A dose response model for quantifying the infection risk of antibiotic-resistant bacteria

 $Srikiran\ Chandrasekaran^1$

Sunny C. Jiang^{1,*}

¹University of California Irvine, Civil and Environmental Engineering, Irvine, 92697, United States *Corresponding author (sjiang@uci.edu)

Supplementary Materials

Datasets used in this study

	[Ref]	Dose	$n_{ m ill}$	$n_{ m tot}$	$t_{ m fs}({ m days})$	
DS1	[1]	$1.00\mathrm{e}{+04}$	0	5		
		$1.00\mathrm{e}{+04}$	0	5		
		$1.00\mathrm{e}{+06}$	0	5	1	
		$1.00\mathrm{e}{+06}$	1	9	1	
		$1.00\mathrm{e}{+08}$	5	8		
		$1.00\mathrm{e}{+08}$	3	5		
	[1]	$1.00 \mathrm{e}{+06}$	0	4		
		$1.00\mathrm{e}{+06}$	1	5		
		$1.00\mathrm{e}{+08}$	1	5		
		$5.00\mathrm{e}{+08}$	3	5		
		$2.50\mathrm{e}{+09}$	6	6		
DS2		$1.00\mathrm{e}{+10}$	9	10	2.625	
		$1.00\mathrm{e}{+10}$	9	14		
		$1.00\mathrm{e}{+10}$	3	5		
		$1.00\mathrm{e}{+10}$	5	5		
		$2.00\mathrm{e}{+10}$	2	2		
		$2.30 \mathrm{e}{+10}$	14	19		

Table S1: Datasets used in this study

Parameter ranges for sensitivity analysis

Parameter	Units	Lower bound	Upper bound
C	${ m mg~L^{-1}}$	0.00	0.05
f_r	_	0.00	0.10
$\log_{10}(d)$	_	1.00	4.00
E_{\max}^*	day^{-1}	612.00	1836.00
EC ₅₀ *	$\mod \mathrm{L}^{-1}$	4.96	14.89
r^*	$\mathrm{CFU^{-1}}$	5.33×10^{-9}	1.59×10^{-8}
t_{fs}	days	1.50	2.50

Table S2: Parameter ranges for exponential model. Parameters with * are increased and decreased by 50% of the values used in Fig. 2.

Parameter	Units	Lower bound	Upper bound
C	$\mod L^{-1}$	0.00	0.05
f_r	_	0.00	0.10
$\log_{10}(d)$	_	1.00	4.00
E_{max}^*	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	612.00	1836.00
EC_{50}^* α^*	$\mod L^{-1}$	4.96	14.89
α^*	_	0.08	0.24
β^*	_	7.07×10^6	2.12×10^7
$t_{\rm fs}$	days	2	3

Table S3: Parameter ranges for β -Poisson model. Parameters with * are increased and decreased by 50% of the values used in Fig. 2.

β -Poisson procedure verification

Figure S1: Verify conversion procedure for β -Poisson model. (**A**) Plot of μ at various concentration. (**B**) Comparison of empirical CDF of the sampled r values and the CDF from the fitted Beta distributions. The analytical CDF at 0% MIC is also shown for comparison.

Methods

Using the Simple Death DRM

Suppose we are interested in calculating the response for a pathogen. It is present in an exposure case with d=1000, with 20% of the pathogen being resistant to an antibiotic, and the concentration of antibiotic is $C=0.025 \times \text{MIC} (2 \,\mu\text{g mL}^{-1}) = 0.05 \,\mu\text{g/mL}$.

- Identify dose-response data for the pathogen. This can be like DS1 or DS2 listed in Table S1.
- Identify $t_{\rm fs}$. This is the latest time at which some subject shows the first symptom. Suppose $t_{\rm fs}=1$ day
- Identify E_{max} and EC_{50} for the antibiotic-pathogen combination of interest. Suppose $E_{\text{max}} = 1224 \text{ day}^{-1} \text{and } EC_{50} = 9.93 \text{ mg L}^{-1} = 9.93 \ \mu \text{g mL}^{-1}$.
- Fit both exponential and β -Poisson models to this dataset and identify the best fitting model, using methods outlined in [2].
- If best fitting model is exponential, go to section titled "Using exponential DRM". If best fitting model is β -Poisson, go to section titled "Using β -Poisson DRM".

Our sensitivity analyses indicate that getting approximate values for $t_{\rm fs}$ are sufficient to predict response. However, it's value is critical to accurately estimate death rate (μ) if using the exponential DRM.

Using exponential DRM

The exponential model is given by:

$$P(d) = 1 - \exp\left(-rd\right)$$

Suppose the best fit for r is given by $\hat{r} = 1.07 \times 10^{-8}$.

• Compute μ by solving

$$(1 - \exp(-\mu t_{f_S})) = \exp(-\hat{r})$$

to get

$$\mu = -\log(1 - \exp(-\hat{r}))/t_{fs} = 7.97 \,\mathrm{day}^{-1}$$

• Compute $\mu_{s,AB}(C)$ using

$$\mu_{s, \mathrm{AB}}(C) = \mu + \frac{E_{\mathrm{max}}C}{EC_{50} + C} = 7.97 \mathrm{day}^{-1} + \frac{1224 \, \mathrm{day}^{-1} \times 0.05 \mu \mathrm{g \ mL}^{-1}}{(9.93 + 0.05) \mu \mathrm{g \ mL}^{-1}} = 14.10 \, \mathrm{day}^{-1}$$

- Set $\mu_{r,AB} = \mu = 7.97 \,\mathrm{day}^{-1}$
- Compute extinction probabilities for the susceptible and resistant subpopulations using

$$P_{\text{ext},s}(d|f_r, C) = (1 - \exp(-\mu_{s,\text{AB}}(C)t_{\text{fs}}))^{d \times (1 - f_r)} \approx 0.999400822$$

$$P_{\mathrm{ext},r}(d|f_r,C) = (1 - \exp(-\mu_{r,\mathrm{AB}}t_{\mathrm{fs}}))^{d \times f_r} \approx 0.933317727$$

• Compute total response probability with

$$P(d|f_r, C) = 1 - P_{\text{ext},s}(d|f_r, C)P_{\text{ext},r}(d|f_r, C) \approx 0.067241497$$

• If $(1 - P_{\text{ext},s}(d,t|f_r,C))P_{\text{ext},r}(d,t|f_r,C) > (1 - P_{\text{ext},r}(d,t|f_r,C))$, illness is AB treatable. If not, illness is not AB treatable. In this case, this condition evaluates to False and hence the illness is likely not AB treatable.

Using β -Poisson DRM

The β -Poisson DRM is given by

$$P(d) = 1 - \left(1 + \left(\frac{d}{\beta}\right)\right)^{-\alpha}$$

Suppose the best fit parameters are $\hat{\alpha} \approx 0.1615058$ and $\hat{\beta} = 1414958$. Computing response probabilities is more involved and requires access to a function that can fit a beta distribution, such as the fitdistrplus package in R ([3]).

- From the values of $\hat{\alpha}$, $\hat{\beta}$, E_{max} , EC₅₀ and C, compute α_s and β_s for the susceptible subpopulation. For this, use the algorithm outlined in the Methods section. We get $\alpha_s = 0.1613020$ and $\beta_s = 1.295420 \times 10^{13}$.
- Set $\alpha_r = \hat{\alpha}$ and $\beta_r = \hat{\beta}$ for the resistant subpopulation.
- Compute extinction probabilities for the susceptible and resistant subpopulations using

$$P_{\text{ext},s}(d|f_r,C) = \left(1 + \left(\frac{d \times (1 - f_r)}{\beta_s}\right)\right)^{-\alpha_s} = 1$$

and

$$P_{\mathrm{ext},r}(d|f_r,C) = \left(1 + \left(\frac{d \times f_r}{\beta_r}\right)\right)^{-\alpha_r} \approx 0.999977202$$

• Compute total response probability with

$$P(d|f_r, C) = 1 - P_{\text{ext. s}}(d|f_r, C)P_{\text{ext. r}}(d|f_r, C) \approx 2.28 \times 10^{-5}$$

• If $(1 - P_{\text{ext},s}(d,t|f_r,C))P_{\text{ext},r}(d,t|f_r,C) > (1 - P_{\text{ext},r}(d,t|f_r,C))$, illness is AB treatable. If not, illness is not AB treatable. In this case, this condition evaluates to False and hence the illness is likely AB untreatable.

References

- [1] Tacket, C. O. et al. Role of EspB in Experimental Human Enteropathogenic Escherichia coli Infection. Infection and Immunity 68, 3689–3695 (2000). URL http://iai.asm.org/cgi/doi/10.1128/IAI.68.6.3689-3695.2000.
- [2] Haas, C. N., Rose, J. B. & Gerba, C. P. Quantitative Microbial Risk Assessment (John Wiley & Sons, Inc, Hoboken, New Jersey, 2014). URL http://doi.wiley.com/10.1002/9781118910030.
- [3] Delignette-Muller, M. & Dutang, C. fitdistrplus: An R Package for Fitting Distributions. *Journal of Statistical Software, Articles* **64**, 1–34 (2015). URL https://www.jstatsoft.org/v064/i04.