Cell, Volume 179

Supplemental Information

UVB-Induced Tumor Heterogeneity Diminishes

Immune Response in Melanoma

Yochai Wolf, Osnat Bartok, Sushant Patkar, Gitit Bar Eli, Sapir Cohen, Kevin Litchfield, Ronen Levy, Alejandro Jiménez-Sánchez, Sophie Trabish, Joo Sang Lee, Hiren Karathia, Eilon Barnea, Chi-Ping Day, Einat Cinnamon, Ilan Stein, Adam Solomon, Lital Bitton, Eva Pérez-Guijarro, Tania Dubovik, Shai S. Shen-Orr, Martin L. Miller, Glenn Merlino, Yishai Levin, Eli Pikarsky, Lea Eisenbach, Arie Admon, Charles Swanton, Eytan Ruppin, and Yardena Samuels

TABLES WITH TITLES AND LEGENDS

Description	Mutation Load (SNV genomic mutations)	Clonal SNV Fraction	Number of predicted neoantigens, affinity<500nM (non- redundant)	Average affinity	Average Hydrophobicity (KyteDoolittle scale)
Parental B2905	2745	0.079	296	233.637	0.712
UVB B2905	5479	0.063	302	228.673	0.672
UVB.2	9602	0.053	607	2086.41	0.621
UVB.3	7977	0.031	417	2196.95	0.645
SCC 1	3600	0.846	383	231.004	0.637
SCC 2	3720	0.887	137	219.252	0.604
SCC 3	9810	0.901	329	242.262	0.702
SCC 4	4721	0.824	163	244.195	0.762
SCC 5	9999	0.893	348	238.34	0.687
SCC 6	10405	0.874	346	239.534	0.754
SCC 7	13082	0.553	500	237.742	0.674
SCC 8	5652	0.798	177	214.352	0.534
SCC 9	11919	0.294	500	230.336	0.699
SCC 10	9804	0.877	350	234.973	0.678
SCC 11	4796	0.811	172	229.577	0.560
SCC 12	10510	0.877	408	240.755	0.771
SCC 13	10126	0.843	391	236.153	0.739
SCC 14	10103	0.894	334	246.734	0.868
SCC 15	12401	0.866	431	236.538	0.693
SCC 16	4208	0.848	144	235.044	0.704
SCC 17	10502	0.869	378	226.87	0.695
SCC 18	13134	0.657	498	239.086	0.705
SCC 19	11126	0.830	376	243.846	0.732
SCC 20	9497	0.886	361	236.804	0.730
SCC 21	11931	0.882	425	236.145	0.661
SCC 22	16977	0.496	643	233.478	0.665

Supplementary Table 1. WES bioinformatics analysis for all cell lines. Related to Figures 2 and 5.

Mutation Type	Parental B2905	UVB B2905	Mutations added to UVB line
T>G	243	234	189
T>C	1235	695	451
T>A	197	580	538
C>A	212	436	405
C>G	76	100	88
C>T	782	3434	3212

Supplementary Table 2. Exonic mutations added to B2905 cell line
following UVB irradiation, Related to Figure 2.

RMA-S Gene Protein Clone Binding MS peptide hit **DNA Change** number binding name change score DNM2 FAIFNTEQM g.chr9:21499367G>T p.R594M SCC14 263.91 H2-Db SGTA AGLLNSPHFI g.chr10:81048399T>C p.N228S SCC12 146.88 H2-Db PAPD5 QAFDFAYV SCC17 119.57 H2-Kb g.chr8:88252012A>T p.Y447F SCC3, NSD3 KGVGNKTEI 5,14,15,18,1 g.chr8:25666033A>G p.1539V 118.91 Not tested 9, 22 ASLTHVDSL IFI44 g.chr3:151738305T>C p.L338S SCC2 114.45 H2-Db SCC3, 4, 5, Weak POLK LANETISTL g.chr13:96483724T>G p.E736A 111.29 9, 15, 16, 19 binder NUP98 VINENYDYL g.chr7:102123687T>C p.I1658V SCC17 107.01 H2-Db SAYEKLYSL RPTOR g.chr11:119846903C>T p.H180Y SCC2 95.04 H2-Db CHRDL2 IGIYHLVQI g.chr7:100029349A>T p.K376l SCC9 91.9 Not tested VPS35 HQNVNVENI H2-Db g.chr8:85281264T>C p.K296E SCC9 86.136 KCNH2 VSLNTNSEKI g.chr5:24325544G>A p.P634L SCC11 80.755 Not tested KEAP1 FGVMNELHL SCC5 80.165 g.chr9:21237498C>T p.R71H Not tested SAITMAQV SMC4 g.chr3:69030402A>T p.K920M SCC9, 17 78.616 Not tested SVTLFYGTL OLFR204 SCC15 g.chr16:59314664A>T p.S248T 73.26 Not tested VAHIFVIGV PA2G4 g.chr10:128563088G>A p.T124I SCC13,18 70.912 H2-Kb TMEM135 SMYLVSKL g.chr7:89147986G>A p.A354V SCC5 49.715 Non binder VWA8 FAALLRYSI SCC9 42.311 Non binder g.chr14:78949545G>A p.G464R TMEM147 VIYDFIGEF SCC17 40.103 g.chr7:30728676C>A p.G63V Not tested

Supplementary Table 3. Peptide information, clone numbers in which they were found, MHC binding information. Related to Figure 5.

Supplementary Table 4. Multivariate cox regression analysis to test if ITH remains associated with overall survival in immune checkpoint inhibitor treated cohorts, while controlling for tumor purity as a confounding factor. Related to Figure 7.

ITH						
$\lambda(t) = \lambda(t) \exp(\beta_1 * ITH + \beta_2 * purity)$						
Study	feature exp(coefficient) standard (Hazard Ratio) error			Wald's statistic	p-value	
Snyder	ITH	9.464	0.8258	2.722	0.0065	
Snyder	purity	4.9392	0.8798	1.815	0.0695	
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value	
Riaz	ITH	2.1505	0.5166	1.482	0.138	
Riaz	purity	1.1262	1.1262 0.7208		0.869	
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value	
Hugo	ITH	3.976	0.8822	1.565	0.118	
Hugo	purity	0.5031	1.3864	-0.495	0.620	
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value	
Van Allen	ITH	0.7551	0.4365	-0.644	0.5199	
Van Allen	purity	5.3141	0.9066	1.842	0.0654	
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	Pmeta-value	
Meta-Analysis	ITH	-	-	-	0.01189	
Meta-Analysis	purity	-	-	-	0.15013	

Supplementary Table 5. Multivariate cox regression analysis to test if ITH remains associated with overall survival in immune checkpoint inhibitor treated cohorts, while controlling for tumor mutation burden as a confounding factor. Related to Figure 7.

Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value
Snyder	ITH	6.3696061	0.8762292	2.113	0.0346
Snyder	TMB	0.9998089	0.0002168	-0.882	0.378
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value
Riaz	ITH	1.9905849	0.4660073	1.477	0.14
Riaz	TMB	0.9994318	0.0005463	-1.04	0.298
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value
Hugo	ITH	5.0016966	0.8787699	1.832	0.067
Hugo	TMB	0.9991061	0.0006954	-1.286	0.198
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	p-value
Van Allen	ITH	0.9569098	0.382274	-0.115	0.908
Van Allen	TMB	0.9998826	0.0001625	-0.723	0.47
Study	feature	exp(coefficient) (Hazard Ratio)	standard error	Wald's statistic	Pmeta-value
Meta-Analysis	ITH	-	-	-	0.03881
Meta-Analysis	TMB	-	-	-	0.33259

$(t) = \lambda_0(t) \exp(\beta$	$\beta_1 * age + \beta_2 * sta$	$age + \beta_3 * purity +$	$\beta_4 * ITH$)	
feature	regression coefficient	standard error	Wald's statistic	p-value
stage	1.100826	0.026915	3.569	0.000358
age	1.021558	0.006257	3.409	0.000653
purity	1.150923	0.52276	0.269	0.788015
ITH	1.150773	0.072552	1.936	0.052915
Mutation Load				
$\lambda(t) = \lambda_0(t) \exp(\beta$	$P_1 * age + \beta_2 * sta$	$age + \beta_3 * load_{mut})$		
feature	regression coefficient	standard error	Wald's statistic	p-value
stage	1.097798927	0.0295909	3.153	0.001615
age	1.025529947	0.0070752	3.563	0.000367
mutation load	0.999850011	0.0001737	-0.863	0.388043
CNV load				
$\lambda(t) = \lambda_0(t) \exp(\beta$	$\beta_1 * age + \beta_2 * sta$	$age + \beta_3 * load_{cnv}$		
feature	regression coefficient	standard error	Wald's statistic	p-value
stage	1.099066299	0.026886	3.513	0.000443
age	1.024565889	0.006162	3.613	0.000303
		0.220076	0.520	0 500715

Supplementary Table 6. Multivariate cox regression analysis to test if ITH, Mutation load and CNV load are each associated with survival while controlling for confounding factors in Melanoma TCGA dataset. Related to STAR Methods.

likelihood ratio analysis to test if ITH contributes to survival differences while controlling for tumor purity						
model						
Survival ~ purity	-683.71	P-value associated with increase in log-likelihood $= 0.0257$				
Survival ~ purity + ITH	-681.11					

Supplementary Table 7. Related to Figure 6. Percentage of Clonal (shared between all SCCs), Subclonal (shared among a subset of the SCCs), and Private mutations among the 6 and 12 SCC mixes described in Figure 6C-F.

	6WB	6AB	12WB	12AB
Clonal	12.31	2.82	6.44	1.55
Subclonal	6.62	15.84	8.90	26.48
Private	81.07	81.34	84.67	71.97
Total	100	100	100	100
%(Clonal %(Clonal + Subclonal)	65	15	42	5
Subclonal %(<u>Clonal + Subclonal</u>)	35	85	58	95