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1 Supplementary Methods: Signal-to-Noise Ra-
tio Analysis

As in the article text, we refer to phases 1-3 as P1-P3. We define the signal
as the squared norm of the expected policy change in P1 induced by the policy
gradient. To be precise, let ∆θ :=

∑
t∈P1∇θ log π(at|ht)Rt. Further, in the

following assume that the returns are baseline-subtracted, i.e. Rt → Rt−Eπ[Rt].
We define the signal as

Signal := ‖Eπ[∆θ]‖2

=

∥∥∥∥Eπ [ ∑
t∈P1

∇θ log π(at|ht)
∑
t′≥t

rt′

]∥∥∥∥2.
We define the noise as the trace of the variance of the policy gradient

Noise := Tr
(
Varπ[∆θ])

= Eπ
[∥∥∥∥ ∑

t∈P1

∇θ log π(at|ht)Rt − Eπ[∆θ]

∥∥∥∥2].
Recall that rt ≡ 0 for t ∈ P1. Further, P1 and P2 are approximately indepen-
dent as P2 is a distractor phase whose initial state is unmodified by activity in
P1. The only dependence is given by the agent’s internal state and parameters,
but we assume for these problems it is a weak dependence, which we ignore for
present calculations. In this case,

Eπ
[ ∑
t∈P1

∇θ log π(at|ht)
∑
t′≥t

rt′

]
= Eπ

[ ∑
t∈P1

∇θ log π(at|ht)
[ ∑
t′∈P2

rt′ +
∑
t′∈P3

rt′

]]

≈ Eπ
[ ∑
t∈P1

∇θ log π(at|ht)
∑
t′∈P3

rt′

]
. (1)

Based on these considerations, the signal term is easy to calculate:

Signal ≈ ‖Eπ[∆θ|no P2]‖2

=

∥∥∥∥Eπ[ ∑
t∈P1

∇θ log π(at|ht)
∑
t′∈P3

rt′

]∥∥∥∥2.
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Define gθ :=
∑
t∈P1∇θ log π(at|ht). With this, the noise term becomes

Noise = Eπ
[∥∥∥∥ ∑

t∈P1

∇θ log π(at|ht)
∑
t′≥t

rt′ − Eπ[∆θ]

∥∥∥∥2]

= Eπ
[∥∥∥∥gθ[ ∑

t′∈P2

rt′ +
∑
t′∈P3

rt′

]
− Eπ[∆θ]

∥∥∥∥2]

= Eπ
[∥∥∥∥gθ ∑

t′∈P2

rt′ +

(
gθ
∑
t′∈P3

rt′ − Eπ[∆θ]

)]∥∥∥∥2]

≈ Eπ
[∥∥∥∥gθ ∑

t′∈P2

rt′

∥∥∥∥2]+ Tr
(
Varπ[∆θ|no P2]

)
,

where Tr
(
Varπ[∆θ|no P2]

)
is the variance in the policy gradient due to P1

and P3 without a P2 distractor phase. (The approximate equality represents
that the memory state of the system is altered by the P2 experience, but we
neglect this dependence.) We make the assumption that performance in P2 is
independent of activity in P1, which is approximately the case in the distractor
task we present in the main text. With this assumption, the first term above
becomes

Eπ
[∥∥∥∥ ∑

t∈P1

∇θ log π(at|ht)
∑
t′∈P2

rt′

∥∥∥∥2] = Varπ

[ ∑
t′∈P2

rt′

]
× Eπ

[∥∥∥∥ ∑
t∈P1

∇θ log π(at|ht)
∥∥∥∥2]

= Varπ

[ ∑
t′∈P2

rt′

]
× Eπ

[∥∥∥∥ ∑
t∈P1

∇θ log π(at|ht)
∥∥∥∥2

−
∥∥∥∥Eπ[ ∑

t∈P1

∇θ log π(at|ht)
]

︸ ︷︷ ︸
=0

∥∥∥∥2]

= Varπ

[ ∑
t′∈P2

rt′

]
× Tr

(
Varπ

[ ∑
t∈P1

∇θ log π(at|ht)
])
.

Thus, the SNR (Signal / Noise) is approximately

SNR ≈

∥∥∥∥Eπ[ ∑
t∈P1

∇θ log π(at|ht)
∑
t′∈P3

rt′

]∥∥∥∥2
Varπ

[ ∑
t′∈P2

rt′

]
× Tr

(
Varπ

[ ∑
t∈P1

∇θ log π(at|ht)
])

+ Tr
(
Varπ[∆θ|no P2]

) .
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In the limit of large P2 reward variance, we have

SNR ≈

∥∥∥∥Eπ[ ∑
t∈P1

∇θ log π(at|ht)
∑
t′∈P3

rt′

]∥∥∥∥2
Varπ

[ ∑
t′∈P2

rt′

]
× Tr

(
Varπ

[ ∑
t∈P1

∇θ log π(at|ht)
]) .

The reward variance in P2, Varπ
[∑

t′∈P2 rt′
]
, reduces the policy gradient SNR,

and low SNR is known to impact the convergence of stochastic gradient opti-
mization negatively [1]. Of course, averaging S independent episodes increases
the SNR correspondingly to S × SNR, but the approach of averaging over an
increasing number of samples is not universally possible and only defers the
difficulty: there is always a level of reward variance in the distractor phase that
matches or overwhelms the variance reduction achieved by averaging.

2 Supplementary Methods: Algorithm Pseudocode
for RMA and TVT

3 Supplementary Methods: Task Definitions

All tasks were implemented in DeepMind Lab (DM Lab) [2]. DM Lab has a
standardized environment map unit length: all sizes given below are in these
units. For all DM Lab experiments, agents processed 15 frames per second.
The environment itself produced 60 frames per second, but we propagated only
the first observation of each packet of four to the agents. Rewards accumulated
over each packet were summed together and associated to the first, undropped
frame. Similarly, the agents chose one action at the beginning of this packet of
four frames: this action was applied four times in a row. We define the number
of “Agent Steps” as the number of independent actions sampled by the agent:
that means one agent step per packet of four frames.

We used a consistent action set for all experiments except for the Arbitrary
Visuomotor Mapping task. For all other tasks, we used a set of six actions:
move forward, move backward, rotate left with rotation rate of 30 (mapping to
an angular acceleration parameter in DM Lab), rotate right with rotation rate of
30, move forward and turn left, move forward and turn right. For the Arbitrary
Visuomotor Mapping, we did not need to move relative to the screen, but we
instead needed to move the viewing angle of the agent. We thus used four
actions: look up, look down, look left, look right (with rotation rate parameter
of 10).

DM Lab maps use texture sets to determine the floor and wall textures. We
use a combination of four different texture sets in our tasks: Pacman, Tetris,
Tron and Minesweeper. DM Lab texture sets can take on various colours but
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Algorithm 1 RMA Worker Pseudocode

// Assume global shared model parameter vectors θ and counter T := 0
// Assume thread-specific parameter vectors θ′

// Assume discount factor γ ∈ (0, 1] and bootstrapping parameter λ ∈ [0, 1]
Initialize thread step counter t := 1
repeat

Synchronize thread-specific parameters θ′ := θ
Zero model’s memory & recurrent state if new episode begins
tstart := t
repeat

et = Encode(ot)
zt = StateVariableMLP(et,ht−1,mt−1)
ht,mt = RNN(zt,ht−1,mt−1) // (Memory-augmented RNN)
Update memory Mt = Write(Mt−1, zt)
Policy distribution πt = π(at|zt,ht,mt)
Sample at ∼ πt
V̂t, ô

r
t = Decode(zt,StopGradient(log πt))

Apply at to environment and receive reward rt and observation ot+1

t := t+ 1;T := T + 1
until environment termination or t− tstart == τwindow

If not terminated, run additional step to compute V̂ (zt+1, log πt+1)
and set Rt+1 := V̂ (zt+1, log πt+1) // (but don’t increment counters)
(Optional) Apply Temporal Value Transport (Alg. 3)
Reset performance accumulators A := 0;L := 0;H := 0
for k from t down to tstart do

γt :=

{
0, if k is environment termination

γ, otherwise

Rk := rk + γtRk+1

δk := rk + γtV̂ (zk+1, log πk+1)− V̂ (zk, log πk)
Ak := δk + (γλ)Ak+1

A := A+Ak log πk[ak]
H := H− αentropy

∑
i πk[i] log πk[i] // (Entropy loss)

L := L+ Lk (Methods Eq. 8)
end for
dθ′ := ∇θ′(A+H+ L)
Asynchronously update via gradient ascent θ using dθ′

until T > Tmax

we use the default colours for each set, which are: Pacman: blue floors and red
walls. Tetris: blue floor and yellow walls. Tron: yellow floor and green walls.
Minesweeper: blue floor and green walls. Examples of how these sets appear
can be seen in various figures in the main text.

Episodes for the tasks with delay intervals are broken up into multiple phases.
Phases do not repeat within an episode. Generally, the tasks contain three
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Algorithm 2 Temporal Value Transport for One Read

input: {rt}t∈[1,T ], {V̂t}t∈[1,T ], read strengths {βt}t∈[1,T ], read weights
{wt}t∈[1,T ]

splices : = []
for each crossing of read strength βt above βthreshold do
tmax := arg maxt{βt|t ∈ crossing window}
Append tmax to splices

end for
for t in 1 to T do

for t′ in splices do
if t < t′ − 1/(1− γ) then
rt := rt + αwt′ [t]V̂t′+1

{The read based on wt′ influences value prediction at next step, hence
V̂t′+1.}

end if
end for

end for
return {rt}t∈[1,T ]

phases (P1-P3), with a middle phase.
We used a standardized P2 distractor phase task: the map is an 11 × 11

open square (Figure 1b second column). The agent spawns (appears) adjacent
to the middle of one side of the square, facing the middle. An apple is randomly
spawned independently at each unit of the map with probability 0.3, except for
the square in which the agent spawns. Each apple gives a reward rapple of 5
when collected and disappears after collection. The agent remains in this phase
for 30 seconds. (This length was varied in some experiments.) The map uses
the Tetris texture set unless mentioned otherwise.

In several tasks, we use cue images to provide visual feedback to the agent,
e.g. indicating that an object has been picked up. These cue images are colored
rectangles that overlay the input image, covering the majority of the top half of
the image. An example of a red cue image is shown in Supplementary Figure 10a,
third panel. These cues are shown for 1 second once activated, regardless of a
transition to a new phase that may occur during display.

In each episode of Passive Visual Match, four distinct colors are randomly
chosen from a fixed set of 16 colors. One of these is selected as the target color
and the remaining three are distractor colors. Four squares are generated with
these colors, each the size of one wall unit. The three phases in each episode
are:

1. The map is a 1 × 3 corridor with a target color square covering the wall
unit at one end. The agent spawns facing the square from the other end of
the corridor (Figure 1b first column). There are no rewards in this phase.
The agent remains in this phase for 5 seconds. The map uses the Pacman
texture set.
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Algorithm 3 Temporal Value Transport for Multiple Reads

input: {rt}t∈[1,T ], {V̂t}t∈[1,T ], read strengths {β(i)
t }t∈[1,T ],i∈[1,k], read weights

{w(i)
t }t∈[1,T ],i∈[1,k]

for i ∈ [1, k] do
for t′ ∈ [1, T ] do

if t′ − arg maxt w
(i)
t′ [t] < 1/(1− γ) then

β
(i)
t′ := 0

end if
end for
splices := []

for each crossing of read strength β
(i)
t above βthreshold do

tmax := arg maxt{β(i)
t |t ∈ crossing window}

Append tmax to splices
end for
for t in 1 to T do

for t′ in splices do
if t < t′ − 1/(1− γ) then

rt := rt + αw
(i)
t′ [t]V̂t′+1

end if
end for

end for
end for
return {rt}t∈[1,T ]

2. The standard distractor phase described above.

3. The map is a 4× 7 rectangle with the four color squares (the target color
and three distractor colors) on one of the longer sides, with a unit gap
between each square. The ordering of the four colors is randomly chosen.
There is an additional single unit square placed in the middle of the op-
posite side, in which the agent spawns, facing the color squares. In front
of each color square is a groundpad (Figure 1b last two columns). When
the agent touches one of these pads, a reward of 10 points is given if it
is the pad in front of the target painting and a reward of 1 is given for
any other pad. The episode then ends. If the agent does not touch a pad
within 5 seconds then no reward is given for this phase and the episode
ends. The map uses the Tron texture set.

Active Visual Match is the same as Passive Visual Match, except that the
map in phase 1 is now larger and the position of the target image in phase 1
is randomized. The phase 1 map consists of two 3 × 3 open squares connected
by a 1 × 1 corridor that joins each square in the middle of one side (Figure 2a
first two columns). The agent spawns in the center of one of the two squares,
facing the middle of one the walls adjacent to the wall with the opening to the
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corridor. The target color square is placed randomly over one of any of the wall
units on the map.

The three phases of Key-to-Door are:

1. The map is identical to the map in phase 1 of Active Visual Match. The
agent spawns in the corner of one the squares that is furthest from the
opening to the corridor, facing into the square but not towards the open-
ing. A key is placed randomly within the map (not at the spawn point)
and if the agent touches the key it disappears and a black cue image is
shown (Figure 4a first two columns). As in the Visual Match tasks, there
are no rewards in this phase, and the phase lasts for 5 seconds. The map
uses the Pacman texture set.

2. The standard distractor phase.

3. The map is a 1×3 corridor with a locked door in the middle of the corridor.
The agent spawns at one end of the corridor, facing the door. At the end
of the corridor on the other side of the door is a goal object (Figure 4a
fourth column). If the agent touched the key in phase one, the door can
be opened by walking into it, and then if the agent walks into the goal
object a reward of 10 points is given. Otherwise, no reward is given. The
map uses the Tron texture set.

Key-to-Door-to-Match combines elements of Key-to-Door with Active Visual
Match. One target color and three distractor colors are chosen in the same way
as for the Visual Match tasks. In contrast to the standard task setup, there are
five phases per episode:

1. This phase is the same as phase 1 of Key-to-Door but with a different
map. The map is a 3× 4 open rectangle with an additional 1× 1 square
attached at one corner, with the opening on the longer of the two walls.
The agent spawns in the additional 1× 1 square, facing into the rectangle
(Figure 5a first column). The map uses the Minesweeper texture set.

2. The standard distractor phase except that the phase lasts for only 15
seconds instead of 30 seconds.

3. The map is the same as in phase 3 of Key-to-Door. Instead of a goal object
behind the locked door, the target color square covers the wall at the far
end of the corridor (Figure 5a third column). There is no reward in this
phase, and it lasts for 5 seconds. The map uses the Pacman texture set.

4. The standard distractor phase except that the phase lasts for only 15
seconds instead of 30 seconds.

5. The final phase is the same as phase 3 in the Visual Match tasks.

The three phases of Two Negative Keys are:
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1. The map is a 3 × 4 open rectangle. The agent spawns in the middle of
one of the shorter walls, facing into the rectangle. One red key is placed
in a corner opposite the agent, and one blue key is placed in the other
corner opposite the agent. Which corner has the red key and which the
blue key is randomized per episode. If the agent touches either of the
keys, a red or blue cue image is shown according to which key the agent
touched (Supplementary Figure 10 first three columns). After one key is
touched, it disappears, and nothing happens if the agent goes on to touch
the remaining key (i.e., no cue is displayed and the key remains in the
map). The phase lasts for 5 seconds, and there are no rewards; if the
agent does not touch any key during this period, at the end of the phase
a black cue image is shown. The map uses the Tron texture set.

2. The standard distractor phase except with the Tetris texture set.

3. The layout is the same as in phase 3 of the Key-to-Door task. If the agent
has picked up either of the keys then the door will open when touched,
and the agent can collect the goal object, at which point it will spawn
back into the map from phase 2 but with all remaining apples removed.
This phase lasts for only 2 seconds in total; when it ends, a reward of -20
is given if the agent did not collect the goal object; a reward of -10 is given
if the agent collected the goal object after touching the blue key; and a
reward of -1 is given if the agent collected the goal object after touching
the red key. The map uses the Tron texture set.

In each episode of Latent Information Acquisition, three objects are ran-
domly generated using the DM Lab object generation utilities. Color and type
of object is randomized. Each object is independently randomly assigned to be
a good or a bad object.

1. The map is a 3 × 5 rectangle. The agent spawns in one corner facing
outwards along one of the shorter walls. The three objects are positioned
randomly among five points as displayed in Figure 6c in the main text
(Figure 6a first four columns). If an agent touches one of the good objects,
it disappears, and a green cue image is shown. If an agent touches one
of the bad objects, it disappears, and a red cue image is shown. This
phase lasts for 5 seconds, and there are no rewards. The map uses the
Tron texture set. The image cues shown in this phase are only shown for
0.25 seconds so that the cues do not interfere with continuation of the P1
activity (in all other tasks they are shown for 1 second).

2. The standard distractor phase except with the Tetris texture set.

3. The map, spawn point, and possible object locations are the same as in
phase 1. The objects are the same, but their positions are randomly chosen
again. If the agent touches a good object it disappears, and a reward of
20 is given. If the agent touches a bad object it disappears and a reward
of -10 is given. This phase lasts for 5 seconds. The map uses the Tron
texture set.
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4 Supplementary Methods: Distractor Phase Mod-
ifications

In order to analyze the effect of increasing variance of distractor reward on agent
learning, we created variants of the distractor phase where this reward variance
could be easily controlled. Since the distractor phase is standardized, any of
these modifications can be used in any of those tasks.

Zero Apple Reward: The reward given for apples in the distractor phase
is zero. Even though the apples give zero reward, they still disappear when
touched by the agent. Fixed Number of Apples: The reward given for apples
remains at 5. Instead of the 120 free squares of the map independently spawning
an apple with probability 0.3, we fix the number of apples to be 120× 0.3 = 36
and distribute them randomly among the 120 available map units. Under an
optimal policy where all apples are collected, this has the same mean reward
as the standard distractor phase but with no variance. Variable Apple Reward:
The reward rapple given for apples in the distractor phase can be modified (to
a positive integer value), but with probability 1− 1/rapple each apple indepen-
dently gives zero reward instead of rapple. Any apple touched by the agent still
disappears.

This implies that the optimal policy and expected return under the optimal
policy is constant, but variance of the returns increases with rapple. Since there
are 120 possible positions for apples in the distractor phase, and apples inde-
pendently appear in each of these positions with probability 0.3, the variance
of undiscounted returns in P2, assuming all apples are collected, is

120×
[(

0.3× 1

rapple

)
× r2apple − (0.3× 1)2

]
= 36× (rapple − 0.3). (2)

5 Supplementary Methods: Control Tasks

Control tasks are taken from the DM Lab 30 task set [2]. The tasks we
include had a memory access component to performance. We provide only
brief descriptions here since these tasks are part of the open source release
of DM Lab available at https://github.com/deepmind/lab/tree/master/

game_scripts/levels/contributed/dmlab30.
In Explore Goal Locations Small, agents must find the goal object as fast

as possible. Within episodes, when the goal object is found the agent respawns
and the goal appears again in the same location. The goal location, level layout,
and theme are randomized per episode. The agent spawn location is randomized
per respawn.

In Natlab Varying Map Randomized, the agent must collect mushrooms
within a naturalistic terrain environment to maximise score. The mushrooms
do not regrow. The map is randomly generated and of intermediate size. The
topographical variation, and number, position, orientation and sizes of shrubs,
cacti and rocks are all randomized. Locations of mushrooms are randomized.
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The time of day is randomized (day, dawn, night). The spawn location is ran-
domized for each episode.

In Psychlab Arbitrary Visuomotor Mapping, a task in the Psychlab frame-
work [3], the agent is shown images from a visual memory capacity experiment
dataset [4] but in an experimental protocol known as arbitrary visuomotor map-
ping. The agent views consecutive images that are associated to particular car-
dinal directions. The agent is rewarded if it can remember the direction to move
its fixation cross for each image. The images are drawn from a set of roughly
2,500 possible images, and the specific associations are randomly generated per
episode.

6 Supplementary Methods: Task Specific Pa-
rameters

Across models the same parameters were used for the TVT, RMA, LSTM+Mem,
and LSTM agents except for γ, which for the TVT model was always 0.96 and
was varied as expressed in the figure legends for the other models. Learning
rate was varied only for the learning rate analysis in Section 7.

Across tasks, we used the parameters shown in Table 1 with a few exceptions:

• For all the control tasks, we used αimage = 1 instead of 20.

• For all the control tasks, we used τwindow = 200 instead of using the full
episode.

• For the Two Negative Keys task, we used αentropy = 0.05 instead of 0.01.

The TVT specific parameters were not varied across tasks. In Supplementary
Figure 15, we show that βthreshold could range from 1 to 5 without destroying
performance on the Active Visual Match task. For the Key-to-Door task, in
Supplementary Figure 14, we show that we saw no performance difference for
a factor of two variation in the threshold, but, for the largest value of the
threshold, performance deteriorated, as the TVT mechanism was not triggered.

7 Supplementary Methods: Task Analyses

For Active Visual Match and Key-to-Door tasks, we performed analysis of the
effect of distractor phase reward variance on the performance of the agents. To
do this we used the same tasks but with modified distractor phases as described
in Supplementary Methods 4.

Active Visual Match

Supplementary Figure 13 shows learning curves for rapple = 0 (zero apple re-
ward) and rapple = 1 (variable apple reward). When rapple = 1, all apples
give reward. Learning for the RMA was already significantly disrupted when
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rapple = 1, so for Active Visual Match we do not report higher variance exam-
ples.

Key-to-Door

Figure 4c shows learning curves with apple reward rapple set to 1, 3, 6, and 10,
which gives variances of total P2 reward as 25, 100, 196, and 361, respectively,
(the variable apple reward condition). Note that episode scores for these tasks
show that all apples are usually collected in P2 at policy convergence.

Note that the mean distractor phase return in the previous analysis is much
less than the mean return in the standard distractor phase. Another way of
looking at the effect of variance in the distractor phase whilst including the full
mean return is shown in Supplementary Figure 11, which has three curves: one
for zero apple reward, one for a fixed number of apples, and one for the full
level (which has a variable number of apples per episode but the same expected
return as the fixed number of apples case). From the figure, it can be seen that
introducing large rewards slows learning in phase 1 due to the variance whilst
the agent has to learn the policy to collect all the apples, but that the disruption
to learning is much more significant when the number of apples continues to be
variable even after the agent has learned the apple collection policy.

Return Prediction Saliency

To generate Figure 4e in the main text, a sequence of actions and observations
for a single episode of Key-to-Door was recorded from a TVT agent trained on
that level. We show two time steps where the key was visible. We calculated
gradients ∂V̂t/∂I

w,h,c
t of the agent’s value predictions with respect to the input

image at each time step. We then computed the sensitivity of the value function
prediction to each pixel:

gw,ht =

√√√√ 3∑
c=1

|∂V̂t/∂Iw,h,ct |2.

We smoothed these sensitivity estimates using a 2 pixel-wide Gaussian filter:

ĝw,ht = GaussianFilter(gw,ht , σ = 2 pixels).

We then normalized this quantity based on its statistics across time and pixels
by computing the 97th percentile:

g97 = 97th percentile of ĝw,ht over all t, w, h.

Input images were then layered over a black image with an alpha channel that
increased to 1 based on the sensitivity calculation. Specifically, we used an alpha
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channel value of:

αw,ht = min

(
0.3 + (1− 0.3)

ĝw,ht

g97
, 1

)
. (3)

Learning Rate Analysis for High Discount Factor

To check that the learning rates used for the high discount RMA and LSTM
models were reasonable, we ran the largest variance tasks from in Section 7 (for
RMA with γ = 0.998) and 7 (for LSTM with γ = 0.998) for learning rates
3.2× 10−7, 8× 10−7, 2× 10−6, 5× 10−6 and 1.25× 10−5. The results are shown
in Supplementary Figure 12, and they show that the default learning rate of
5× 10−6 was the best among those tried.

Behavioral Analysis of Active Visual Match

We compared the P1 behaviors of a TVT agent versus an RMA as shown in
Figure 3a in the main text. First, we modified the environment to fix the
color square in one of three pre-selected wall locations. We then ran TVT
and RMA for 10 episodes in each of these three fixed color square conditions.
Finally, we plotted the agents’ positional trajectories in each condition. We
also visualized the TVT agent’s memory retrievals by plotting a single episode
trajectory with arrowheads indicating agent orientation on each second agent
step. Each arrowhead is also color-coded by the maximal read weight from any
time step in P3 back to the memory encoded at this time and position in P1.

Behavioral Analysis of Latent Information Acquisition

We evaluated TVT and RMA for 50 episodes in the latent information acquisi-
tion task. To visualize, we scatter-plotted the agent’s position as a black dot for
each P1 time step (50 episodes × 75 P1 time steps = 3, 750 dots in total). We
also binned the agent’s position on a 4 × 5 grid and counted the percentage of
time the agent had occupied each grid cell. We visualized this grid occupancy
using a transparent heatmap overlying the top-down view. To further quantify
the behaviour of TVT versus RMA, we recorded how many objects were ac-
quired by the agent in the exploration phase in each of the 50 test trials and
plotted the mean and standard deviation in a bar plot.

Return Variance Analysis

Over 20 trials, in Key-to-Door we computed and compared two return variances
based on trajectories from the same TVT agent. The first was the undiscounted
return: Rt =

∑
t′≥t rt′ . The second was computed as in Algorithm 1 and

Algorithm 3 using TVT (γ = λ = 0.96), i.e., it was bootstrapped recursively:

R̃t = rt + γ[λR̃t+1 + (1− λ)V̂t+1],
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and rt was modified by TVT.
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8 Supplementary Tables

Parameter Value

η 5× 10−6

γ various
λ = γ

αimage 20
αrew 1
αvalue 0.4
αact 1

αentropy 0.01
τwindow Number of steps in episode
N Number of steps in episode
W 200
k 3

topK 50
αread-regularization 5× 10−6

βthreshold 2

Supplementary Table 1: Parameters used across tasks (not all parameters apply to all
models). The TVT specific parameters βthreshold, αread-regularization were held constant across
all tasks.

9 Supplementary Figures
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Supplementary Figure 1: Passive Image Match Learning. Left. Full episode
score. Right. P2 score. (γ = 0.96 for all models.)
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Supplementary Figure 2: Passive Image Match with Varying Delay Pe-
riod. All models learned to retrieve the P3 reward with no P2 delay, but
performance is hampered for longer delays for models with no reconstructive
loss.
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Supplementary Figure 3: Passive Image Match with Varying Delay Pe-
riod (Episodes). With the x-axis plotted in episodes, controlling for the num-
ber of additional steps due to the delay period, the RMA learned in roughly the
same number of episodes, regardless of delay length (0 seconds to 60 seconds).
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Supplementary Figure 4: Passive Image Match (CIFAR-10). Using
CIFAR-10 images [5] instead of colored squares as P1 and P3 images, the RMA
was still able to perform the Passive Image Match Task.
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Supplementary Figure 5: Effect of P2 Reward Variance in Active Visual
Match. P2 reward variance was introduced by varying the probability and
reward value of apple reward (variable apple reward condition). For higher
levels of P2 reward variance, the RMA models failed to solve Active Visual
Match, though TVT was largely unaffected.
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Supplementary Figure 6: Active Visual Match 60 Second P2. The TVT
agent was also able to solve an Active Visual Match task with a 60 second P2
delay period.
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Supplementary Figure 7: Key-to-Door: Black vs. Blue key. With a black
door in P3, TVT was able to solve the task as easily with a blue key in P1,
implying that content-based memory retrieval was flexible and not based on
surface similarity between the key and door color.
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Supplementary Figure 8: Control Task DM Lab Learning. a. TVT (black)
learned Natlab Varying Map Randomized just as well as the RMA. b. On
Explore Goal Locations Small, TVT led to a modest decrement in final perfor-
mance. c. On Psychlab Arbitrary Visuomotor Mapping, TVT did decrement
final performance and slowed learning, though the agent’s performance was still
high compared to all but the RMA.
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Supplementary Figure 9: Control Task DM Lab Final Performance. Final
performance for 5 training runs from Supplementary Figure 8.
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Supplementary Figure 10: Two Negative Keys level. a. In P1, the agent
selects between a red and a blue key, distributed randomly in the room corners.
The red key allows the agent to open the door in P3, receiving negative reward
of −1. The blue key leads to negative reward of −10. No key selection leads to
a negative reward of −20. b. TVT was able to solve this task, picking up the
red key, and receiving −1 on average in P3.
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Supplementary Figure 11: Constant vs. Variable P2 Reward. The three
curves shown are for the LSTM agent with γ = 0.998 in three variants of Key-
to-Door: (i) zero apple reward, (ii) fixed number of apples each with reward
5, and (iii) the full level, which has a variable number of apples per episode
but the same expected return as the fixed number of apples case. This analysis
is discussed in Section 7. Variable P2 reward was maximally detrimental to
performance.
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Supplementary Figure 12: Learning Rate Search on Comparison Models
(γ = 0.998). Learning rates used were 3.2× 10−7, 8× 10−7, 2× 10−6, 5× 10−6,
1.25 × 10−5, and are displayed from lightest to darkest in that order. In all
analyses, the default learning rate of 5 × 10−6 performed best. a. RMA with
γ = 0.998 on Active Visual Match with apple reward rap[le = 1. b. LSTM with
γ = 0.998 on Key-to-Door task with variable apple reward as in Figure 4c in
the main text, with P2 reward variance of 361.
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Supplementary Figure 13: Effect of P2 Apple Reward in Passive and
Active Visual Match Task. Upper Row. On Passive, the RMA performed
worse with larger discount factors, which are not needed to solve the task. Lower
Row. On Active, the RMA models’ performance at acquiring the distal reward
degraded with the introduction of P2 reward. TVT remained stable with the
introduction of P2 distractor reward.
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Supplementary Figure 14: Effect of Varying Threshold to Activate Tem-
poral Value Transport in Key-to-Door. We saw no performance decline
for a threshold value of 1, though performance deteriorated for βthreshold = 5.
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Supplementary Figure 15: Effect of Varying Threshold to Activate Tem-
poral Value Transport in Active Visual Match. The performance of TVT
was not greatly affected by the value of the threshold.
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Supplementary Figure 16: Comparison of Learning with Different Mem-
ory Sizes. The memory system supports larger allocations of memory than
needed for the level. Top. Performance on Key-to-Door. Bottom. Performance
on Active Visual Match.
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Supplementary Figure 17: Key-to-Door Task: Robustness of TVT to
Surface Similarities. When the environment wall texture in phase 2 was
made the same as the wall texture in phase 1, TVT still learned in the Key-to-
Door task.
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Supplementary Figure 18: Active Visual Match Task: Robustness of
TVT to Surface Similarities. When the environment wall texture in phase
2 was made the same as the wall texture in phase 1, TVT still learned in the
Active Visual Match task. There was a slight decrease in the speed of task
acquisition.

28



LSTM LSTM+Mem RMA TVT
0%

20%

40%

60%

80%

100%
A
v
e
ra

g
e
 t

h
ro

u
g

h
p

u
t 

o
f 

e
n
v
ir

o
n
m

e
n

t 
st

e
p

s
(n

o
rm

a
liz

e
d

)

Supplementary Figure 19: Speed of Different Models. Although there is
overhead to running the TVT memory system and algorithm, its throughput in
processing environment steps is of the same order as a simple LSTM agent, left,
LSTM with an external memory, and the RMA agent.
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Supplementary Figure 20: Learning Curves in Atari Bowling. Using a
higher discount factor than 0.99 (0.995) was sufficient for an LSTM agent to
achieve state-of-the-art scores. TVT improved over the performance of the
LSTM agent with the same discount factor of 0.99.
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Supplementary Figure 21: Learning Curves in Montezuma’s Revenge.
We plot the learning curves of TVT and our control LSTM agent and show
the final score of other previous published results. Numbers are extracted from
Table 4 in [6] and from the original A3C [7]. The methods that worked best
on this domain used off-policy experience replay; such methods make repeated
learning updates from single experiences. The policy gradient methods without
replay (including TVT, A3C, and IMPALA) performed worse than the replay-
based Q learning methods (Reactor, APE-X, and R2D2), and all were below the
human reported baselines. The very low probability of successfully encountering
any reward in this game, alongside deterministic transition dynamics, implies
that an effective strategy is to repeat any action trajectory that led to non-zero
reward. In this regime, with very low probabilities of securing reward, TVT did
not improve results.
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