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Additional Methods  

Regressions of mutation accumulation data from Mukai et al. (1972) 

Viability measurements of all lines excluding lethal lines were taken from the three experimental lines  
CH, PQ, and RT as shown in Tables 1, 2, and 3 of Mukai et al. (1972), respectively. In the same manner 
as was done in the plot in Figure 2 of Mukai et al., (1972), viability at each 10 generation period was 
weighted by the initial viably at generation zero. These experiments measured the mutation accumulation 
on the Drosophila second chromosome and the predicted mutation rate per second chromosome per 
generation was 0.172. Viability in Mukai et al., (1972) was measured every 10 generations, ending at 
generation 40. Mutation number for Figure S3 was estimated by multiplying 0.172 by the generation 
number that viability measurements were taken.  

Comparison of the fit of the regressions in Table 1 were done using an F-test. This was done in R 3.0.3 
using var.test on the linear models. The regression on fitness is given by 
lm(log(fitness)~mutations) for the multiplicative case, lm(fitness~mutations)for the 
additive case , and by lm(log(fitness)~mutations +I(mutations^2)) for the quadratic 
case. The P-values for comparing these 3 models are shown in Table S1.  

Measure of skewness created by the numerical iterations 

Skewness of deleterious mutation number was measured as a deviation from that predicted under a 
Poisson distribution (which is the distribution when there is independence among sites). This was 
accomplished in the numerical iterations by calculating the average number of deleterious mutations per 
genome (𝑥̅𝑠𝑠𝑠) for a given 𝑈 and 𝑠. In this case, 

𝑥̅𝑠𝑠𝑠 = � 𝑗𝑗𝑗(𝑗)
𝑥𝑚𝑚𝑚

𝑗=0
 

where  𝑗 is the number of deleterious mutations in an individual and 𝑃𝑃(𝑗) is the frequency of individuals 
in the iteration at equilibrium with 𝑗 mutations.  

 If a distribution is Poisson (as is the case with independence among sites) the skewness should be equal 
to 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑥̅𝑠𝑠𝑠)−1/2 

The actual skew in the distribution at equilibrium was calculated by 
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𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑ (𝑗 − 𝑥̅𝑠𝑠𝑠)3𝑥𝑚𝑚𝑚
𝑗=0 Pr (𝑗)

[∑ (𝑗 − 𝑥̅𝑠𝑠𝑠)2𝑥𝑚𝑚𝑚
𝑗=0 Pr (𝑗)]3/2 

If there is independence among sites, the ratio 𝑆𝑆𝑆𝑆 � 𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1. If the actual 

skewness of the mutations in the distribution deviates from predicted, the ratio will deviate from 
1.  Figure S2 shows this ration, 𝑆𝑆𝑆𝑆 � 𝑎𝑎𝑎𝑎𝑎𝑎

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�, for the values of 𝑠 analyzed in the iterations.  

 
Numerical iterations using regression coefficients from Table 1 
 
Numerical iterations were performed using the fitness functions in Table 1 to predict 𝑤� .  
Iterations were run using the quadratic fitness model  

𝑤(𝑥) = 𝑒−𝛼𝛼−
1
2𝛽𝛽

2
 (16) 

as in Charlesworth (1990), with 𝛼 = 𝑎ℎ and 𝛽 = 2ℎ2𝑏, where 𝑎 and 𝑏 are the linear and 
quadratic regression coefficients, respectively, and ℎ is the dominance coefficient. Here I use 𝑎 
and 𝑏 from the quadratic regressions in Table 1, and ℎ = 0.2 as in Charlesworth (1990). 
Similarly, numerical iterations were also run using the additive fitness model  

𝑤(𝑥) = 1 − 𝑠𝑠 (17) 
Here, 𝑠 = 𝑎ℎ, where 𝑎 is the linear regression coefficient from the additive regressions in Table 
1. Lastly, numerical iterations were run using the multiplicative fitness model 

𝑤(𝑥) = 𝑒−𝑠𝑠 (18) 
where again 𝑠 = 𝑎ℎ and 𝑎 is the linear regression coefficient from the multiplicative regressions. 

 
These fitness models in Eqs (16) –(18) were then used to modify 𝑤𝑥−𝑖 in Eq (15). Specifically, 
for the quadratic model   
 

𝑤𝑥−𝑖 =
𝑒−𝛼(𝑥−𝑖)−12𝛽(𝑥−𝑖)2

𝑤�
 

 

(19) 

where  

𝑤� = � � Pr(𝑚) Pr(𝑛)
𝑥𝑚𝑚𝑚

𝑛=0

𝑥𝑚𝑚𝑚

𝑚=0

(𝑒−𝛼(𝑚+𝑛)−12𝛽(𝑚+𝑛)2) 

and Pr(𝑚) and Pr(𝑛) are the same as described above for the numerical iterations. Similarly, for 
the multiplicative case we have 

𝑤𝑥−𝑖 =
𝑒−𝑠(𝑥−𝑖)

𝑤�
 

 

(20) 

where  

𝑤� = � � Pr(𝑚) Pr(𝑛)
𝑥𝑚𝑚𝑚

𝑛=0

𝑥𝑚𝑚𝑚

𝑚=0

(𝑒−𝑠(𝑚+𝑛)) 
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Eq (19) and (20)  were used for the value of (𝑤𝑥−𝑖) in Eq (15) and iterations were run with a 𝑈 
of 2.2. For the additive model, 𝑠 was obtained as described for Eq (17) and used in the additive 
iterations as described above. 
Because Eqs (19) and (20) are fitness functions that never reach a fitness of zero, and therefore 
the 𝑥𝑚𝑚𝑚 in the iterations will approach infinity, a truncation point of 650 mutations per genome 
was selected where fitness would equal zero. In the iterations the frequency of individuals with 
649 mutations was on the order of 10−38 or lower, demonstrating that this truncation point does 
not impact the accuracy of the iteration. 
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Figure S1. The average number of deleterious mutations per genome, 𝑥̅, from iterations of 
additive fitness effects. A. 𝑈 =1 B. 𝑈 =2.2 C. 𝑈 =3 D. 𝑈 =10. The x-axis represents varying values of 
the selection coefficient (𝑠) displayed on a log scale. Note that 𝑥̅ is also on a log scale. The higher 

straight blue line represents the predicted average 𝑥̅ under multiplicative effects (𝑥̅ ≈ 𝑈
𝑠
) from Eq (3)  and 

the lower straight red line represents the predicted average fitness under addititve effects �𝑥� ≈ 𝑈
𝑠(𝑈+1)

� 

from Eq (15). Each dot represents the equilibrium average 𝑥̅ under a given 𝑠.  
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Figure S2. The ratio of the actual skewness of mutation number from the iterations of additive 
fitness effects, to that predicted from a Poission distribution. A. 𝑈 =1 B. 𝑈 =2.2 C. 𝑈 =3 D. 𝑈 =10. 
The x-axis represents varying values of the selection coefficient (𝑠) displayed on a log scale. The straight 

red line represents the ratio 𝑆𝑆𝑆𝑆 � 𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� = 1, and represents the ratio if there is independence 

among sites.  
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Figure S3. Regressions of Drosophila mutation accumulation data from Mukai et al. (1972) 
predicting the additive, multiplicative and quadratic fitness functions. Regressions onto data 
from A) Experiment CH B) Experiment PQ and C) Experiment RT from Mukai et al. (1972).  
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Experiment 
Mukai et al. (1972) 

Multiplicative-Quadratic 
P-value 

Multiplicative-Additive 
P-value 

Additive-Quadratic 
P-value 

CH 0.7172 0.9140 0.6464 
PQ 0.8245 0.7067 0.5759 
RT 0.7087 0.8576 0.5931 
Table S1. P-values from comparisons of the regressions for the three models (multiplicative, additive, 
and quadratic) for each of the three experiments (CH, PQ, and RT) from Mukai et al. (1972). Regressions 
were compared using var.test in R 3.0.3.  
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File S2 

The following alternative method of deriving load equations under additive fitness is based on 
derivations provided to me by Brian Charlesworth (personal communication). This method takes 
into account the departure in the variance of mutation number from Poisson that occurs in 1 
generation of selection. 

Take a trait 𝑥, where p(𝑥) is the probability distribution function and follows a standardized 
Gaussian distribution, with a mean 𝑀[𝑝] = 0 anda variance 𝑉𝑉𝑉[𝑝] = 1 as in Shnol and 
Kondrashov (1993). From Eq (2) in Shnol and Kondrashov (1993), the variance of 𝑥 after 
selection, 𝑉𝑉𝑉[𝑃], is  

𝑉𝑉𝑉[𝑃] =
𝐼2
𝐼0
− �

𝐼1
𝐼0
�
2

 

 
(21) 

where 𝐼𝑘 = ∫𝑥𝑘𝑤(𝑥)𝑝(𝑥)𝑑𝑑. With additive fitness effects, the fitness function can be defined as 
𝑤(𝑥) = 𝑎 + 𝑏𝑏. The average fitness (𝑤�) is given by 𝐼0 and will therefore be 𝐼0 = 𝑤� = 𝑎. 
Additionally, 𝐼1 = ∫𝑥𝑥(𝑥)𝑝(𝑥)𝑑𝑑 will give 𝐼1 = 𝑏 and  𝐼2 = ∫𝑥2𝑤(𝑥)𝑝(𝑥)𝑑𝑑  will give 

𝐼2 = 𝑎. Therefore, 𝑉𝑉𝑉[𝑃] = 1 − �𝑏
𝑎
�
2
. The change in variance due to selection is equal to 

𝑉𝑉𝑉[𝑝] − 𝑉𝑎𝑎[𝑃] and since 𝑉𝑉𝑉[𝑝] = 1, this change in variance will be −�𝑏
𝑎
�
2
. If we define 𝑧 

as the number of mutant genes per genome and 𝑉𝑧 as the variance of 𝑧, then the change in 

variance due to selection is ∆= −𝑉𝑧 �
𝑏
𝑎
�
2
.  

The fitness function with respect to 𝑧 is 𝑤(𝑧) = 1 − 𝑠𝑠. Note that 𝑥 = 𝑧−𝑧̅
𝜎𝑧

, where 𝜎𝑧 is the 

standard deviation of 𝑧 and 𝑧̅ is the average. If 𝑤(𝑥) = 𝑤(𝑧), then 𝑏 = −𝑠𝜎𝑧 and 𝑎 = 1 − 𝑠𝑧.̅ 
This then gives 

∆= −
𝑠2𝑉𝑧2

(1 − 𝑠𝑧̅)2
 

 
(22) 

Assuming that the distribution of 𝑧 before selection is Poisson, the variance before selection will 
be equal to 𝑧̅.  Eqs (9) and (10) in Charlesworth (1990) indicate that ∆ represents the departure of 
the variance from Poisson. That is, 𝑧̅ − 𝑉𝑧 = ∆, so that 

𝑧̅ − 𝑉𝑧 =
𝑠2𝑉𝑧2

(1 − 𝑠𝑧̅)2
 

 
(23) 

Again assuming a normal distribution, we know that the average change in fitness due to 
selection is 

∆𝑤� =
𝑉𝑤
𝑤�

 
(24) 
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in accordance with Fisher’s fundamental theorem of natural selection. Because 𝑉𝑤 = 𝑠2𝑉𝑧 and as 
above 𝑤� = (1 − 𝑠𝑧̅) so that ∆𝑤� = 𝑠(∆𝑧̅). Eq (24) can then can be written as 

∆𝑧̅ =
𝑠𝑠𝑧

1 − 𝑠𝑧̅
 

 
(25) 

 

which represents the decrease in average number of deleterious mutations per individual due to 
selection. At equilibrium, the decrease in deleterious mutations due to selection will be equal to 
the increase due to new mutations, so that 

𝑠𝑠𝑧
1 − 𝑠𝑧̅

= 𝑈 
 

(26) 

Substituting (26) into (23) gives 𝑧̅ − 𝑉𝑧 = 𝑈2. Therefore, replacing 𝑉𝑧 in (26) with 𝑧̅ − 𝑈2 and 
solving (26) for 𝑧̅ gives  

𝑧̅ =
𝑈(1 + 𝑠𝑠)
𝑠(1 + 𝑈)

 

 
(27) 

 

and therefore 𝑤�  is  

𝑤� = 1 − 𝑠 �
𝑈(1 + 𝑠𝑠)
𝑠(1 + 𝑈)

� =
1 − 𝑠𝑠
1 + 𝑈

 

 
(28) 

Eqs (27) and (28) are similar to (12) and (13) in the main text except with the addition of +𝑠𝑠 
and – 𝑠𝑠, respectively. Eq (28) helps capture the decrease in fitness that occurs as the value of 𝑠 
increases. This derivation assumes that the distribution of mutation number is Guassian, even 
after selection.  However, as the numerical iterations indicate (Figure S2), additive effects create 
skewness in the distribution. Also, similar to the derivations  for (12) and (13), these derivations 
also ignore the effect of the truncation point where 1 − 𝑠 ≤ 0 gives a fitness of zero. As can be 
seen in Figure S4, though fitness decreases with increasing s using (28), like Eq (13), it also 
quickly loses accuracy under larger  𝑠.  
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Figure S4. Comparison of Eq (28), where 𝒘� = 𝟏−𝒔𝒔
𝑼+𝟏

, to numerical iterations of absolute 
fitness for varying degrees of 𝒔 and 𝑼 under additive fitness effects. A. 𝑈 =1 B. 𝑈 =2.2 C. 𝑈 
=3 D. 𝑈 =10. Similar to Figure 2, the x-axis represents varying values of the selection coefficient 
(𝑠) on a natural-log scale. The lower straight blue line represents the predicted average fitness 
(𝑤�) under multiplicative effects (𝑤� = 𝑒−𝑈) and the upper straight red line represents the 

predicted average fitness under additive effects �𝑤� = 1
𝑈+1

� as in Eq (13). Each dot represents the 
equilibrium average fitness from numerical iterations under a given 𝑠. The function in green 
represents 𝑤� = 1−𝑠𝑠

𝑈+1
 as in Eq (28) in the derivation in File S2. 


