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Supplementary information

S.1 The governing equations

In accordance with the transmission diagram in Figure 3 and the parameter description given in
Table 1, introducing the notation Nh(t) and Nf (t), for the total human and total female human
population, respectively, the corresponding system of differential equations takes the form

S′f (t) = Bh
2 − β

κeEm(t)+κaIam(t)+Ism(t)+κrIrm(t)
Nf (t)

Sf (t)− α̃h(t)Iv(t)
Nh(t)

Sf (t)− dSf (t),

E′f (t) = β κeEm(t)+κaIam(t)+Ism(t)+κrIrm(t)
Nf (t)

Sf (t) + α̃h(t)Iv(t)
Nh(t)

Sf (t)− νhEf (t)− dEf (t),

Iaf
′(t) = θνhEf (t)− γaIaf (t)− dIaf (t),

Isf
′(t) = (1− θ)νhEf (t)− γsIsf (t)− dIsf (t),

R′f (t) = γaI
a
f (t) + γsI

s
f (t)− dRf (t),

S′m(t) = Bh
2 −

α̃h(t)Iv(t)
Nh(t)

Sm(t)− dSm(t),

E′m(t) = α̃h(t)Iv(t)
Nh(t)

Sm(t)− νhEm(t)− dEm(t),

Iam
′(t) = θνhEm(t)− γaIam(t)− dIam(t),

Ism
′(t) = (1− θ)νhEm(t)− γsIsm(t)− dIsm(t),

Irm
′(t) = γaI

a
m(t) + γsI

s
m(t)− γrIrm(t)− dIrm(t),

R′m(t) = γrI
r
m(t)− dRm(t),

S′v(t) = B̃v(t)− α̃v(t)
ηeEf (t)+ηaI

a
f (t)+I

s
f (t)+ηeEm(t)+ηaIam(t)+Ism(t)+Irm(t)

Nh(t)
Sv(t)− µSv(t),

E′v(t) = α̃v(t)
ηeEf (t)+ηaI

a
f (t)+I

s
f (t)+ηeEm(t)+ηaIam(t)+Ism(t)+Irm(t)

Nh(t)
Sv(t)− (νv + µ)Ev(t),

I ′v(t) = νvEv(t)− µIv(t).

(S.1)

∗Corresponding author. Email: denesa@math.u-szeged.hu

1



Here, Bh and d denote human birth and death rate, respectively, β stands for transmission rate
from symptomatically infected men to susceptible women, while for transmission rates from exposed,
asymptotically infected and convalescent men to women are obtained by multiplying β by κe, κa
and κr, respectively. The parameter θ is the fraction of asymptomatically infected among all
infected people. The length of latent period for humans is 1/νh and 1/γa, 1/γs denote the length
of infected period for asymptotically and symptomatically infected people, respectively, while 1/γr
is the length of the period during which recovered men are still infectious through sexual contact.
The functions α̃h(t), α̃v(t) and B̃v(t) denote transmission rate from an infectious mosquito to
a susceptible human, transmission rate from an infected human to a susceptible mosquito and
mosquito birth rate, respectively. These functions are assumed to be time periodic with one year as
a period and, following e.g. [49] they are assumed to be of the form α̃h(t) = αh ·

(
sin
(
2π
P t+ b

)
+a
)
,

α̃v(t) = αv ·
(

sin
(
2π
P t + b

)
+ a

)
and B̃v(t) = Bv ·

(
sin
(
2π
P t + b

)
+ a

)
, respectively, where P is

period length, a, b are free adjustment parameters and αh, αv, Bv are constants. Just like in the
case of human-to-human transmission, we also introduce the modification parameters ηe, ηa for
infectiousness of exposed and asymptomatically infected people, respectively. We have 1/νv for the
length of the latent period for mosquitoes, while average life span of mosquitoes is given by 1/µ.

The introduction of a nonautonomous model was needed to reproduce an epidemic with multiple
peaks; this is supported by Figure S.1 where we tried to fit the autonomous model obtained from
(S.1) by setting the time-dependent parameters (mosquito birth and death rates and biting rates)
constant.
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Figure S.1: Best fitting solution of the autonomous model for the case of Costa Rica.
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S.2 Derivation of the basic reproduction number of the autonomous model

To calculate the basic reproduction number R0 of the autonomous model obtained from (S.1) by
setting the time-dependent parameters (mosquito birth and death rates and biting rates) constant,
i.e. B̃v(t) ≡ Bv, α̃h(t) ≡ αh and α̃v(t) ≡ αv, we follow the general approach established in [50].
Given the infectious states Ef , Iaf , Isf , Em, Iam, Ism, Irm, Ev and Iv in (S.1), we can create the
transmission vector F representing the new infections flowing only into the exposed compartments
given by

F =

(
β κeEm+κaIam+Ism+κrIrm

Nf
Sf + αHIV

NH
SF , 0, 0,

αhIv
Nh

Sm, 0, 0, 0,
αhIv
Nh

Sm,

0, 0, αv
ηeEf+ηaI

a
f+I

s
f+ηeEm+ηaIam+Ism+Irm

Nh
Sv, 0

)ᵀ

,

while the transition vector V which denotes the outflow from the infectious compartments in (S.1),
is given by

V =
(

(νh + d)Ef , (γa + d)Iaf − θνhEf , (γs + d)Isf − (1− θ)νhEf , (νh + d)Em, (γa + d)Iam − θνhEm,

(γs + d)Ism − (1− θ)νhEm, (γr + d)Irm − γaIam − γsIsm, (νv + µ)Ev, µIv − νvEv
)ᵀ

here we note that the notations αh, αv and Bv stand for the (now constant) transmission rate
from an infectious mosquito to a susceptible human, transmission rate from an infected human
to a susceptible mosquito and mosquito birth rate, respectively. Substituting the values in the
disease-free equilibrium Nh = Bh

d and Nf = Bh
2d , we compute the Jacobian F from F given by

F =



0 0 0 βκe βκa β βκr 0
αh
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

αh
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

αvBvηed
µBh

αvBvηad
µBh

αvBvd
µBh

αvBvηed
µBh

αvBvηad
µBh

αvBvd
µBh

αvBvd
µBh

0 0

0 0 0 0 0 0 0 0 0


and the Jacobian V from V given by

V =



d+νh 0 0 0 0 0 0 0 0
−θνh γa+d 0 0 0 0 0 0 0

−(1−θ)νh 0 γs+d 0 0 0 0 0 0
0 0 0 d+νh 0 0 0 0 0
0 0 0 −θνh γa+d 0 0 0 0
0 0 0 −(1−θ)νh 0 γs+d 0 0 0
0 0 0 0 −γa −γs γr+d 0 0
0 0 0 0 0 0 0 µ+νv 0
0 0 0 0 0 0 0 −νv µ

,

therefore the characteristic polynomial of the next generation matrix FV −1 is

λ6
(
RmfRvhRfv +Rvh(Rfv +Rmv )λ− λ3

)
= 0
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where

Rmf = βκe
(d+νh)

+ β(1−θ)νh
(γs+d)(d+νh)

+ βκaθνh
(γa+d)(d+νh)

+ βκrνh(γaγs+θγad+(1−θ)γsd)
(γa+d)(γr+d)(γs+d)(d+νh)

Rvh = Rvm = Rvf = αhνv
2µ(µ+νv)

Rfv = αvBvηed
µBh(d+νh)

+ αvBvηaθdνh
µBh(γa+d)(d+νh)

+ αvBv(1−θ)dνh
µBh(γs+d)(d+νh)

Rmv = αvBvηed
µBh(d+νh)

+ αvBv(1−θ)dνh
µBh(γs+d)(d+νh)

+ αvBvηaθdνh
µBh(γa+d)(γs+d)(d+νh)

+ αvBvdνh(γaγs+θγad+(1−θ)γsd)
µBh(γa+d)(γr+d)(γs+d)(d+νh)

The characteristic polynomial therefore is the following cubic equation given by

λ3 −Rvh(Rfv +Rmv )λ−RmfRvhRfv = 0

According to [50], the basic reproduction number R0 is the spectral radius of FV −1. Thus, the
basic reproduction number R0 corresponds to the dominant eigenvalue given by the root of the
cubic equation

R0 =
3√2Rvh (Rfv+Rmv )

3

√
27RmfRvhRfv+

√
729R2

mfR
2
vhR

2
fv−108R

3
vh (Rfv+Rmv )3

+
3

√
27RmfRvhRfv+

√
729R2

mfR
2
vhR

2
fv−108R

3
vh (Rfv+Rmv )3

3 3√2

S.3 Numerical estimation of the basic reproduction number of the nonautonomous
model

In periodic epidemiological models, one can determine the basic reproduction as the spectral radius
of a linear integral operator on a space of periodic functions (see [39] for details). The value of
the basic reproduction number generally cannot be calculated analytically, but one can numerically
approximate it. To do so, first, one writes the model

x′(t) = f(x(t))

as
x′i = Fi(t, x)− Vi(t, x), i = 1, . . . , n,

where Fi(t, x) stands for the be the rate of new infections in compartment i and Vi(t, x) = V−i (t, x)−
V+i (t, x) with V+i (t, x) denoting the rate of transfer into compartment i by all means different from
new infections, and V−i (t, x) is the rate of transfer out of the ith compartment. Let m be the
number of infectious compartments. The matrices F (t) and V (t) are defined as

F (t) =
(
∂Fi(t,x0(t))

∂xj

)
1≤i,j≤m

and V (t) =
(
∂Vi(t,x0(t))

∂xj

)
1≤i,j≤m

and consider the linear periodic equation

dw

dt
=
(
−V (t) + F (t)

λ

)
w, t ∈ R (S.2)

with λ ∈ (0,∞). First we find the monodromy matrix Φ of (S.2) by finding m linearly independent
solutions, most simply by taking the (linearly independent) unit vectors of Rm as initial values.
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Then we select an initial guess λ0 and determine the spectral radius ρ(Φ(λ0)). If this ρ0 is less than
1, then we set λ− = λ0 and increase our guess λ0 to find an upper bound λ+ with which ρ(Φ(λ+))
is larger than 1. If ρ0 > 1, we proceed similarly, but the other way around. Then we keep choosing
λj ∈ (λ−, λ+) e.g. as (λ− + λ+)/2 and if ρ(Φ(λj)) < 1, we set λ− = λj , otherwise λ+ = λj . We
proceed until λ+ − λ− < ε for some sufficiently small ε. For more details see e.g. [40].
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