMT													2.15E-05	0.85		
10	Phex30594 OMT													2.95E-05	0.84	Y	
11	Phex32688 CYP													4.04E-05	0.83	Y	Y
12	Phex887 2-ODD													1.19E-04	0.79		
13	Phex29408 OMT													1.93E-04	0.77		
14	Phex32520 2-ODD													1.97E-04	0.76		
15	Phex13115 OMT1_1													2.06E-04	0.76	Y	Y
16	Phex5680 OMT1_2													2.10E-04	0.76	Y	Y
17	Phex26717 OMT													2.17E-04	0.76		
18	Phex10805 OMT													2.69E-04	0.75		
19	Phex13114 OMT1_3													2.91E-04	0.75	Y	Y
20	Phex5679 OMT1_4													3.55E-04	0.74		Y
21	Phex359 PPO1_1													5.43E-04	0.71	Y	Y
22	Phex33617 CYP75B65													6.11E-04	0.71		
23	Phex9098 CYP													6.26E-04	0.71		
24	Phex23116 OMT													9.38E-04	0.68		
25	Phex25338 OMT													1.82E-03	0.64		
26	Phex8002 2-ODD													2.31E-03	0.62	Y	
27	Phex20214 OMT1_5													2.46E-03	0.62		
28	Phex30828 SDH													2.77E-03	0.61	Y	
29	Phex23998 OMT													2.91E-03	0.60		
30	Phex360 PPO1_2													3.83E-03	0.58		Y
31	Phex29997 CYP													4.20E-03	0.58		
62	Phex524 CYP71CU1_1													3.15E-02	0.38	Y	Y
72	Phex30934 CYP719A23													4.97E-02	0.33	Y	
81	Phex522 CYP71CU1_2													6.65E-02	0.30	Y	Y
94	Phex34339 PPO													9.08E-02	0.26	Y	Y
109	Phex15199 CYP													1.21E-01	0.22		Y
122	Phex6624 PLR													1.43E-01	0.20	Y	
				lo	-2 pq ₂ (f	old c	(han:) qe v	s. m	2 edia	n)						

Fig. S10. Co-expression analysis of *P. hexandrum* leaf RNA-Seq expression data after wounding using *DIR* as a bait gene.

The top 31 ranked genes based on p-value from linear regression analysis were considered significant using the Benjamin–Hochberg procedure with a false discovery rate of 0.05 (multiple testing corrections). Other (–)-podophyllotoxin biosynthetic genes previously known (bold black) and discovered in this report (red), and other screened candidates based on co-expression analysis using *CYP719A23* as the bait gene (non-bold black) are also displayed. Heat map depicts the expression levels (effective counts, TMM normalized, log_2 -scaled and median-centered) after *P. hexandrum* leaf wounding. Candidate genes that were screened from this data were chosen based on co-expression with *DIR* and *CYP719A23* (fig. S11), and level of expression (TMM-normalized effective counts > 500). Note that there are multiple contigs that represent the same gene.

rank	Gene Name	0h-1	0h-2	0h-3	3h-1	3h-2	3h-3	9h-1	9h-2	9h-3	12h-1	12h-2	12h-3	p-value	r ²	MEDIAN>500	Tested
0	Phex30934 CYP719A23															Y	
1	Phex3675 OMT													3.79E-07	0.93	Y	
2	Phex3622 OMT													8.70E-07	0.92	Y	
3	Phex3673 OMT													8.01E-06	0.87	Y	
4	Phex30828 SDH													1.15E-05	0.87	Y	
5	Phex34339 PPO2													5.50E-05	0.82	Y	Y
6	Phex522 CYP71CU1_1													6.20E-05	0.81	Y	Y
7	Phex524 CYP71CU1_2													7.18E-05	0.81	Y	Y
8	Phex3623 OMT6_2													1.97E-04	0.76		
9	Phex31067 CYP													2.88E-04	0.75	Y	
10	Phex359 PPO1_1													3.90E-04	0.73	Y	Y
11	Phex32010 CYP98A68													5.52E-04	0.71		
12	Phex13114 OMT1_3													9.07E-04	0.68	Y	Y
13	Phex6398 2-ODD													9.92E-04	0.68		
14	Phex29997 CYP													1.01E-03	0.68		
15	Phex360 PPO1 2													1.17E-03	0.67		Y
16	Phex33222 OMT													1.22E-03	0.67		
17	Phex8002 2-ODD													1.96E-03	0.63	Y	
18	Phex8001 2-ODD													2.01E-03	0.63	Y	
19	Phex30248 2-ODD													2.04E-03	0.63		
20	Phex30180 CYP													2.09E-03	0.63		
21	Phex29408 OMT													2.15E-03	0.63		
22	Phex13115 OMT1 1													2.21E-03	0.62	Y	
23	Phex27758 CYP													2.22E-03	0.62		
24	Phex14099 2-ODD													2.26E-03	0.62		
25	Phex9095 2-ODD3_4													3.56E-03	0.59		
41	Phex5680 OMT1_2													8.14E-03	0.52	Y	
48	Phex2402 OMT3_2													1.70E-02	0.45	Y	
52	Phex20214 OMT1_5													1.95E-02	0.44		
55	Phex5679 OMT1_4													2.41E-02	0.41		
56	Phex2467 DIR_2													2.52E-02	0.41	Y	
60	Phex2403 OMT3 1													3.03E-02	0.39	Y	
64	Phex15199 CYP													3.46E-02	0.37		Y
73	Phex2312 DIR_1													4.97E-02	0.33	Y	
74	Phex6624 PLR													5.27E-02	0.33	Y	
104	Phex1550 2-ODD2 1													1.40E-01	0.20	Y	
106	Phex30848 2-ODD2 2													1.47E-01	0.20	Y	
114	Phex32688 CYP													1.61E-01	0.19	Y	Y
					-2		(0		2							

log₂(fold change vs. median)

Fig. S11. Co-expression analysis of *P. hexandrum* leaf RNA-Seq expression data after wounding using *CYP719A23* as a bait gene.

The top 25 ranked genes based on p-value from linear regression analysis were considered significant using the Benjamini–Hochberg procedure with a false discovery rate of 0.05 (multiple testing corrections). Other (–)-podophyllotoxin biosynthetic genes previously known (bold black) and discovered in this report (red), and other screened candidates based on co-expression analysis using *DIR* as the bait gene (non-bold black) are also displayed. Heat map depicts the expression levels (effective counts, TMM normalized, log_2 -scaled and median-centered) after *P. hexandrum* leaf wounding. Candidate genes that were screened from this data were chosen based on co-expression with *DIR* (fig. S10) and *CYP719A23*, and level of expression (TMM-normalized effective counts > 500). Note that there are multiple contigs that represent the same gene.

Fig. S12. RNA-Seq expression profiles and metabolite data after leaf wounding of all known (–)-podophyllotoxin genes and genes discovered in this report.

Each graph shows expression and metabolite data (dptox, deoxypodophyllotoxin) for individual leaflets from the same leaf after wounding. The expression and metabolite profiles are distinct for each set of data. Note that *PLR* was not significantly induced after leaf wounding. Expression profiles of *Phex31052* (*CYP*) and *Phex31132* (*CYP*) are also shown to demonstrate that not all genes are induced by wounding. Closest Arabidopsis homologs to *Phex31052* and *Phex31132* are *CYP704A2* and *CYP74B2* (hydroperoxide lyase), respectively.

Fig. S13. *N. benthamiana* transient expression of CYP719A23, OMT3, and CYP71CU1 and (–)matairesinol leaf infiltration produces (–)-5'-desmethyl-yatein.

(A) Aligned EICs of (-)-desmethyl-yatein [m/z = 387, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1, compared to CYP719A23 + OMT3, and an *in vitro* assay with CYP71CU1–enriched microsomes, NADPH and (-)-5'-desmethoxy-yatein; peaks observed at earlier labeled retention times (1 and arrow) are derived from in-source fragmentation ions of (-)-5'-desmethyl-yatein glucosylated derivatives produced by endogenous tobacco enzymes. Only chromatograms from *in planta* experiments are to scale. (B) MS/MS (10 V) spectra of (-)-desmethyl-yatein produced *in planta* (from labeled retention times, 1 and 2) compared to *in vitro* assay. (C) Table of MS/MS peak assignments and (D) putative ion structures.

Fig. S14. *N. benthamiana* transient expression of CYP719A23, OMT3, CYP71CU1, and OMT1 and (–)-matairesinol leaf infiltration produces (–)-yatein.

(A) Aligned EICs of (-)-yatein [m/z = 401, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1 + OMT1, compared to CYP719A23 + OMT3 + CYP71CU1 and an authentic standard. Only chromatograms from *in planta* experiments are to scale. (B) MS/MS (10 V) spectra of (-)-yatein produced *in planta* compared to authentic standard. (C) Table of MS/MS peak assignments and (D) putative ion structures.

Fig. S15. *N. benthamiana* transient expression of CYP719A23, OMT3 and 2-ODD and (–)matairesinol leaf infiltration produces (–)-5'-desmethoxy-deoxypodophyllotoxin.

(A) Aligned EICs of 5'-desmethoxy-deoxypodophyllotoxin (m/z = 391, $[M+Na]^+$) from the transient expression of CYP719A23 + OMT3 + 2-ODD, compared to CYP719A23 + OMT3 and an *in vitro* assay with 2-ODD purified from *E. coli*, Fe₂SO₄, 2-oxoglutarate and (-)-5'-desmethoxy-yatein. Only chromatograms from *in planta* experiments are to scale. (B) MS/MS (20 V) spectra of (-)-5'-desmethoxy-deoxypodophyllotoxin (m/z = 386, $[M+NH_4]^+$) produced *in planta* compared to *in vitro* product (C) Table of MS and MS/MS peak assignments and (D) putative ion structures.

Fig. S16. Proposed reaction mechanism of the conversion of (–)-yatein to (–)-deoxypodophyllotoxin catalyzed by 2-ODD.

Oxygen is incorporated via hydroxylation of (–)-yatein at the 7' position, followed by its removal as water to form a quinone methide intermediate. Stereoselective cyclization then occurs, followed by removal of a proton to restore aromaticity, forming (–)-deoxypodophyllotoxin.

Fig. S17. *N. benthamiana* transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, and 2-ODD and (–)-matairesinol leaf infiltration produces (–)-deoxypodophyllotoxin.

A) Aligned EICs of (-)-deoxypodophyllotoxin [m/z = 399, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD, compared to CYP719A23 + OMT3 + CYP71CU1 + OMT1 and an authentic standard. Only chromatograms from *in planta* experiments are to scale. (B) MS/MS (10 V) spectra of (-)-deoxypodophyllotoxin produced *in planta* compared to authentic standard (C) Table of MS/MS peak assignments and (D) putative ion structures.

(A) Microsomal fractions containing CYP71CU1 were incubated with (-)-5'-desmethoxy-yatein [m/z = 371, (+)-mode] and NADPH, forming (-)-5'-desmethyl-yatein [m/z = 387]. CYP71CU1-microsomes and OMT1, expressed and purified from *E. coli*, were incubated with (-)-5'-desmethoxy-yatein, NADPH and SAM, forming (-)-yatein [m/z = 401]. (-)-5'-desmethoxy-yatein co-elutes with (-)-yatein. (B) 2-ODD, expressed and purified from *E. coli*, was incubated with (-)-yatein, 2-oxoglutarate and FeSO₄ to form (-)-deoxypodophyllotoxin. (C) The enzyme also had minor activity on (-)-5'-desmethoxy-yatein and almost negligible activity on (-)-pluviatolide under the same assay conditions. All chromatograms are to scale. Arrows point to products.

	H ₃ CO H ₃ CO	H ₃ CO HO OCH ₃	OH OCH3	CH3	H ₃ CO ⁻ OCH ₃
Enzyme	(–)-arctigenin	(–)-matairesinol	(–)-pluviatolide (·	-)-5'-desmethoxy-yateir	ı (–)-yatein
OMT3	<5%	<5%	100%	Not tested	Not tested
CYP71CU1	0%	0%	0%	100%	Not tested
OMT1	0%	0%	0%	Not tested	Not tested
2-ODD	0%	0%	<1%	<20%	100%

Fig. S19. Substrate specificity of OMT3, CYP71CU1, OMT1 and 2-ODD as determined by *in vitro* characterization.

The table reports % activity of OMT3, CYP71CU1, OMT1 and 2-ODD as determined *in vitro* on a number of available lignan substrates. The % activity is determined with respect to the maximum conversion detected in all substrates tested. The results suggest that the order of events in the biosynthesis of (-)-4'-desmethyl-epipodophyllotoxin proceeds as depicted in Figure 4A. The predicted substrate for OMT1 is (-)-5'-desmethyl-yatein and was tested by incubation of OMT1 and SAM with (-)-5'-desmethoxy-yatein, CYP71CU1-microsomes isolated from *WAT11* and NADPH to generate the substrate *in vitro*.

the states	, 	2			
lear Larrie Linits	5°	Contig	Gene	Best blastx hit as of March 2015	% Identity
		35407	CYP82D61	CYP82D61 [Sinopodophyllum hexandrum]	99
		14372	CYP71BE54_1	PREDICTED: premnaspirodiene oxygenase-like isoform X1 [Solanum tuberosum]	59
		62371	CYP71BE54_2		
		22113	CYP71BE54_3		
		20475	CYP71BE54_4		
		5041	CYP	PREDICTED: cytochrome P450 CYP736A12-like [Pyrus x bretschneideri]	52
		57270	CYP	CYP71BE30 [Sinopodophyllum hexandrum]	100
		29054	CYP	PREDICTED: geraniol 8-hydroxylase-like [Nelumbo nucifera]	68
		4618	CYP	PREDICTED: cytochrome P450 CYP736A12-like [Malus domestica]	52
		55921	NADP	PREDICTED: cinnamoyl-CoA reductase 2-like [Elaeis guineensis]	58
		18808	NADP	RecName: Full=Non-functional NADPH-dependent codeinone reductase 2 [Papaver somniferum]	63
		102408	CYP719A23		
		6901	PLR		
		1//36	CYP/19A23		
		20599	SUH		
		225/90	CYP719AZ3		
		212960	DID		
		0051			
		21265	CVP710A22		
		38318	CVP719A23		
		12248	SDH		
		34018	CYP719A23		
		12826	SDH		
		145347	CYP719A23		
		193171	CYP719A23		

Fig. S20. Rhizome-specific candidate genes selected for screening from the Medicinal Plants Consortium *P. hexandrum* transcriptome.

Candidate genes (grey and red) for enzymes involved in biosynthetic steps downstream of (–)deoxypodophyllotoxin production were chosen based on rhizome-specific expression and the availability of full coding sequences. CYPs were chosen for hydroxylating activity on (–)-deoxypodophyllotoxin and NADP(H)-dependent oxidoreductases (NADP) were chosen for oxidative and reductive activity to epimerize (–)-epipodophyllotoxin to (–)-podophyllotoxin. In red are lignan biosynthetic genes that were discovered and characterized in this report. Heat map shows FPKM (fragments per kilobase of transcript per million mapped reads) levels of transcripts.

Fig. S21. N. benthamiana transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD and CYP71BE54, and (–)-matairesinol infiltration produces (–)-4'-desmethyl-deoxypodophyllotoxin.

(A) Known 4'-desmethyl lignans present in *P. hexandrum*. (B) Aligned EICs of the product [m/z = 385, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD + CYP71BE54, compared to CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD, and *in vitro* assay with CYP71BE54-enriched microsomes, NADPH and (-)-deoxypodophyllotoxin; peaks observed at earlier labeled retention times (1 and arrow) are in-source fragmentation ions from a (-)-4'-desmethyl-deoxypodophyllotoxin glucosylated derivative produced by endogenous tobacco enzymes. Only chromatograms from *in planta* expression are to scale. (C) MS/MS spectra (10 V) of (-)-4'-desmethyl-deoxypodophyllotoxin produced *in planta* (from labeled retention times, 1 and 2); ion abundance of *in vitro* product formed by incubation of (-)-deoxypodophyllotoxin with CYP71BE54-enriched microsomes was too low to obtain a MS/MS spectrum. (D) Table of MS/MS peak assignments and (E) and putative ion structures.

Microsomal fractions containing CYP71BE54 were incubated with (–)-deoxypodophyllotoxin and NADPH, forming (–)-4'-desmethyl-deoxypodophyllotoxin [m/z = 385, (+)-mode]. Aligned EICs are shown and are all to scale. Enzyme assays lacking NADPH or containing microsomes isolated from *WAT11* harboring empty vector served as negative controls. No activity was observed on (–)-podophyllotoxin, (–)-5'-desmethoxy-podophyllotoxin or (–)-yatein.

Fig. S23. *N. benthamiana* transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD and CYP82D61, and (–)-matairesinol infiltration produces (–)-epipodophyllotoxin.

(A) Aligned EICs of (-)-epipodophyllotoxin [m/z = 415, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD + CYP82D61, compared to CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD and an authentic standard. Only chromatograms from *in planta* expression are to scale. Interestingly, no production of glucosylated derivates by endogenous tobacco enzymes is observed, despite the introduction of a free hydroxyl. (B) MS/MS spectra (10 V) of (-)-epipodophyllotoxin produced *in planta* compared to authentic standard. (C) Table of MS/MS peak assignments and (D) putative ion structures.

Fig. S24. *N. benthamiana* transient expression of CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD, CYP71BE54 and CYP82D61, and (–)-matairesinol infiltration produces (–)-4'-desmethyl-epipodophyllotoxin, the etoposide alglycone.

(A) Aligned EICs of 4'-desmethyl-epipodophyllotoxin [m/z = 401, (+)-mode] from the transient expression of CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD + CYP71BE54 + CYP82D61, compared to CYP719A23 + OMT3 + CYP71CU1 + OMT1 + 2-ODD + CYP71BE54 and an authentic standard; peaks observed at earlier labeled retention times (1 and arrow) are in-source fragments of (-)-pluviatolide glucosylated derivatives produced by endogenous tobacco enzymes.. Only chromatograms from *in planta* expression are to scale. (B) MS/MS spectra (5 V) of (-)-4'-desmethyl-epipodophyllotoxin produced *in planta* (from labeled retention times, 1 and 2) compared to authentic standard (C) Table of MS/MS peak assignments and (D) putative ion structures.

(A) Total ion chromatogram (TIC) and combined extracted ion chromatograms (EIC) for (+)-pinoresinol $(m/z = 341, [M-H_2O]^+)$ and (-)-deoxypodophyllotoxin (m/z = 399) are compared between the *in planta* expression of GFP with (+)-pinoresinol infiltration and the *in planta* expression of DIR, PLR, SDH, CYP719A23, OMT3, CYP71CU1, OMT1, and 2-ODD (8 genes) with and without (+)-pinoresinol infiltration. An equimolar standard (10 μ M) of (+)-pinoresinol and (-)-deoxypodophyllotoxin is shown. (B) Amounts of (-)-deoxypodophyllotoxin produced *in planta* were quantified using a standard curve constructed from an authentic standard. Standard deviation is based on three biological replicates.

Fig. S26. In planta reconstitution of (-)-epipodophyllotoxin biosynthesis from (+)-pinoresinol.

(A) Total ion chromatogram (TIC) and combined extracted ion chromatograms (EIC) for (+)-pinoresinol $(m/z = 341, [M-H_2O]^+)$ and (-)-epipodophyllotoxin (m/z = 415) are compared between the *in planta* expression of GFP with (+)-pinoresinol infiltration and the *in planta* expression of DIR, PLR, SDH, CYP719A23, OMT3, CYP71CU1, OMT1, 2-ODD, and CYP82D61 (9 genes) with and without (+)-pinoresinol infiltration. An equimolar standard (10 μ M) of (+)-pinoresinol and (-)-epipodophyllotoxin is shown.

(B) Amounts of (–)-epipodophyllotoxin produced *in planta* were quantified using a standard curve constructed from an authentic standard. Standard deviation is based on three biological replicates.

Fig. S27. Ion abundance of intermediates from *in planta* reconstitution of (–)-epipodophyllotoxin and (–)-4'-desmethyl-epipodophyllotoxin biosynthesis from (+)-pinoresinol.

(A) Ion abundance of intermediates from the reconstitution of (–)-epipodophyllotoxin biosynthesis from (+)-pinoresinol [PR] with and without PR infiltration compared to GFP with PR infiltration. (B) Ion abundance of intermediates from the reconstitution of (–)-4'-desmethyl-epipodophyllotoxin biosynthesis from PR with and without PR infiltration compared to GFP with PR infiltration. In both cases, ion abundances of intermediates are significantly less than the maximum amount observed to accumulate when the intermediates are produced as final products as in Fig. 4A.

Figure S28. Biosynthetic route to (-)-4'-desmethyl-epipodophyllotoxin, the etoposide alygcone.

The discovery of the six enzymes in this report (OMT3, CYP71CU1, OMT1, 2-ODD, CYP71BE54 and CYP82D61) enable the production of (-)-4'-desmethyl-epipodophyllotoxin, the etoposide alygcone in a heterologous host such as *N. benthamiana*. This maps a simpler and more direct route to etoposide that circumvents the semisynthetic epimerization and demethylation currently required for etoposide production from (-)-podophyllotoxin isolated from Mayapple.

Figure S29. Golden Gate assembly strategy for multiple-gene constructs for transient expression in *N. benthamiana*.

1	vs. CYP71	SYP719 + OMT3 9 + OMT3 no mataire	esinol	В		CYP719 vs.	+ OMT3 + CYP71C CYP719 + OMT3	:01
rank	mass and retention time	fold change	average ion abundance		rank	mass and retention time	fold change	average ion abundance
1)) M371T1711	487	3.21E+06		1)	M387T1233	36	1.31E+06
2) M393T1700	122	1.83E+06		2)	M657T1233	42	1.12E+06
3	M763T1711	10950	1.43E+06		3)	M337T1233	23	6.12E+05
4	M388T1711	442	6 92E+05		4)	M429T1233	32	5 24E+05
5	M372T1711	694	6 75 - 05		5)	M571T1125	17	3.86E±05
6	M764T4744	2450	6.445+05		5)	MCEOTA022	24	3.0001103
0		3450	0.44E+00		0)	W05611255	31	3.332703
()) M39411711	1047	3.99E+05		()	M65211233	34	3.38E+05
8) M151T1711	73	3.69E+05		8)	M388T1233	28	2.84E+05
9)) M371T1701	11	3.06E+05		9)	M599T1233	28	2.84E+05
10)) M353T1711	40	2.97E+05		10) 11)	M453T1233 M387T1496	27	2.56E+05 2.37E+05
,	CYP719 +	OMT3 + CYP71CU1	+ B38	D	,	CYP7	19 + OMT3 + 2-ODE CYP719 + OMT3)
rank	mass and	fold change	average ion		rank	mass and	fold change	average ion
	 retention time 		abundance			retention time	rold onlange	abundance
1)) M401T1662	265	1.51E+07		1)	M231T1579	933	6.75E+06
2) M823T1663	3146	4.46E+06		2)	M759T1579	Inf	3.60E+06
3)) M423T1663	194	4.40E+06		3)	M391T1579	11924	3.50E+06
4)) M195T718	68	3.46E+06		4)	M386T1579	14532	2.50E+06
5)) M402T1662	116	3.15E+06		5)	M476T918	79	2.25E+06
6) M824T1663	5518	2.02E+06		6)	M760T1579	Inf	1.56E+06
7	M195T805	18	1.65E+06		7)	M232T1579	1106	8.37E+05
		50	1 5 1 5 . 00		8)	M225T1579	Inf	7 76E+05
8) M235T718	50	1.54E+06					
8) 9)) M235T718 M418T1662	50 101	1.54E+06 107E+06		9)	M392T1579	14857	7 29E+05
8) 9] 10]) M235T718) M418T1662) M424T1663	50 101 160	1.54E+06 1.07E+06 9.51E+05		9) 10)	M392T1579 M477T919	14857 131	7.29E+05 5.51E+05
8) 9) 10)) M235T718) M418T1662) M424T1663 CYP719 + OMT3 vs	50 101 160 5 + CYP71CU1 + OM 5 CYP719 + OMT3	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD	F	9) 10)	M392T1579 M477T919 CYP719 + OMT3 + CYP vs. CYP719 + OM	14857 131 P71CU1 + OMT1 + 2-OE IT3 + CYP71CU1 + OM	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD
8) 9) 10)) M235T718 M418T1662) M424T1663 CYP719 + OMT3 vs mass and	50 101 160 6 + CYP71CU1 + OM 6 - CYP719 + OMT3	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD	F	9) 10)	M392T1579 M477T919 CYP719 + OMT3 + CYP vs. CYP719 + OM mass and	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion
8) 9] 10] rank) M235T718) M418T1662) M424T1663 CYP719 + OMT3 vs 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance	F	9) 10) rank	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time	14857 131 P71CU1 + OMT1 + 2-OE <u>MT3 + CYP71CU1 + OM</u> fold change	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance
8) 9) 10) rank) M235T718) M418T1662) M424T1663 CYP719 + OMT3 vs mass and retention time) M399T1582	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06	F	9) 10) (rank 1)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05
7 8) 9] 10) rank	M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06	F	9) 10) rank 1) 2)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M665T1163	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32F+05
(1) (10) (10) (10) (10) (10) (10) (10) () M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M810T1582	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06	F	9) 10) rank 1) 2) 3)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M38ET1163	14857 131 P71CU1 + OMT1 + 2-OE /T3 + CYP71CU1 + OM fold change 42 304	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05
rank	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M231T1582 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06	F	9) 10) rank 1) 2) 3)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M336T1163	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 4.05E+05 3.66E+05
rank	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M231T1582 M231T1582 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 264	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06 4.92E+06	F	9) 10) rank 1) 2) 3) 4)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M385T1163 M385T1163	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 207	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 3.69E+05 3.69E+05
rank 10] rank 11] 2] 3] 4] 5]	M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M820T1582	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06 1.87E+06 4.52E+06	F	9) 10) rank 1) 2) 3) 4) 5)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M385T1163 M386T1163 M656T1163 M656T1163	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 297	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 4.05E+05 3.69E+05 2.07E+05 - 2.07E+05
rank	M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M819T1582 M819T1582 M820T1582 M820T1582 M400T1582	50 101 160 :+ CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261 214	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 1.87E+06 1.55E+06	F	9) 10) rank 1) 2) 3) 4) 5) 6)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M385T1163 M336T1163 M356T1163 M231T1366	14857 131 P71CU1 + OMT1 + 2-OE IT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 3.69E+05 2.07E+05 1.72E+05
rank [1] [2] [3] [4] [5] [6] [7]	M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M819T1582 M820T1582 M400T1582 M400T1582	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261 214 189 	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06 1.87E+06 1.55E+06 1.27E+06	F	 a) b) b) c) rank 1) 2) 3) 4) 5) 6) 7) 	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M336T1163 M336T1163 M656T1163 M231T1366 M407T1366	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8 56	7.29E+05 5.51E+05 5.51E+05 0D + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 3.69E+05 3.69E+05 1.72E+05 1.72E+05
7) 8] 9] 10] rank 1] 2] 3] 4] 5] 6] 7] 8]	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M820T1582 M400T1582 M400T1582 M416T1582 M422T1583 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06 1.55E+06 1.27E+06 9.77E+05	F	 9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M336T1163 M336T1163 M231T1366 M407T1366 M407T1366	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 4.05E+05 3.69E+05 1.72E+05 1.72E+05 1.69E+05
7) 8] 9] 10] rank 1] 2] 3] 4] 5] 6] 7] 8] 9]	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 wass and retention time M399T1582 M421T1582 M819T1582 M820T1582 M820T1582 M40T1582 M416T1582 M42T1583 M821T1582 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97 241	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.87E+06 1.87E+06 1.27E+06 9.77E+05 5.30E+05	F	 9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M385T1163 M385T1163 M385T1163 M650T1163 M650T1194 M650T1194	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8 56 7 112	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 3.69E+05 1.72E+05 1.72E+05 1.69E+05 1.66E+05
rankk 11 21 33 41 55 66 77 89 91	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M421T1582 M421T1582 M421T1582 M400T1582 M400T1582 M421T1583 M421T1583 M421T1582 	50 101 160 + CYP71CU1 + OM . CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97 241 182	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M355T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.72E+05 1.69E+05 1.66E+05 1.67E+04
rankk 10] rankk 11] 22] 33] 43] 55] 66] 77] 81] 91] 10]	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 restand retention time M399T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M40T1582 M40T1582 M40T1582 M40T1582 M421T1583 M421T1583 M421T1582 CYP719 + OMT3 + C 	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.87E+06 1.87E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP715	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M356T1163 M356T1163 M356T1163 M356T1163 M650T1194 M659T1163 M232T1163 M355T1366 M355T1366	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-OED + C'	7.29E+06 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.65E+05 1.72E+05 1.69E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82
rank 10] rank 11] 21 33 4 55 66] 77] 89 910]) M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time) M399T1582) M421T1582) M421T1582) M421T1582) M420T1582) M400T1582) M400T1582) M40T1582) M4	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 ////////////////////////////////////	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 4.37E+06 1.87E+06 1.87E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP719	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M656T1163 M386T1163 M386T1163 M386T1163 M650T1194 M650T1194 M597T1163 M232T1163 M385T1366 O + OMT3 + CYP71CU vs. CYP719 + OM	14857 131 P71CU1 + OMT1 + 2-OE <u>MT3 + CYP71CU1 + OM</u> fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + C' TT3 + CYP71CU1 + OM	7.29E+06 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 4.05E+05 3.69E+05 1.72E+05 1.72E+05 1.69E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD
rankk (1) (1) (1) (1) (1) (1) (1) (1)	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M400T1582 M401T1582 M401T1582 M421T1583 M421T1583 M421T1582 CYP719 + OMT3 + Ctvs. CYP719 + OMT3 + Ctvs. Ctv	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI <u>MT3 + CYP71CU1 + OM</u> fold change	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 3.97E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance	F	9) 10) rank 1) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP715 rank	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M385T1163 M385T1163 M650T1194 M650T1194 M659T1163 M232T1163 M385T1366 M385T1366 9 + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 14 OMT1 + 2-ODD + C' MT3 + CYP71CU1 + OMT fold change	7.29E+06 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.71E+05 1.66E+05 1.66E+05 1.66E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion
rankk 11 21 33 44 51 66 77 81 99 10] rankk	M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M819T1582 M820T1582 M400T1582 M400T1582 M416T1582 M416T1582 M422T1583 M821T1582 M422T1583 M821T1582 CYP719 + OMT3 + C vs. CYP719 + O	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 /P71CU1 + OMT1 + 2-OI WT3 + CYP71CU1 + OM fold change 53	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M655T1163 M385T1163 M385T1163 M35T1163 M650T1194 M597T1163 M232T1163 M385T1366 D + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8 56 7 112 13 13 14 + OMT1 + 2-OED + C' MT3 + CYP71CU1 + OM fold change 130	7.29E+06 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 3.69E+05 1.72E+05 1.72E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.96E+05
rankk 11 23 34 55 60 77 78 99 100 100 100 100 100 100 100	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1882 M421T1582 M49T1582 M421T1582 M819T1582 M400T1582 M400T1582 M400T1582 M400T1582 M422T1583 M821T1582 M422T1583 M821T1582 CYP719 + OMT3 + C vs. CYP719 + OIT cYP719 + OMT3 + C vs. CYP719 + OIT mass and retention time M416T1226 	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI WT3 + CYP71CU1 + OM fold change 53	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1+ 2-ODD average ion abundance 3.81E+06 9.25E+06	F	9) 10) rank 1) 2) 3) 4 4) 5) 6) 7) 8) 9 9) 9) 9) 9) 9) 90 14) CYP719 rank 1) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T194 OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745	14857 131 200 131 201	7.29E+05 5.51E+05 5.51E+05 Average ion abundance 8.32E+05 6.32E+05 6.32E+05 6.32E+05 1.69E+05 1.72E+05 1.69E+05 1.66E+05 1.66E+05 1.6E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-0DD average ion abundance 2.86E+05
rankk 11 23 34 45 66 77 88 99 100 70 88 99 100 70 88 99 100 70 88 99 100 70 70 88 99 100 70 70 70 70 70 70 70 70 70	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M400T1582 M422T1583 M821T1582 M422T1583 M821T1582 CYP719 + OMT3 + CY vs. CYP719 + OMT3 + CY vs. C	50 101 160 1+ CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI MT3 + CYP71CU1 + OM fold change 53 21 53	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance 3.81E+06 2.83E+06 2.83E+06	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank 1) 2) 2)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T194 M385T1366 D + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + Ct MT3 + CYP71CU1 + OMT fold change 139 44	7.29E+06 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 4.05E+05 3.69E+05 1.72E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.60E+05
7 8 9 10 rankk 11 21 31 31 34 50 66 67 71 88 99 100 71 88 99 100 71 7 71 88 99 100 71 7 71 80 71 7 71 7 71 80 71 70 71 70 71 70 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 <t< td=""><td> M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M401T1582 M401T1582 M421T1583 M421T1583 M421T1582 CYP719 + OMT3 + C' vs. CYP719 + OMT3 + C' vs. CYP719 + OMT3 + C' CYP719 + OMT3 + C' ws. Sand retention time M415T1226 M437T1226 M851T1226 </td><td>50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI MT3 + CYP71CU1 + OM fold change 53 21 89</td><td>1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.87E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance 3.81E+06 2.34E+06 2.34E+06</td><th>F</th><td>9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank 1) 2) 3)</td><td>M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M356T1163 M356T1163 M356T1163 M356T1163 M650T1194 M659T1163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T45 M671T840 M344T839</td><td>14857 131 P71CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 14 OMT1 + 2-OED + C' AT3 + CYP71CU1 + OMT fold change 139 44 12</td><td>7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.72E+05 1.66E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.60E+05 1.60E+05 1.54E+05</td></t<>	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M401T1582 M401T1582 M421T1583 M421T1583 M421T1582 CYP719 + OMT3 + C' vs. CYP719 + OMT3 + C' vs. CYP719 + OMT3 + C' CYP719 + OMT3 + C' ws. Sand retention time M415T1226 M437T1226 M851T1226 	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI MT3 + CYP71CU1 + OM fold change 53 21 89	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.87E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance 3.81E+06 2.34E+06 2.34E+06	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank 1) 2) 3)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M356T1163 M356T1163 M356T1163 M356T1163 M650T1194 M659T1163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T163 M357T45 M671T840 M344T839	14857 131 P71CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 14 OMT1 + 2-OED + C' AT3 + CYP71CU1 + OMT fold change 139 44 12	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.72E+05 1.66E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.60E+05 1.60E+05 1.54E+05
rankk 10 rankk 11 23 34 45 66 77 89 9100 rankk 11 23 34 44 55 66 77 89 9100 1000	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M421T1582 M420T1582 M420T1582 M400T1582 M400T1582 M40T1582 M421T1583 M821T1582 M23T1582 CYP719 + OMT3 + CV vs. CYP719 + OI mass and retention time M415T1226 M452T1226 M852T1226 	50 101 160 + CYP71CU1 + OM CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI WT3 + CYP71CU1 + OM fold change 53 21 89 80	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance 3.81E+06 2.33E+06 2.33E+06 1.08E+06	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank 1) 2) 3) 4)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M385T1163 M385T1163 M355T1163 M450T1194 M597T1163 M385T1366 M450T1194 M597T1163 M385T1366 D + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840 M344T839 M401T839	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8 56 7 112 13 13 14 + OMT1 + 2-OED + C' MT3 + CYP71CU1 + OM fold change 139 44 12 9	7.29E+05 5.51E+05 5.51E+05 average ion abundance 8.32E+05 6.32E+05 6.32E+05 6.32E+05 1.69E+05 1.71E+05 1.69E+05 1.66E+06 1.16E+05 7.67E+04 YP71BE54 + CYP8% T1+ 2-0DD average ion abundance 2.86E+05 1.60E+05 1.64E+05 1.54E+05 1.18E+05
rankk rank 11 21 33 60 77 81 99 10 77 81 99 10 77 81 99 10 77 81 99 10 77 81 99 10 10 10 10 10 10 10 10 10 10	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1882 M421T1582 M49T1582 M421T1582 M819T1582 M400T1582 M400T1582 M400T1582 M422T1583 M422T1583 M422T1582 CYP719 + OMT3 + C' vs. CYP719 + OI cretention time M45T1226 M45T1226 M45T1226 M45T1226 M45T1226 M45T1226 M45T1226 M45T1226 M416T1226 	50 101 160 + CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI WT3 + CYP71CU1 + OM fold change 53 21 89 80 46	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1+ 2-ODD average ion abundance 3.81E+06 2.83E+06 2.34E+06 8.35E+05	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 9) 10) 14) CYP7!! rank 1) 2) 3) 4) 5) 5)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M385T1366 D + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840 M344T839 M401T839 M399T765	14857 131 271CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + C' AT3 + CYP71CU1 + OM fold change 139 44 12 9 7	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.69E+05 1.71E+05 1.69E+05 1.66E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.62E+05 1.64E+05 9.45E+04
rankk 99 100 rankk 11 23 34 41 55 66 77 88 99 100 77 88 99 100 77 88 99 100 77 88 99 100 77 88 99 100 77 88 99 100 77 88 99 100 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 99 100 77 77 88 89 90 100 77 75 76 76 76 76 76 76 76 76 76 76	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M421T1582 M422T1583 M821T1582 M422T1583 M821T1582 CYP719 + OMT3 + CV vs. CYP719 + OMT3 + CV vs. CYP719 + OMT3 + CL CYP719 + OMT3 + CL ws. GYP719 + OMT3 + CL m415T1226 M415T1226 M416T1226 M416T1226 M416T1226 M416T1226 M428T1226 	50 101 160 1+ CYP71CU1 + OM <u>CYP719 + OMT3</u> fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI MT3 + CYP71CU1 + OM fold change 53 21 89 80 46 39	1.54E+006 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.37E+06 1.55E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1 + 2-ODD average ion abundance 3.81E+06 2.83E+06 2.34E+06 1.08E+06 8.35E+05 7.68E+05	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP715 rank 1) 2) 3) 4) 5) 6) 6) 6)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M336T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M585T745 M671T840 M344T839 M401T839 M401T839 M401T839 M401T839	14857 131 P71CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + C' AT3 + CYP71CU1 + OMT fold change 139 44 12 9 7 67	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.72E+05 1.69E+05 1.66E+05 1.16E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.64E+05
rankk 10) rankk 11) 21) 33) 44) 50) 66) 77) 88) 99) 10) 70) 71) 72) 73) 74) 75) 76) 77) 76) 77) 76) 77) 76) 76	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 retention time M399T1582 M421T1582 M421T1582 M421T1582 M420T1582 M400T1582 M400T1582 M401T1582 M402T1583 M422T1583 M422T1583 M421T1582 CYP719 + OMT3 + C' vs. CYP719 + OMT3 + C' vs. C	50 101 160 + CYP71CU1 + OM CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI MT3 + CYP71CU1 + OM fold change 53 21 89 80 46 39 43	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.87E+06 1.87E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 5.10E+05 2.34E+06 1.08E+06 8.35E+05 7.68E+05 7.35E+05	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 14) CYP71! rank 1) 2) 3) 4) 5) 6) 7) 7) 7)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M356T1163 M356T1163 M356T1163 M356T1163 M650T1194 M650T1194 M597T1163 M385T1366 M407T1366 M407T1366 M407T1366 M597T1163 M385T1366 D+ OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840 M344T839 M401T839 M399T765	14857 131 P71CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OM fold change 42 304 160 161 297 8 56 7 112 13 14 OMT1 + 2-OED + C' AT3 + CYP71CU1 + OM fold change 139 44 12 9 7 67 39	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.72E+05 1.72E+05 1.69E+05 1.66E+05 1.66E+05 1.66E+05 1.66E+05 1.60E+05 1.60E+05 1.60E+05 1.60E+05 1.60E+05 1.64E+05 9.45E+04 8.83E+04 5.75E+04
rankk 10) rankk 11) 21) 34) 56) 66) 77) 89) 10) rankk 11) 23) 34) 56) 66) 77) 89) 99) 10)	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1582 M421T1582 M421T1582 M420T1582 M420T1582 M400T1582 M400T1582 M422T1583 M821T1582 M422T1583 M821T1582 M422T1582 CYP719 + OMT3 + C vs. CYP719 + OI mass and retention time M415T1226 M45T11226 M45T1226 M43T1226 	50 101 160 + CYP71CU1 + OMT fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-OI <u>MT3 + CYP71CU1 + OM</u> fold change 53 21 89 80 46 39 43 19	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.52E+06 1.87E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1+ 2-ODD average ion abundance 3.81E+06 2.33E+06 2.33E+06 1.08E+06 8.35E+05 7.68E+05 7.36E+05 6.27E+05	F	9) 10) rank 1) 2) 3) 3 4) 4) 5) 6) 77) 8) 9) 10) 14) CYP71! rank 1) 2) 5) 6) 6) 77) 8)	M392T1579 M477T919 CYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M336T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T163 M385T1366 9 + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840 M344T839 M401T839 M399T765 M586T745 M601T765	14857 131 271CU1 + OMT1 + 2-OE AT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + C' AT3 + CYP71CU1 + OM fold change 139 44 12 9 7 67 39 6	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.62E+05 1.72E+05 1.72E+05 1.66
rankk 11 23 34 55 60 77 88 99 100 102 102 102 102 102 102 102	 M235T718 M418T1662 M424T1663 CYP719 + OMT3 vs mass and retention time M399T1882 M421T1582 M49T1582 M421T1582 M819T1582 M400T1582 M400T1582 M422T1583 M422T1583 M422T1582 CYP719 + OMT3 + C' vs. CYP719 + OI mass and retention time M45T1226 M45T1226 M45T1226 M438T1226 	50 101 160 + CYP71CU1 + OM CYP719 + OMT3 fold change 233 109 268 170 261 214 189 97 241 182 (P71CU1 + OMT1 + 2-0) WT3 + CYP71CU1 + OM fold change 53 21 89 80 46 39 43 19 36	1.54E+06 1.07E+06 9.51E+05 T1 + 2-ODD average ion abundance 7.40E+06 4.52E+06 4.13E+06 1.87E+06 1.55E+06 1.27E+06 9.77E+05 5.30E+05 5.10E+05 DD + CYP82D61 T1+ 2-ODD average ion abundance 3.81E+06 2.83E+06 2.34E+06 1.08E+06 8.35E+05 7.68E+05 7.35E+05 6.09E+05	F	9) 10) rank 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 14) CYP71! rank 1) 2) 5) 6) 7) 8) 9) 10)	M392T1579 M477T919 SYP719 + OMT3 + CYF vs. CYP719 + OM mass and retention time M231T1163 M355T1163 M355T1163 M355T1163 M336T1163 M407T1366 M407T1366 M407T1366 M407T1366 M407T1366 M407T163 M385T1366 D + OMT3 + CYP71CU vs. CYP719 + OM mass and retention time M585T745 M671T840 M399T765 M586T745 M601T765 M401T745 M601T765	14857 131 P71CU1 + OMT1 + 2-OE MT3 + CYP71CU1 + OMT fold change 42 304 160 161 297 8 56 7 112 13 13 1 + OMT1 + 2-ODD + C' MT3 + CYP71CU1 + OM fold change 139 44 12 9 7 67 39 6 7	7.29E+05 5.51E+05 DD + CYP71BE54 T1 + 2-ODD average ion abundance 8.32E+05 6.32E+05 6.32E+05 1.65E+05 1.71E+05 1.66E+05 7.67E+04 YP71BE54 + CYP82 T1 + 2-ODD average ion abundance 2.86E+05 1.64E+04 1.65E+04 1.65E+04 1.65E+04 1.65E+04

Figure S30. XCMS analysis summary of in planta candidate enzyme screening.

Results from the computational comparison of the metabolomes generated from the transient expression of different gene combinations in *N. benthamiana* are summarized here. The top ten most abundant mass signals that differ for a given co-infiltration relative to a control are reported, along with other mass signals of interest. Results were reproduced at least thrice, each time with three biological replicates for each sample condition. In bold are mass signals derived from identified products in this report (isotope peaks, adducts, in-source fragments, derivatives, etc.). Highlighted in grey are important parent, fragment or adduct ions that have been referred to throughout this report: **(A)** (–)-5'-desmethoxy-yatein $[M+H]^+$, m/z = 371 **(B)** (–)-5'-desmethyl-yatein $[M+H]^+$, m/z = 387 **(C)** (–)-yatein $[M+H]^+$, m/z = 401 **(D)** (–)-5'-desmethoxy-deoxypodophyllotoxin $[M+H4]^+$, m/z = 386; $[M+Na]^+$, m/z = 399 **(F)** (–)-4'-desmethyl-deoxypodophyllotoxin $[M+H]^+$, m/z = 401

NMR Spectra of Authentic Standards

Minor impurities and residual solvent impurities are marked in grey. CDCl₃ solvent peak is marked in red.

Figure S31. (-)-matairesinol

¹H NMR spectrum of (–)-matairesinol in CDCl₃ and comparison to literature (46)

Carbon No.	1Η δ (ppm) [m, $J_{\rm HH}$ (Hz), area] in CDCl $_3$	Published 1H δ (ppm) [m, J_{\rm HH} (Hz), area] in CDCl_3
2, 3, 5', 6'	6.50 (dd, J = 8.0, 1.9 Hz, 1H), 6.58 – 6.60 (m, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H)	6.51 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 7.3 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H),
4-OH, 4'-OH	5.57 (s, 1H), 5.59 (s, 1H)	5.49 (s, 1H), 5.52 (s, 1H)
5-OCH ₃ , 3'-OCH ₃	3.80 (s, 3H), 3.81 (s, 3H)	3.81 (s, 3H), 3.82 (s, 3H)
6, 2'	6.40 (d, J = 1.9 Hz, 1H), 6.61 (s, 1H)	6.41 (s, 1H), 6.61 (s, 1H)
7, 8, 8'	2.41-2.64 (m, 4H)	2.42 - 2.64 (m, 4H)
7'	2.87 (dd, 1H, 14, 7 Hz), 2.95 (dd, 1H, J = 14, 5 Hz)	2.88 (dd, 1H, J = 14.2, 6.8 Hz), 2.95 (dd, 1H, J = 14.2, 5.9 Hz)
9	3.88 (dd, 1H, J = 9, 7 Hz), 4.09-4.18 (m, 1H)	3.89 (dd, 1H, J = 6.8, 6.8 Hz), 4.15 (dd, 1H, J = 9.3, 7.8 Hz)

Figure S32. (–)-arctigenin

¹H NMR spectrum of (–)-arctigenin in CDCl3 and comparison to literature (46)

Carbon No.	1Η δ (ppm) [m, J _{HH} (Hz), area] in CDCl ₃	Published 1H δ (ppm) [m, J_{HH} (Hz), area] in CDCl_3
2, 3, 6, 2', 5', 6'	6.45 (d, J = 2.1 Hz, 1H), 6.54 (dd, J = 8.1, 2.1 Hz, 1H), 6.58 – 6.64 (m, 2H), 6.74 (d, J = 8.1 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H)	6.46 (d, J = 2.0 Hz, 1H), 6.55 (dd, J = 7.8, 2.0 Hz, 1H), 6.61 (dd, J = 7.8, 2.0 Hz, 1H), 6.64 (d, J = 2.0 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H)
4'-OH	5.60 (s, 1H)	5.55 (s, 1H)
5-OCH ₃ , 4-OCH ₃ , 3'-OCH3	3.80 (s, 6H), 3.84 (s, 3H)	3.81 (s, 6H), 3.85 (s, 3H)
7, 8, 8'	2.40 – 2.68 (m, 4H)	2.43 - 2.67 (m, 4H)
7'	2.89 (dd, J = 14.1, 6.6 Hz, 1H), 2.94 (dd, J = 14.1, 5.3 Hz, 3H)	2.85 - 3.00 (m, 2H)
9	3.88 (dd, J = 9.6, 1.8 Hz, 1H), 4.06 – 4.17 (m, 1H)	3.88 (dd, J = 8.8, 7.3 Hz, 1H), 4.13 (dd, J = 8.8, 6.8 Hz, 1H)

Figure S33. (–)-pluviatolide

¹H NMR spectrum of (–)-pluviatolide in CDCl₃ and comparison to literature (47)

Carbon No.	1Η δ (ppm) [m, J _{HH} (Hz), area] in CDCl ₃	Published 1H δ (ppm) [m, J_{\rm HH} (Hz), area] in CDCl_3 $$
2, 3, 6, 2', 5', 6'	6.41 – 6.48 (m, 2H), 6.58 – 6.71 (m, 3H), 6.83 (d, J = 8.0 Hz, 1H)	6.44-6.47 (m, 2H), 6.63 (dd, J=1.8, 7.9 Hz, 1H), 6.67 (J = 1.8 Hz, d, 1H), 6.69 (d, J=7.7 Hz, 1H), 6.84 (d, J=8 Hz, 1H)
4, 5 O-CH ₂ -O	5.92 (s, 2H)	5.93 (d, J=1.4 Hz, 1H), 5.94 (d, J=1.4 Hz, 1H)
3'-OCH₃	3.84 (s, 3H)	3.85 (s, 3H)
7, 8, 8'	2.39 – 2.65 (m, 4H)	2.45 - 2.62 (m, 4H)
7'	2.88 (dd, J = 14.1, 6.8 Hz, 1H), 2.95 (dd, J = 14.0, 5.0 Hz, 1H),	2.89 (dd, J=7.0, 14.1 Hz, 1H), 2.96 (dd, J=5.2, 14.0 Hz, 1H)
9	3.85 – 3.91 (m, 1H), 4.06 – 4.15 (m, 1H)	3.86 (dd, J=7.4, 9.1 Hz, 1H), 4.11 (dd, J=7.1, 9.2 Hz, 1H)

Figure S34. (-)-5'-desmethoxy-yatein

¹H NMR spectrum of (–)-5'-desmethoxy-yatein in CDCl₃ and comparison to literature (48)

Carbon No.	1H δ (ppm) [m, J _{HH} (Hz), area] in CDCI ₃	Published 1H δ (ppm) [m, J_{\rm HH} (Hz), area] in CDCl_3
2, 3, 6, 2', 5', 6'	6.42 – 6.48 (m, 2H), 6.63 – 6.71 (m, 3H), 6.76 – 6.81 (m, 1H)	6.41-6.45 (m, 2H) 6.64-6.68 (m, 3H), 6.77 (d, J = 8.0, 1H)
4, 5 O-CH ₂ -O	5.92 (d, J = 1.5 Hz, 1H), 5.93 (d, J = 1.4 Hz, 1H)	5.90-5.91 (m, 2H)
3'-OCH ₃ , 4'-OCH ₃	3.83 (s, 3H), 3.86 (s, 3H	3.82 (s, 3H), 3.84 (s, 3H)
7, 8, 8'	2.39 – 2.65 (m, 4H)	2.44-2.58 (m, 4H)
7'	2.89 (dd, J = 14.1, 7.0 Hz, 1H), 2.97 (dd, J = 14.1, 5.1 Hz, 1H)	2.87 (dd, J = 7.1, 14.2, 1H), 2.95 (dd, J = 5.1, 14.0, 1H)
9	3.87 – 3.89 (m, 1H), 4.12 (dd, J = 9.1, 6.7 Hz, 1H)	3.84 (m, 1H), 4.10 (dd, J = 6.8, 9.0 Hz, 1H)

Figure S35. (–)-yatein

Carbon No.	1H δ (ppm) [m, J _{HH} (Hz), area] in CDCl ₃	Published 1H δ (ppm) [m, J_{HH} (Hz), area] in CDCI_3
2, 3, 6, 2', 6'	6.35 (s, 2H), 6.43 – 6.50 (m, 2H), 6.69 (d, J = 7.7 Hz, 1H)	6.36 (s, 2H), 6.46 (d, J = 1.7 Hz, 1H), 6.47 (dd, J = 6.9, 1.7 Hz, 1H), 6.69 (d, J = 8.3 Hz, 1H)
4, 5 O-CH ₂ -O	5.93 (d, J = 1.5 Hz, 1H), 5.94 (d, J = 1.4 Hz, 1H)	5.93 (d, J = 1.5 Hz, 1H), 5.94 (d, J = 1.5 Hz, 1H)
3'-OCH ₃ , 4'-OCH ₃ , 5'-OCH ₃	3.83 (s, 9H)	3.82 (s, 9H)
7, 8, 8'	2.41 – 2.66 (m, 4H)	2.48 - 2.63 (m, 4H)
7'	2.83 – 2.97 (m, 2H)	2.89 - 2.92 (m, 2H)
9	3.88 (dd, J = 9.2, 7.5 Hz, 1H), 4.18 (dd, J = 9.1, 7.2 Hz, 1H)	3.88 (dd, J=9.3, 7.3 Hz, 1H), 4.18 (dd, J = 9.3, 7.3 Hz, 1H)

Figure S36. (–)-deoxypodophyllotoxin

¹H NMR spectrum of (–)-deoxypodophyllotoxin in CDCl₃ and comparison to literature (49)

Carbon No.	1Η δ (ppm) [m, J_{HH} (Hz), area] in CDCl $_3$	Published 1H δ (ppm) [m, $J_{\rm HH}$ (Hz), area] in CDCl_3
3, 6, 2', 6'	6.33 (s, 2H), 6.50 (s, 1H), 6.66 (s, 1H)	6.34 (s, 2H), 6.52 (s, 1H), 6.67 (s, 1H)
4, 5 O-CH ₂ -O	5.92 (d, J = 1.3 Hz, 1H), 5.94 (d, J = 1.4 Hz, 2H)	5.93 (d, J = 1.0 Hz, 1H), 5.95 (d, J = 1.0 Hz, 1H)
3'-OCH ₃ , 4'-OCH ₃ , 5'-OCH ₃	3.73 (s, 6H), 3.79 (s, 3H)	3.75 (s, 6H), 3.80 (s, 3H)
7, 8, 8'	2.69 – 2.82 (m, 3H), 3.01 – 3.12 (m, 1H)	2.74 (m, 2H), 2.77 (m, 1H), 3.08 (d, J = 11.2 Hz, 1H)
7'	4.58 (d, J = 3.2 Hz, 1H)	4.60 (d, J = 2.8 Hz, 1H)
9	3.85 – 3.97 (m, 1H), 4.41 – 4.51 (m, 1H)	3.91 (td, 1H), 4.45 (td, 1H)

Figure S37. (–)-epipodophyllotoxin

¹H NMR spectrum of (–)-epipodophyllotoxin in CDCl₃ and comparison to literature (50)

Carbon No.	1H δ (ppm) [m, J _{HH} (Hz), area] in CDCl ₃	Published 1H δ (ppm) [m, J_{HH} (Hz), area] in CDCI_3
3, 6, 2', 6'	6.27 (s, 2H), 6.54 (s, 1H), 6.88 (s, 1H)	6.28 (s, 2H), 6.56 (s, 1H), 6.88 (s, 1H)
4, 5 O-CH ₂ -O	5.97 (d, J = 1.3 Hz, 1H), 6.00 (d, J = 1.3 Hz, 1H)	5.98 (d, J = 1.3 Hz, 1H), 6.00 (d, J = 1.3 Hz, 1H)
3'-OCH ₃ , 4'-OCH ₃ , 5'-OCH ₃	3.73 (s, 6H), 3.79 (s, 3H)	3.74 (s, 6H), 3.80 (s, 3H)
8, 8'	2.76 – 2.90 (m, 1H), 3.28 (dd, J = 14.1, 5.2 Hz, 1H)	2.84 (dddd, J = 14.1, 10.6, 7.9, 3.4 Hz, 1H), 3.29 (dd, J = 14.1, 5.1 Hz, 1H)
7, 7'	4.61 (d, J = 5.2 Hz, 1H), 4.87 (d, J = 3.4 Hz, 1H)	4.62 (d, J = 5.1 Hz, 1H), 4.88 (dd, J = 4.3, 3.4 Hz, 1H)
9	4.31 – 4.43 (m, 2H)	4.36 (dd, J = 10.6, 8.5 Hz, 1H), 4.39 (dd J = 8.5, 7.9, 1H)

Figure S38. (-)-4'-desmethyl-epipodophyllotoxin

 1 H NMR spectrum of (–)-4'-desmethyl-epipodophyllotoxin in CDCl₃ and comparison to literature (51)

Carbon No.	1Η δ (ppm) [m, J_{HH} (Hz), area] in CDCl $_3$	Published 1H δ (ppm) [m, $J_{\rm HH}$ (Hz), area] in CDCl $_3$
3, 6, 2', 6'	6.27 (s, 2H), 6.53 (s, 1H), 6.85 (s, 1H)	6.22 (s, 2H), 6.48 (s, 1H), 6.81 (s, 1H)
4, 5 O-CH ₂ -O	5.95 (d, J = 1.7 Hz, 1H), 5.98 (d, J = 1.7 Hz, 4H)	5.92 (dd, J = 8.8, 1.3 Hz, 2H)
-OH	5.38 (s, 1H)	5.35 (s, 1H)
3'-OCH ₃ , 5'-OCH ₃	3.75 (s, 6H)	3.70 (s, 6H)
8, 8'	2.73 – 2.86 (m, 1H), 3.25 (dd, J = 14.2, 5.1 Hz, 1H)	2.75 (dddd, J = 14.1, 6.3, 3.8, 3.5 Hz, 1H), 3.19 (dd, J = 14.1, 5.1 Hz, 1H)
7, 7'	4.59 (d, J = 5.0 Hz, 1H), 4.82 – 4.87 (m, 1H)	4.54 (d, J = 5.1 Hz, 1H), 4.79 (d, J = 3.5 Hz, 1H)
9	4.30 – 4.41 (m, 2H)	4.27 (d, J = 3.8 Hz, 1H), 4.31 (d, J = 6.3 Hz, 1H)

Table S1 and S2 Legends

Table S1 (Separate File). Hierarchical clustering of RNA-Seq expression data after filtering by enzyme family (CYPs, OMTs, 2-ODDs, PPOs). Heat map depicts gene expression levels; scale is below the heat map. Known biosynthetic genes (black), candidate genes (red), genes identified in this report (red with black arrows).

Table S2 (Separate File). Primers.

References

- 25. Bhattacharyya, Dipto, et al. "De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum." *BMC genomics* 14.1 (2013): 748.
- 26. Schmittgen, Thomas D., and Kenneth J. Livak. "Analyzing real-time PCR data by the comparative CT method." *Nature protocols* 3.6 (2008): 1101-1108.
- 27. Gordon, A., and G. J. Hannon. "Fastx-toolkit." *FASTQ/A short-reads preprocessing tools* (*unpublished*) *http://hannonlab. cshl. edu/fastx_toolkit* (2010).
- 28. Schulz, Marcel H., et al. "Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels." *Bioinformatics* 28.8 (2012): 1086-1092.
- 29. Li, Weizhong, and Adam Godzik. "Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences." *Bioinformatics* 22.13 (2006): 1658-1659.
- 30. Huang, Xiaoqiu, and Anup Madan. "CAP3: A DNA sequence assembly program."*Genome research* 9.9 (1999): 868-877.
- 31. Roberts, Adam, and Lior Pachter. "Streaming fragment assignment for real-time analysis of sequencing experiments." *Nature methods* 10.1 (2013): 71-73.
- Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth. "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data." *Bioinformatics* 26.1 (2010): 139-140.
- 33. Wei, Hairong, et al. "Transcriptional coordination of the metabolic network in Arabidopsis." *Plant physiology* 142.2 (2006): 762-774.
- 34. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 289-300.
- Sainsbury, F., E. C. Thuenemann and G. P. Lomonossoff (2009). "pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants." <u>Plant biotechnology journal</u> 7: 682-693.
- 36. Gibson, Daniel G., et al. "Enzymatic assembly of DNA molecules up to several hundred kilobases." *Nature methods* 6.5 (2009): 343-345.
- 37. Engler, Carola, Romy Kandzia, and Sylvestre Marillonnet. "A one pot, one step, precision cloning method with high throughput capability." *PloS one* 3.11 (2008): e3647.
- Smith, Colin A., et al. "XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification." *Analytical chemistry* 78.3 (2006): 779-787.
- 39. Gietz, R. Daniel, and Robert H. Schiestl. "High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method." *Nature protocols* 2.1 (2007): 31-34.
- 40. Pompon, Denis, et al. "Yeast expression of animal and plant P450s in optimized redox environments." *Methods in enzymology* 272.B (1996): 51-64.

- 41. Umezawa, Toshiaki, Laurence B. Davin, and Norman G. Lewis. "Formation of lignans (-)secoisolariciresinol and (-)-matairesinol with Forsythia intermedia cell-free extracts." *Journal of Biological Chemistry* 266.16 (1991): 10210-10217
- 42. Giddings, Lesley-Ann, et al. "A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus." *Journal of Biological Chemistry* 286.19 (2011): 16751-16757.
- 43. Miyata, Masaru, Kazutaka Itoh, and Sanro Tachibana. "Extractives of Juniperus chinensis L. I: Isolation of podophyllotoxin and yatein from the leaves of J. chinensis." *Journal of wood science* 44.5 (1998): 397-400.
- 44. Kawazu, K., et al. "Isolation of the cytotoxic constituent deoxypodophyllotoxin from the leaves of Juniperus chinensis." *Scientific Reports of the Faculty of Agriculture-Okayama University (Japan)* 86 (1997):1-5
- 45. Kamal, Ahmed, N. Laxman, and G. Ramesh. "Facile and efficient one-pot synthesis of 4β-arylaminopodophyllotoxins: synthesis of DNA topoisomerase II inhibitors (NPF and W-68)." *Bioorganic & medicinal chemistry letters* 10.18 (2000): 2059-2062
- Fischer, J., et al., Radical carboxyarylation approach to lignans. Total synthesis of (-)arctigenin,(-)-matairesinol, and related natural products. Organic letters, 2004. 6(9): p. 1345-1348.
- 47. Okunishi, T., T. Umezawa, and M. Shimada, *Enantiomeric compositions and biosynthesis ofWikstroemia sikokiana lignans.* Journal of wood science, 2000. **46**(3): p. 234-242.
- 48. Rojas-Sepúlveda, A.M., et al., *Cytotoxic podophyllotoxin type-lignans from the steam bark of Bursera fagaroides var. fagaroides.* Molecules, 2012. **17**(8): p. 9506-9519.
- Miyata, M., K. Itoh, and S. Tachibana, *Extractives of Juniperus chinensis L. I: Isolation of podophyllotoxin and yatein from the leaves of J. chinensis.* Journal of wood science, 1998.
 44(5): p. 397-400.
- 49. Cho, E.J., et al., Antibacterial activity and protective effect against gastric cancer by Anthriscus sylvestris fractions. Horticulture, Environment, and Biotechnology, 2013. 54(4): p. 326-330.
- 50. Engelhardt, U., A. Sarkar, and T. Linker, *Efficient Enantioselective Total Synthesis of* (–)-*Epipodophyllotoxin.* Angewandte Chemie International Edition, 2003. **42**(22): p. 2487-2489.
- Quirion, Jean-Charles, Deliencourt-Godefroy Geraldine Castelot, Christophe Audouard.
 "Novel gem-difluorinated c-glycoside compounds derived from podophyllotoxin, their preparation and their applications." Patent CA 2650384 C. Aug 5, 2014.