Impact of weather seasonality and sexual transmission on the spread of Zika fever

Attila Dénes^{*1}, Mahmoud A. Ibrahim^{1,2}, Lillian Oluoch¹, Miklós Tekeli¹, and Tamás Tekeli¹

¹Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary ²Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Supplementary information

S.1 The governing equations

In accordance with the transmission diagram in Figure 3 and the parameter description given in Table 1, introducing the notation $N_h(t)$ and $N_f(t)$, for the total human and total female human population, respectively, the corresponding system of differential equations takes the form

$$\begin{split} S'_{f}(t) &= \frac{B_{h}}{2} - \beta \frac{\kappa_{e} E_{m}(t) + \kappa_{a} I_{m}^{a}(t) + I_{m}^{s}(t) + \kappa_{r} I_{m}^{r}(t)}{N_{f}(t)} S_{f}(t) - \frac{\tilde{\alpha}_{h}(t) I_{v}(t)}{N_{h}(t)} S_{f}(t) - dS_{f}(t), \\ E'_{f}(t) &= \beta \frac{\kappa_{e} E_{m}(t) + \kappa_{a} I_{m}^{a}(t) + I_{m}^{s}(t) + \kappa_{r} I_{m}^{r}(t)}{N_{f}(t)} S_{f}(t) + \frac{\tilde{\alpha}_{h}(t) I_{v}(t)}{N_{h}(t)} S_{f}(t) - \nu_{h} E_{f}(t) - dE_{f}(t), \\ I_{f}^{a}'(t) &= \theta \nu_{h} E_{f}(t) - \gamma_{a} I_{f}^{a}(t) - dI_{f}^{a}(t), \\ I_{f}^{s}'(t) &= (1 - \theta) \nu_{h} E_{f}(t) - \gamma_{s} I_{f}^{s}(t) - dI_{f}^{s}(t), \\ R'_{f}(t) &= \gamma_{a} I_{a}^{a}(t) + \gamma_{s} I_{s}^{s}(t) - dR_{f}(t), \\ S'_{m}(t) &= \frac{\tilde{\alpha}_{h}(t) I_{v}(t)}{N_{h}(t)} S_{m}(t) - dS_{m}(t), \\ E'_{m}(t) &= \frac{\tilde{\alpha}_{h}(t) I_{v}(t)}{N_{h}(t)} S_{m}(t) - \nu_{h} E_{m}(t) - dI_{m}^{s}(t), \\ I_{m}^{s}'(t) &= (1 - \theta) \nu_{h} E_{m}(t) - \gamma_{s} I_{m}^{s}(t) - dI_{m}^{s}(t), \\ I_{m}^{s}'(t) &= (1 - \theta) \nu_{h} E_{m}(t) - \gamma_{s} I_{m}^{s}(t) - dI_{m}^{s}(t), \\ I_{m}^{s}'(t) &= (1 - \theta) \nu_{h} E_{m}(t) - \gamma_{s} I_{m}^{s}(t) - dI_{m}^{s}(t), \\ I_{m}^{s}'(t) &= (1 - \theta) \nu_{h} E_{m}(t) - \gamma_{s} I_{m}^{s}(t) - dI_{m}^{s}(t), \\ I_{m}^{s}'(t) &= (1 - \theta) \nu_{h} E_{m}(t) - \gamma_{s} I_{m}^{s}(t) - dI_{m}^{s}(t), \\ S'_{v}(t) &= \tilde{N}_{v}(t) - \tilde{\alpha}_{v}(t) \frac{\eta_{e} E_{f}(t) + \eta_{a} I_{f}^{a}(t) + I_{f}^{s}(t) + \eta_{e} E_{m}(t) + \eta_{a} I_{m}^{a}(t) + I_{m}^{s}(t) + I_{m}^{s}(t)} S_{v}(t) - \mu S_{v}(t), \\ E'_{v}(t) &= \tilde{\alpha}_{v}(t) \frac{\eta_{e} E_{f}(t) + \eta_{a} I_{f}^{a}(t) + I_{s}^{s}(t) + \eta_{e} E_{m}(t) + \eta_{a} I_{m}^{a}(t) + I_{m}^{s}(t)} N_{h}(t)}{N_{h}(t)} S_{v}(t) - (\nu_{v} + \mu) E_{v}(t), \\ I'_{v}(t) &= \nu_{v} E_{v}(t) - \mu I_{v}(t). \end{split}$$

^{*}Corresponding author. Email: denesa@math.u-szeged.hu

Here, B_h and d denote human birth and death rate, respectively, β stands for transmission rate from symptomatically infected men to susceptible women, while for transmission rates from exposed, asymptotically infected and convalescent men to women are obtained by multiplying β by κ_e, κ_a and κ_r , respectively. The parameter θ is the fraction of asymptomatically infected among all infected people. The length of latent period for humans is $1/\nu_h$ and $1/\gamma_a, 1/\gamma_s$ denote the length of infected period for asymptotically and symptomatically infected people, respectively, while $1/\gamma_r$ is the length of the period during which recovered men are still infectious through sexual contact. The functions $\tilde{\alpha}_h(t)$, $\tilde{\alpha}_v(t)$ and $B_v(t)$ denote transmission rate from an infectious mosquito to a susceptible human, transmission rate from an infected human to a susceptible mosquito and mosquito birth rate, respectively. These functions are assumed to be time periodic with one year as a period and, following e.g. [49] they are assumed to be of the form $\tilde{\alpha}_h(t) = \alpha_h \cdot (\sin\left(\frac{2\pi}{D}t + b\right) + a)$, $\tilde{\alpha}_v(t) = \alpha_v \cdot \left(\sin\left(\frac{2\pi}{P}t + b\right) + a\right)$ and $\tilde{B}_v(t) = B_v \cdot \left(\sin\left(\frac{2\pi}{P}t + b\right) + a\right)$, respectively, where P is period length, a, b are free adjustment parameters and α_h, α_v, B_v are constants. Just like in the case of human-to-human transmission, we also introduce the modification parameters η_e, η_a for infectiousness of exposed and asymptomatically infected people, respectively. We have $1/\nu_v$ for the length of the latent period for mosquitoes, while average life span of mosquitoes is given by $1/\mu$.

The introduction of a nonautonomous model was needed to reproduce an epidemic with multiple peaks; this is supported by Figure S.1 where we tried to fit the autonomous model obtained from (S.1) by setting the time-dependent parameters (mosquito birth and death rates and biting rates) constant.

Figure S.1: Best fitting solution of the autonomous model for the case of Costa Rica.

S.2 Derivation of the basic reproduction number of the autonomous model

To calculate the basic reproduction number \mathcal{R}_0 of the autonomous model obtained from (S.1) by setting the time-dependent parameters (mosquito birth and death rates and biting rates) constant, i.e. $\tilde{B}_v(t) \equiv B_v$, $\tilde{\alpha}_h(t) \equiv \alpha_h$ and $\tilde{\alpha}_v(t) \equiv \alpha_v$, we follow the general approach established in [50]. Given the infectious states E_f , I_f^a , I_f^s , E_m , I_m^a , I_m^s , I_m^r , E_v and I_v in (S.1), we can create the transmission vector \mathcal{F} representing the new infections flowing only into the exposed compartments given by

while the transition vector \mathcal{V} which denotes the outflow from the infectious compartments in (S.1), is given by

$$\mathcal{V} = \left((\nu_h + d) E_f, (\gamma_a + d) I_f^a - \theta \nu_h E_f, (\gamma_s + d) I_f^s - (1 - \theta) \nu_h E_f, (\nu_h + d) E_m, (\gamma_a + d) I_m^a - \theta \nu_h E_m, (\gamma_s + d) I_m^s - (1 - \theta) \nu_h E_m, (\gamma_r + d) I_m^r - \gamma_a I_m^a - \gamma_s I_m^s, (\nu_v + \mu) E_v, \mu I_v - \nu_v E_v \right)^{\mathsf{T}}$$

here we note that the notations α_h, α_v and B_v stand for the (now constant) transmission rate from an infectious mosquito to a susceptible human, transmission rate from an infected human to a susceptible mosquito and mosquito birth rate, respectively. Substituting the values in the disease-free equilibrium $N_h = \frac{B_h}{d}$ and $N_f = \frac{B_h}{2d}$, we compute the Jacobian F from \mathcal{F} given by

and the Jacobian V from \mathcal{V} given by

therefore the characteristic polynomial of the next generation matrix FV^{-1} is

$$\lambda^6 \left(R_{mf} R_{vh} R_{fv} + R_{vh} (R_{fv} + R_{mv})\lambda - \lambda^3 \right) = 0$$

where

$$\begin{split} R_{mf} &= \frac{\beta \kappa_e}{(d+\nu_h)} + \frac{\beta(1-\theta)\nu_h}{(\gamma_s+d)(d+\nu_h)} + \frac{\beta \kappa_a \theta \nu_h}{(\gamma_a+d)(d+\nu_h)} + \frac{\beta \kappa_r \nu_h (\gamma_a \gamma_s + \theta \gamma_a d + (1-\theta)\gamma_s d)}{(\gamma_a+d)(\gamma_r+d)(\gamma_s+d)(d+\nu_h)} \\ R_{vh} &= R_{vm} = R_{vf} = \frac{\alpha_h \nu_v}{2\mu(\mu+\nu_v)} \\ R_{fv} &= \frac{\alpha_v B_v \eta_e d}{\mu B_h (d+\nu_h)} + \frac{\alpha_v B_v \eta_a \theta d\nu_h}{\mu B_h (\gamma_a+d)(d+\nu_h)} + \frac{\alpha_v B_v (1-\theta) d\nu_h}{\mu B_h (\gamma_s+d)(d+\nu_h)} \\ R_{mv} &= \frac{\alpha_v B_v \eta_e d}{\mu B_h (d+\nu_h)} + \frac{\alpha_v B_v (1-\theta) d\nu_h}{\mu B_h (\gamma_s+d)(d+\nu_h)} + \frac{\alpha_v B_v \eta_a \theta d\nu_h}{\mu B_h (\gamma_s+d)(d+\nu_h)} + \frac{\alpha_v B_v d\mu_h (\gamma_s+\theta) \gamma_s d}{\mu B_h (\gamma_s+d)(d+\nu_h)} \end{split}$$

The characteristic polynomial therefore is the following cubic equation given by

$$\lambda^3 - R_{vh}(R_{fv} + R_{mv})\lambda - R_{mf}R_{vh}R_{fv} = 0$$

According to [50], the basic reproduction number \mathcal{R}_0 is the spectral radius of FV^{-1} . Thus, the basic reproduction number \mathcal{R}_0 corresponds to the dominant eigenvalue given by the root of the cubic equation

$$\mathcal{R}_{0} = \frac{\sqrt[3]{2}R_{vh}(R_{fv} + R_{mv})}{\sqrt[3]{27R_{mf}R_{vh}R_{fv}} + \sqrt{729R_{mf}^{2}R_{vh}^{2}R_{fv}^{2} - 108R_{vh}^{3}(R_{fv} + R_{mv})^{3}}} + \frac{\sqrt[3]{27R_{mf}R_{vh}R_{fv}} + \sqrt{729R_{mf}^{2}R_{vh}^{2}R_{fv}^{2} - 108R_{vh}^{3}(R_{fv} + R_{mv})^{3}}}{3\sqrt[3]{2}}$$

S.3 Numerical estimation of the basic reproduction number of the nonautonomous model

In periodic epidemiological models, one can determine the basic reproduction as the spectral radius of a linear integral operator on a space of periodic functions (see [39] for details). The value of the basic reproduction number generally cannot be calculated analytically, but one can numerically approximate it. To do so, first, one writes the model

$$x'(t) = f(x(t))$$

as

$$x'_i = \mathcal{F}_i(t, x) - \mathcal{V}_i(t, x), \qquad i = 1, \dots, n,$$

where $\mathcal{F}_i(t, x)$ stands for the be the rate of new infections in compartment i and $\mathcal{V}_i(t, x) = \mathcal{V}_i^-(t, x) - \mathcal{V}_i^+(t, x)$ with $\mathcal{V}_i^+(t, x)$ denoting the rate of transfer into compartment i by all means different from new infections, and $\mathcal{V}_i^-(t, x)$ is the rate of transfer out of the *i*th compartment. Let m be the number of infectious compartments. The matrices F(t) and V(t) are defined as

$$F(t) = \left(\frac{\partial \mathcal{F}_i(t, x_0(t))}{\partial x_j}\right)_{1 \le i, j \le m} \quad \text{and} \quad V(t) = \left(\frac{\partial \mathcal{V}_i(t, x_0(t))}{\partial x_j}\right)_{1 \le i, j \le m}$$

and consider the linear periodic equation

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \left(-V(t) + \frac{F(t)}{\lambda}\right)w, \qquad t \in \mathbb{R}$$
(S.2)

with $\lambda \in (0, \infty)$. First we find the monodromy matrix Φ of (S.2) by finding *m* linearly independent solutions, most simply by taking the (linearly independent) unit vectors of \mathbb{R}^m as initial values.

Then we select an initial guess λ_0 and determine the spectral radius $\rho(\Phi(\lambda_0))$. If this ρ_0 is less than 1, then we set $\lambda_- = \lambda_0$ and increase our guess λ_0 to find an upper bound λ_+ with which $\rho(\Phi(\lambda_+))$ is larger than 1. If $\rho_0 > 1$, we proceed similarly, but the other way around. Then we keep choosing $\lambda_j \in (\lambda_-, \lambda_+)$ e.g. as $(\lambda_- + \lambda_+)/2$ and if $\rho(\Phi(\lambda_j)) < 1$, we set $\lambda_- = \lambda_j$, otherwise $\lambda_+ = \lambda_j$. We proceed until $\lambda_+ - \lambda_- < \varepsilon$ for some sufficiently small ε . For more details see e.g. [40].