Design and control of extrachromosomal elements in *Methylorubrum extorquens* AM1

Martina Carrillo¹, Marcel Wagner², Florian Petit¹, Amelie Dransfeld^{1,2}, Anke Becker², Tobias J. Erb^{1,2*}

¹Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; ²LOEWE Center for Synthetic Microbiology, 35043 Marburg, Germany

*Correspondence: toerb@mpi-marburg.mpg.de

SUPPORTING INFORMATION

Contents of the material supplied as Supporting Information:

- Table S1 Strains used in this study.
- Table S2 Plasmids used in this study.
- Table S3 Primers used in this study.
- Table S4 Fold induction of IPTG-inducible promoters in *M. extorquens* AM1.
- Fig. S1 P_{L/O4/A1} promoter in *M. extorquens* AM1.
- Fig. S2 Overview of the individual *repABC* regions tested in this study.
- Fig. S3 Verification of flow cytometry sensitivity.
- Fig. S4 Replicon stability measured by flow cytometry of mini-chromosomes.
- Table S5 DNA sequences of inducible promoters characterized in this study.

Table S1 Strains used in this study.

Strains	Description	Reference
CM2720	Methylorubrum extorquens AM1 strain deficient in cellulose production	Delaney et al., 2013 ¹
SmCre∆hsdR	Sinorhizobium meliloti Rm1021 cre expression strain with hsdR deletion, tauX:: cre-tetRA (Tc ^R)	Döhlemann <i>et al.,</i> 2016 ²
Escherichia coli DH5α	F ⁻ Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(r _k -, m _k +) phoA supE44 thi-1 gyrA96 relA1 λ ⁻	Thermo Fischer Scientific
<i>E. coli</i> TOP10	F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG	Thermo Fischer Scientific
E. coli TOP10 ΔdapA	F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG dapA::FRT-cat-FRT; DAP deficient	This study

DAP – diaminopimelic acid

Table S2 Plasmids used in this study.

Plasmids	Description	Cloning strategy	Reference
pRK2013	Mobilization helper plasmid, Km ^R	n. a.	Figurski and Helinski, 1979 ³
pK18mob2	Suicide vector, Km ^R	n. a.	Tauch <i>et al.,</i> 1998⁴
pKD3	FRT-flanked chloramphenicol resistance cassette, Amp ^R Cm ^R	n. a.	Datsenko <i>et al.,</i> 2000⁵
pACYC184	Carrying p15A replication origin, Cm ^R , Tc ^R	n. a.	Chang and Cohen, 1978 ⁶
pXG-10	Carrying pSC101* replication origin, Cm ^R	n. a.	Urban and Vogel, 2007 ⁷
pIND4	pMG160 origin, P _{A1/04/03} promoter, empty vector, Km ^R	n. a.	Ind <i>et al.,</i> 2009 ⁸
pTE1830	pMG160 origin, $P_{A1/O4/O3}$ promoter, empty vector, Gm^R	PCR products of prMC276+MC278 from pIND4, prMC228+MC277 from pIND4, and prMC274+MC275 from pLAR-Gm (<i>aacC1</i>) were assembled via Gibson assembly.	This study
pTE1841	pMG160 origin, P _{A1/04/03} promoter, empty vector, Tc ^R	Nhel, Notl 5.283 bp fragment from pIND4, PCR products of pr276+295 from pIND4, prMC311+MC277 from pIND4, and prMC296+MC297 from pTE100 (<i>tetA</i>) were assembled via Gibson assembly.	This study
pTE100	Promoter-less, oriV-traJ' origin, Tc ^R	n. a.	Schada v. B. <i>et al,</i> 2015 ⁹
pTE101	Promoter-less, oriV-traJ' origin, Km ^R	n. a.	Schada v. B. <i>et al,</i> 2015 ⁹
pTE102	P _{mxaF} promoter, oriV-traJ' origin, Tc ^R	n. a.	Schada v. B. <i>et al,</i> 2015 ⁹
pTE102-mChe	P _{mxaF} promoter, mCherry, oriV-traJ' origin, Tc ^R	n. a.	Schada v. B. <i>et al,</i> 2015 ⁹
pTE104-mChe	P _{coxB} promoter, mCherry, oriV-traJ' origin, Tc ^R	n. a.	Schada v. B. <i>et al,</i> 2015 ⁹
pLoriVSm	Unloaded library vector for <i>repABC</i> regions, pK18mob2- derivative, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLsynTer-1	Library plasmid providing synTer1-MCS, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLsynTer-2	Library plasmid providing synTer2-MCS, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLsynTer-3	Library plasmid providing synTer3-MCS, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLAR-Km	Library plasmid providing a kanamycin resistance cassette, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰

pLAR-Gm	Library plasmid providing a gentamicin resistance cassette Km ^R , Gm ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLAR-Tc	Library plasmid providing a tetracyclin resistance cassette Km ^R , Tc ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLoriT	Unloaded library vector for oriT parts, pK18mob2- derivative, Km ^R	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pLoriT-1	Library plasmid providing a mob site	n. a.	Döhlemann <i>et al.,</i> 2017 ¹⁰
pAD1	pLoriVSm with <i>repABC_</i> Mex-DM4, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD7+8 from <i>Methylorubrum extorquens</i> DM4 gDNA.	This study
pAD2	pLoriVSm with <i>repABC_</i> Ocar-2a, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD13+14 from <i>Oligotropha carboxidovorans</i> OM5 gDNA.	This study
pAD3	pLoriVSm with <i>repABC_</i> Mrad-JCM, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD9+10 from <i>Methylobacterium radiotolerans</i> JCM2831 gDNA.	This study
pAD4	pLoriVSm with <i>repABC_</i> Ocar-1, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD11+12 from <i>Oligotropha carboxidovorans</i> OM5 gDNA.	This study
pAD5	pLoriVSm with <i>repABC_</i> Nham-2a, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD3+4 from <i>Nitrobacter hamburgensis</i> X14 gDNA.	This study
pAD6	pLoriVSm with <i>repABC_</i> Nham-3, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD5+6 from <i>Nitrobacter hamburgensis</i> X14 gDNA.	This study
pAD7	pLoriVSm with <i>repABC_</i> Ocar-2b, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD13+15 from <i>Oligotropha carboxidovorans</i> OM5 gDNA.	This study
pAD8	pLoriVSm with <i>repABC_</i> Mex-CM4, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD24+25 from <i>Methylorubrum extorquens</i> CM4 gDNA.	This study
pAD9	pLoriVSm with <i>repABC_</i> Mnod-1, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD26+27 from <i>Methylobacterium nodulans</i> ORS 2060 gDNA.	This study
pAD10	pLoriVSm with <i>repABC_</i> Mnod-2, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD28+29 from <i>Methylobacterium nodulans</i> ORS 2060 gDNA.	This study
pAD11	pLoriVSm with <i>repABC_</i> Nham-2b, Km ^R	Backbone: Scal linearized and dephosphorylated pLoriVSm; Insert: T4 PNK phosphorylated PCR product of prAD1+2 from <i>Nitrobacter hamburgensis</i> X14 gDNA.	This study
pMW216	Km ^R pMB1 origin; <i>repABC</i> _Mex-DM4; MCS 1	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} -nptll), pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD1 (<i>repABC_MexDM4</i>), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1) were <i>in</i> <i>vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW217	Km ^R pMB1 origin; <i>repABC</i> _Mrad-JCM; MCS 1	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} -nptll), pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD3 (<i>repABC_</i> Mrad-JCM), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1) were <i>in</i> <i>vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study

pMW218	Km ^R pMB1 origin; <i>repABC</i> _Nham-3; MCS 1	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} -nptll), pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD6 (<i>repABC_</i> Nham-3), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1) were <i>in vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW219	Km ^R pMB1 origin; <i>repABC</i> _Mex-CM4; MCS 1	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} -nptll), pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD8 (<i>repABC_</i> Mex-CM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1) were <i>in</i> <i>vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW220	Gm ^R p15A origin; <i>repABC</i> _Mex-DM4 ; MCS 2	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Gm (P _{min2} -aacC1), p15A_for + p15A_rev from pACYC184 (p15A origin), oriVSm_for + oriVSm_rev from pAD1 (<i>repABC_</i> Mex-DM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-2 (MCS2) were <i>in</i> <i>vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW221	Gm ^R p15A origin; <i>repABC</i> _Nham-3; MCS 1	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Gm (P _{min2} -aacC1), p15A_for + p15A_rev from pACYC184 (p15A origin), oriVSm_for + oriVSm_rev from pAD6 (<i>repABC_</i> Nham-3), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1) were <i>in vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW223	Tc ^R p15A origin; <i>repABC</i> _Mex-DM4; MCS 2	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Tc (P _{min2} - tetR), p15A_for + p15A_rev from pACYC184 (p15A origin), oriVSm_for + oriVSm_rev from pAD1 (<i>repABC_</i> Mex-DM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-2 (MCS2) were <i>in</i> <i>vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
oMW224	Tc ^R pSC101* origin; <i>repABC</i> _Nham-3; MCS 3	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Tc (P _{min2} - tetR), pSC101*_for + pSC101*_rev from pXG-10 (pSC101* origin), oriVSm_for + oriVSm_rev from pAD6 (<i>repABC_</i> Nham-3), synTer-MCS_for + synTer-MCS_rev from pLsynTer-3 (MCS3) were <i>in vitro</i> assembled via ligase cycling reaction using bridging oligonucleotides BO1, BO2, BO3 and BO4.	This study
pMW231	Library plasmid providing the gene for the Cre recombinase under the control of $P_{L/O4/A1}$	Backbone: Scal linearized and dephosphorylated pLoriT; Insert: T4 PNK phosphorylated PCR products of prMW1041+1042 from pTE1887 and prMW1028+1029 from SmCre∆hsdR gDNA. Three- component ligation with T4 DNA ligase.	This study
pMW232	Library plasmid providing the gene for the Cre recombinase under the control of P_{coxB}	Backbone: Scal linearized and dephosphorylated pLoriT; Insert: T4 PNK phosphorylated PCR products of prMW1043+1044 from pTE104-mChe and prMW1028+1029 from SmCreΔhsdR gDNA. Three- component ligation with T4 DNA ligase.	This study
pMW233	Gm ^R ; pMB1 origin; <i>repABC</i> _Mex-CM4; MCS 1; oriT	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Gm (P _{min2} -aacC1), pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD8 (<i>repABC_</i> Mex-CM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1), mob_for	This study

		+ mob_rev from pLoriT-1 (mob site) were in vitro assembled via ligase cycling reaction using	
		bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pMW234	Gm ^R ; pMB1 origin; <i>repABC_</i> Nham-3; MCS 2; oriT	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Gm (P _{min2} -aacC1),	This study
		pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD6	
		(repABC_Nham-3), synTer-MCS_for + synTer-MCS_rev from pLsynTer-2 (MCS2), mob_for +	
		mob_rev from pLoriT-1 (<i>mob</i> site) were <i>in vitro</i> assembled via ligase cycling reaction using	
		bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pMW235	Tc ^R ; pMB1 origin; <i>repABC_</i> Mex-DM4; MCS 3; oriT	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Tc (P _{min2} - tetR),	This study
		pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD1	
		(<i>repABC_</i> Mex-DM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-3 (MCS3), mob_for	
		+ mob_rev from pLoriT-1 (mob site) were in vitro assembled via ligase cycling reaction using	
		bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pMW236	Gm ^R ; pMB1 origin; <i>repABC_</i> Mrad-JCM; MCS 1; oriT	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Gm (P _{min2} -aacC1),	This study
		pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD3	
		(repABC_Mrad-JCM), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1), mob_for	
		+ mob_rev from pLoriT-1 (mob site) were in vitro assembled via ligase cycling reaction using	
		bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pMW237	Km ^R ; pMB1 origin; <i>repABC_</i> Mex-CM4; MCS 1; P _{coxB} - <i>cre</i>	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} - <i>nptII</i>),	This study
		pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD8	
		(repABC_Mex-CM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1), mob_for	
		+ mob_rev from pMW232 (P _{coxB} -cre) were in vitro assembled via ligase cycling reaction	
		using bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pMW238	Km ^R ; pMB1 origin; <i>repABC_</i> Mex-CM4; MCS 1; P _{L/04/A1} - <i>cre</i>	Phosphorylated PCR products of primers AR_for + AR_rev from pLAR-Km (P _{min2} -nptII),	This study
		pMB1_for + pMB1_rev from pK18mob2 (pMB1 origin), oriVSm_for + oriVSm_rev from pAD8	
		(repABC_Mex-CM4), synTer-MCS_for + synTer-MCS_rev from pLsynTer-1 (MCS1), mob_for	
		+ mob_rev from pMW231 (P _{L/O4/A1} -cre) were in vitro assembled via ligase cycling reaction	
		using bridging oligonucleotides BO1, BO2, BO3a, BO3b and BO4.	
pTE1179	pK18mob2 with homologous region of <i>katA</i>	Backbone: Xbal, Kpnl linearized pK18mob2; Insert: Xbal, Kpnl digest of PCR product from M.	This study
	(META1p3421), Km ^R	extorquens AM1 gDNA prMC157+158. Ligation with T4 DNA ligase.	
pTE1870	P _{A1/04/03} -mCherry_AAV protein degradation tag, Km ^R	Backbone: BsrGI, HindIII digested pTE1853; Insert: primer hybridization product	This study
		prMC398+399. Ligation with T4 DNA ligase.	
pTE1875	P _{mxaF} -mCherry_AAV protein degradation tag, Tc ^R	Backbone: Spel, Kpnl lin pTE102; Insert: Xbal, Kpnl 786bp fragment from pTE1870. Ligation	This study
		with T4 DNA ligase.	
pTE1899	pTE1179 with P _{mxaF} -mCherry_AAV tag expression cassette,	Backbone: Xbal linearized pTE1179; Insert: Xbal, Spel 1.3 kb fragment of pTE1875. Ligation	This study
	Km ^R	with T4 DNA ligase. Product 1.	
pTE1825	pIND4-derivative with P _{A1/04/03} -mCherry	Backbone: HindIII, Xbal linearized pIND4; Insert: HindIII, Xbal 740 bp fragment of	This study
		pTE102-mChe. Ligation with T4 DNA ligase.	
pTE1852	KpnI site at bp 1292 removed by SNP mutation, Km ^R	QuikChange mutagenesis of pTE1825 with prMC348+349.	This study
pTE1853	P _{A1/04/03} -mCherry; KpnI sites removed, Km ^R	QuikChange mutagenesis of pTE1852 with prMC353+354.	This study

pTE1855	P _{L/04} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361-8. Ligation with T4 DNA ligase.	This study
pTE1856	P _{L/04/03} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 367+369+370. Ligation with T4 DNA ligase.	This study
pTE1877	P _{L/04/A1} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 366+422+421. Ligation with T4 DNA ligase.	This study
pTE1878	P _{A1/05/04} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 363+381+383+378+419+420. Ligation with T4 DNA ligase.	This study
pTE1879	P _{A1con/O5/O4} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 363+377+381+383+419+423. Ligation with T4 DNA ligase	This study
pTE1880	P _{A1/04} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 363+376+380+382+419+420. Ligation with T4 DNA ligase.	This study
pTE1881	P _{A1/O4s} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 363+379+380+382+419+424. Ligation with T4 DNA ligase.	This study
pTE1882	P _{A1/O4s_GA} -mCherry, Km ^R	Backbone: Xbal, Aatll linearized pTE1853; Insert: primer hybridization product prMC361- 363+380+419+424+425+426. Ligation with T4 DNA ligase.	This study
pTE1863	P _{T5s/A1URS/03} -mCherry, Km ^R	Backbone: Xbal, AatII linearized pTE1853; Insert: primer hybridization product prMC361- 363+369+373-375+380. Ligation with T4 DNA ligase.	This study
pTE2714	P _{A1/04/03} promoter; empty multiple cloning site with Strep- II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1853; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1885	P _{L/O4} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1855; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1886	P _{L/O4/O3} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1856; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1887	$P_{L/O4/A1}$ promoter; empty multiple cloning site with Strep-II tag, \mbox{Km}^{R}	Backbone: Xbal, HindIII cut pTE1877; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1888	P _{A1/05/04} promoter; empty multiple cloning site with Strep- II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1878; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1889	P _{A1con/05/04} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1879; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1890	P _{A1/04} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1880; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1891	P _{A1/O4s} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1881; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1892	P _{A1/O4s_GA} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1882; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE1893	P _{T5s/A1} promoter; empty multiple cloning site with Strep-II tag, Km ^R	Backbone: Xbal, HindIII cut pTE1863; Insert: primer hybridization product prMC404-408. Ligation with T4 DNA ligase.	This study
pTE2704	P _{mxaF} -mCherry_AAV; <i>repABC</i> _Mex-DM4, Km ^R	Backbone: Scal, Pacl linearized pMW216; Insert: Scal, Pacl digest of PCR product prMC437+438 of pTE1875. Ligation with T4 DNA ligase.	This study

pTE2705	P _{mxaF} -mCherry_AAV;	Backbone: Scal, Pacl linearized pMW217; Insert: Scal, Pacl digest of PCR product	This study
		prMC437+438 of pTE1875. Ligation with T4 DNA ligase.	
pTE2706	P _{mxaF} -mCherry_AAV;	Backbone: Scal, Pacl linearized pMW218; Insert: Scal, Pacl digest of PCR product	This study
		prMC437+438 of pTE1875. Ligation with T4 DNA ligase.	
pTE2707	P _{mxaF} -mCherry_AAV;	Backbone: Scal, Pacl linearized pMW219; Insert: Scal, Pacl digest of PCR product	This study
		prMC437+438 of pTE1875. Ligation with T4 DNA ligase.	

n. a. – not applicable, gDNA – genomic DNA, Amp^R – ampicillin resistance, Cm^R – chloramphenicol resistance, Gm^R – gentamicin resistance, Km^R – kanamycin resistance, Tc^R – tetracycline resistance, pr – primers

 Table S3 Primers used in this study.

Primer #	Sequence
MC147	ATTCAACTTCCCGCACGAGT
MC148	GGCACCTTGTTGATCATCGC
MC157	TGATCTAGAGATTCTGACGACCCGTCAGG
MC158	TATGGTACCTCGCGCTGGTTCGAATAGAC
MC228	GAAACGCCTGGTATCTTTATAGTC
MC261	TGCCATACCAAACGTACCATTGAGACACTTGTTTGCACAGAGGATGGCCCTGGGAATTAGCCATGGTC
MC262	AGACCCAGTTCCTTACATGCCCATTTCACCGGGATTGGATTGGGTTCGACTCAGTCTTGAGCGATTGTG
	TAGG
MC274	ACAGTAATACAAGGGGTGTTATGTTACGCAGCAGCAACG
MC275	CAACCAATTAACCAATTCTGTTAGGTGGCGGTACTTGGG
MC276	AACACCCCTTGTATTACTG
MC277	CAGAATTGGTTAATTGGTTG
MC278	ATAAAGATACCAGGCGTTTC
MC295	TCGACGCGGGCCGAGCTTTG
MC296	CAACCAATTAACCAATTCTGATCAGCGATCGGCTCGTTGC
MC297	ACAGTAATACAAGGGGTGTTTCATGCTTGACACTTTATCAC
MC311	TTATTGGTGAGAATCCAAGC
MC348	CGCGCGAATTGCAGTTACCATTTATCAGGG
MC349	CCCTGATAAATGGTAACTGCAATTCGCGCG
MC352	CGAGCTCGGTACTGACGTAGCCCAGC
MC353	GCTGGGCTACGTCAGTACCGAGCTCG
MC361	CTAAGAAACCATTATTATCATGAC
MC362	ATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC
MC363	CCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGT
MC364	TTCACCTCGAGAAAAGATAAATTATCTCTGGCGGTGTTGACATGTG
MC365	ATCTTTTCTCGAGGTGAAGACGAAAGGGCCTCGTGATACG
MC366	AGTATCATTGTTATCCGCTCACATGTCAACACCGCCAGAGATAATTT
MC367	CTAGAGTCAGTGCGTCCTGCTGATGTGCTC
MC368	AGCGGATAACAATGATACTGAGCACATCAGCAGGACGCACTGACT
MC369	CTAGACTGTGTGAAATTGTTATCCGCTCACAATTGAATCTA
MC370	AGCGGATAACAATGATACTTAGATTCAATTGTGAGCGGATAACAATTTCACACAGT
MC373	AGCGCTCACAATTTATAATTAGATTCAATTGTGAGCGGATAACAATTTCACACAGT
MC375	ATTATAAATTGTGAGCGCTCACAAAGCAACACTCTTTTTG
MC376	AGTATCATTGTTATCCGCTCACAAGTCAACACTCTTTTTG
MC377	ATTATAATTGTTATCCGCTCACAAGTCAACTAAATTGTTACCGCTCA
MC378	AGTATCATTGTTATCCGCTCACAAGTCAACTAAATTGTTACCGCTCA
MC379	AGTATCAATTGTGAGCGCTCACAAGTCAACACTCTTTTTG
MC380	ATAAATTTTCTCGAGGTGAAGACGAAAGGGCCTCGTGATACG
MC381	
MC382	
MC383	
MC398	
MC399	
NIC405	
MC410	
MC419	
NC420	
MC422	
MC423	GATAACAATTATAATTAGATTCATCGAGAGGGACACGGCGACT
MC423	GATAACAATTATAATTAGATTCATCGAGAGGGGCGCGCGC
MC425	
MC426	
MC437	CTGACAGTACTCAAGCTAGCTTCCCGCTTGGTC
MC438	CGCTTAATTAACGACGGCCAGTGAATTAGG
AD1	ACCCGATCGCGAAAACTTCC
AD2	CTCGAGGGTTGGGCGAAAG
AD3	ATGGATCCGAAATCGCCCAG
AD4	AACTTCCTTCGTAGCGGTC

AD5	AACGAAGTTCGGCCATGACC
AD6	GGCGAACGCGAGGAGAAATT
AD7	ATGCTGCGGATCGCTAAAAAGA
AD8	TTCGGCTTGGTCTCGATCA
AD9	AGGTCTCGGAAAGACATCCG
AD10	CGGATCCAGGTGTTCAGGAA
AD11	ATCATTTGCGGCTCGCCTAG
AD12	GTCCAGACCATCGGGCTCTA
AD13	GGAAAGCCTGGTGCTGAAAT
AD14	TTTGTCGTCCTTGAAGGGATAGTT
AD15	CGGATCATCGATCGCATTCTG
AD24	ACCATCAAGAACTGCCCGTT
AD25	GTGACGGAATGACGCCGTAA
AD26	ATCTCCATTCACACCGCTGCTT
AD27	TTTGTCCGCGAGGTCTTCGTT
AD28	GTGCTTCGTCATGGCTCCAT
AD29	AATGACCTCTGACCGGCGTTA
MW125	GCGGTCGACGTTATGGAGCAGCAACGATGTT
MW126	GCGCTGCAGAGTACTTTAGGTGGCGGTACTTGGGTCG
MW1028	GCGCATATGTCCAATTTACTGACCGTACACCAAAAT
MW1029	GCTAGCGAATTCTAGTCGCCATC
MW1041	CGCCATATGTAATTTCTCCTCTTTAATTCTAGAGTC
MW1042	TCGCGCTAACTTACATTAATTG
MW1043	CGTATCCCCAGAGGCAGCCAAATTGC
MW1044	GCGCATATGCCCGCTTGGCTCCCCTGGTG
MW1046	ATAACTTCGTATATGGTATTATATACGAACGGTAG
MW1047	TCGACTACCGTTCGTATATAATACCATATACGAAGTTAT
MW1048	GTACCGTTCGTATAGCATACATTATACGAAGTTAT
MW1049	ATAACTTCGTATAATGTATGCTATACGAACGGTACTGCA
JD253	CTCGCAGAGCAGGATTCCCGTT
JD254	GGCAGGATAGGTGAAGTAGGCCCA
AR_for	GACCTTTTCTCCGACGAATAGA
AR_rev	GTCTTATCTGAAAGTTGTGCCTG
oriVSm_for	GAAACTGTCACTGGTCCGT
oriVSm_rev	TTCAGTTACGATAGAGTTCCACG
synTer-MCS_for	CTATTGAAGGAACACTGTATCTCG
synTer-MCS_rev	GTCAACCCGCTTACACTC
pMB1_for	TACTACTGTTTCAGACTGGCGTAATCACTCAGTAGATCAAAGGATCTTCTTGAGATCCTTTTTTC
pMB1_rev	TGGACAGAATAGTCTTACTCAGTGATTGCCAGTCGCGTTGCTGGCGTTTTTC
p15A_for	TACTACTGTTTCAGACTGGCGTAATCACTCAGTCTACATTTGAAGAGATAAATTGCACTG
p15A_rev	TGGACAGAATAGTCTTACTCAGTGATTGCCAGTTAGCGGAGTGTATACTGGC
pSC101*_for	TACTACTGTTTCAGACTGGCGTAATCACTCAGTCCTAGGGTACGGGTTTTGC
pSC101*_rev	TGGACAGAATAGTCTTACTCAGTGATTGCCAGTGACAGTAAGACGGGTAAGCCT
mob_for	TGTGACGATAAGTTCCCTACTG
mob_rev	CCTCTATTGATAACGGGTGACA
BO1	AACTTCTCGTGGAACTCTATCGTAACTGAAGTCTATTGAAGGAACACTGTATCTCGGTCA
BO2	GTTATCAGAAGAGTGTAAGCGGGTTGACTATACTACTGTTTCAGACTGGCGTAATCACTC
BO3	GGCAATCACTGAGTAAGACTATTCTGTCCAGACCTTTTCTCCGACGAATAGAGTAACAGA
BO3a	GGCAATCACTGAGTAAGACTATTCTGTCCATGTGACGATAAGTTCCCTACTGACAGAATC
BO3b	GGTTACAGTGTCACCCGTTATCAATAGAGGGACCTTTTCTCCGACGAATAGAGTAACAGA
BO4	GATTGGTCAGGCACAACTTTCAGATAAGACGAAACTGTCACTGGTCCGTTGATACAATCC

Promoter	Fluoresce	nce/OD ₆₀₀	Fold induction	Maximum strength relative to the P _{mxaF} promoter
	0 mM IPTG	1 mM IPTG		(%)*
background	339 ± 14	355 ± 13	n. a.	n. a.
P _{mxaF}	2152 ± 16	n. a.	n. a.	100
P _{A1/04/03}	376 ± 18	1355 ± 11	27	55.6
P _{L/O4}	526 ± 8	3172 ± 147	15	156.8
P _{L/O4/O3}	361 ± 4	1132 ± 66	36	43.2
P _{L/O4/A1}	471 ± 1	3332 ± 43	23	165.7
P _{A1/05/04}	416 ±8	1297 ± 14	12	52.4
P _{A1con/O5/O4}	384 ± 6	1286 ± 91	21	51.8
P _{A1/O4}	441 ± 4	2531 ± 131	21	121.1
P _{A1/O4s}	420 ± 14	855 ± 17	6	27.8
P _{A1/O4s_GA}	678 ± 5	2235 ± 224	6	104.6
P _{T5s/A1}	353 ± 6	510 ± 4	11	8.6

Table S4 Fold induction of IPTG-inducible promoters in *M. extorquens* AM1. Mean ± SD.

n. a. - not applicable. *Values after induction with 1 mM IPTG.

Fig. S1 $P_{L/O4/A1}$ promoter in *M. extorquens* AM1. Dynamic range of expression with 0-2 mM IPTG (**A**). Cultures expressing ± mCherry before and after induction with 1 mM IPTG; culture of an empty vector is shown as a reference (**B**).

Fig. S2 Overview of the individual *repABC* regions tested in this study. All *repABC* regions are shown with the start codon of *repA* aligned at the zero mark. The black lines depict the regions amplified outside of the *repABC* coding sequences to include necessary *parS* sites. A scale bar is given as a reference.

Fig. S3 Verification of flow cytometry sensitivity. Control strains were created by integrating the suicide vector pK18mob2 with (*katA*::pTE1899) and without (*katA*::pTE1179) a mCherry expression cassette into the chromosome of *M. extorquens*. Gates for were adjusted to distinguish between fluorescent (shown in pink) and non-fluorescent (shown in grey) cells using *katA*::pTE1179 (A), *katA*::pTE1899 (B), and mixtures thereof (C-F). 30,000 events were recorded per sample.

Fig. S4 Replicon stability measured by flow cytometry of mini-chromosomes with Mex-DM4, Mrad-JCM, Nham-3, and Mex-CM4 *repABC* regions (pTE2704-7, respectively) and an mCherry expression cassette. Control strains were created by integrating the suicide vector pK18mob2 with (*katA*::pTE1899) and without (*katA*::pTE1179) an mCherry expression cassette into the chromosome of *M. extorquens* AM1. 30,000 events were recorded per sample.

Table S5 DNA sequences of inducible promoters characterized in this study^a.

Promoter	Sequence
	GACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{A1/O4/O3}	ACCTCGAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCGGATAACAATGATACTTAGATTCAATTGTG
	AGCGGATAACAATTTCACACATCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{L/O4}	ACCTCGAGAAAAGATAAATTATCTCTGGCGGTGTTGACATGTGAGCGGATAACAATGATACTGAGCACATC
	AGCAGGACGCACTGACTCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{L/O4/O3}	ACCTCGAGAAAAGATAAATTATCTCTGGCGGTGTTGACATGTGAGCGGATAACAATGATACTTAGATTCAA
	TTGTGAGCGGATAACAATTTCACACAG <u>TCTAGA</u>
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{L/O4/A1}	ACCTCGAGAAAAGATAAATTATCTCTGGCGGTGTTGACATGTGAGCGGATAACAATGATACTGAGCACATC
	GAGAGGGACACGGCGACTCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
PARIOFICA	ACCTCGAGAAAAAATTGTGAGCGGTAACAATTTAGTTGACTTGTGAGCGGATAACAATGATACTTAGATTC
A1/05/04	ATCGAGAGGGACACGGCGACTCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{A1con/05/04}	ACCTCGAGAAAAAATTGTGAGCGGTAACAATTTAGTTGACTTGTGAGCGGATAACAATTATAATTAGATTC
	ATCGAGAGGGACACGGCGACTCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{A1/O4}	ACCTCGAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCGGATAACAATGATACTTAGATTCATCGAGA
	GGGACACGGCGACTCTAGA
	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{A1/O4s}	ACCTCGAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCGCTCACAATTGATACTTAGATTCATCGAGA
	GGGACACGGCGAC <u>TCTAGA</u>
P _{A1/O4s_GA}	<u>GACGTC</u> TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
	ACCTCGAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCACTCACAATTGATACTTAGATTCATCGAGA
	GGGACACGGCGAC <u>TCTAGA</u>
	GACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTC
P _{T5s/A1}	ACCTCGAGAAAATTTATCAAAAAGAGTGTTGCTTTGTGAGCGCTCACAATTTATAATTAGATTCAATTGTGA
	GCGGATAACAATTTCACACAGTCTAGA

^aThe promoter region is shown in **bold**, AatII and Xbal restriction sites are underlined. The surrounding sequences were included only to facilitate primer hybridization.

REFERENCES FOR SUPPORTING INFORMATION

- 1. Delaney, N. F., Kaczmarek, M. E., Ward, L. M., Swanson, P. K., Lee, M. C., and Marx, C. J. (2013) Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens, *PLoS One 8*, e62957.
- 2. Dohlemann, J., Brennecke, M., and Becker, A. (2016) Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination, *J. Biotechnol.* 233, 160-170.
- 3. Figurski, D. H., and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, *Proc. Natl. Acad. Sci. USA 76*, 1648-1652.
- 4. Tauch, A., Zheng, Z., Puhler, A., and Kalinowski, J. (1998) Corynebacterium striatum chloramphenicol resistance transposon Tn5564: genetic organization and transposition in Corynebacterium glutamicum, *Plasmid 40*, 126-139.
- 5. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, *Proc. Natl. Acad. Sci. USA 97*, 6640-6645.
- 6. Chang, A. C., and Cohen, S. N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid, *J. Bacteriol.* 134, 1141-1156.
- 7. Urban, J. H., and Vogel, J. (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo, *Nucleic Acids Res. 35*, 1018-1037.

- Ind, A. C., Porter, S. L., Brown, M. T., Byles, E. D., de Beyer, J. A., Godfrey, S. A., and Armitage, J. P. (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans, *Appl. Environ. Microbiol.* 75, 6613-6615.
- 9. Schada von Borzyskowski, L., Remus-Emsermann, M., Weishaupt, R., Vorholt, J. A., and Erb, T. J. (2015) A set of versatile brick vectors and promoters for the assembly, expression, and integration of synthetic operons in Methylobacterium extorquens AM1 and other alphaproteobacteria, *ACS Synth. Biol. 4*, 430-443.
- 10. Döhlemann, J., Wagner, M., Happel, C., Carrillo, M., Sobetzko, P., Erb, T. J., Thanbichler, M., and Becker, A. (2017) A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti, *ACS Synth. Biol. 6*, 968-984.