## Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development

| Range of       | Compound                 | Mass spectrum                                            |
|----------------|--------------------------|----------------------------------------------------------|
| retention time |                          | m/z (relative intensity)                                 |
| 31.8-32.0      | Cholesterol              | 386 (26), 107 (50), 105 (48), 91 (57), 81 (54), 79 (46), |
|                |                          | 69 (47), 57 (87), 55 (73), 43 (100), 41 (55)             |
| 34.4-34.5      | Campesterol              | 400 (30), 107 (51), 105 (55), 95 (49), 83 (45), 81 (64), |
|                |                          | 71 (62), 57 (77), 55 (77), 43 (100), 41 (52)             |
| 35.5-35.6      | Stigmasterol             | 412 (36), 145 (64), 107 (52), 95 (100), 83 (66), 81      |
|                |                          | (90), 78 (60), 69 (67), 67 (85), 55 (69)                 |
| 37.4-37.6      | Sitosterol               | 414 (29), 145 (54), 107 (59), 105 (60), 95 (54), 91      |
|                |                          | (49), 81 (57), 57 (68), 55 (70), 43 (100), 41 (44)       |
| 37.6-37.8      | Sitostanol               | 416 (31), 215 (82), 109 (58), 107 (83), 95 (81), 93      |
|                |                          | (64), 81 (84), 69 (60), 57 (64), 55 (81), 43 (100)       |
| 37.9-38.0      | β-Amyrenone              | 424 (11), 219 (18), 218 (100), 205 (13), 203 (55), 189   |
|                |                          | (14), 109 (12), 95(16), 81 (12), 69 (14), 55 (15)        |
| 38.1-38.2      | Cycloartanol             | 428 (4), 205 (60), 109 (98), 95 (100), 93 (64), 81 (69), |
|                |                          | 69 (78), 57 (73), 55 (82), 43 (89), 41 (67)              |
| 38.6-38.8      | β-Amyrin                 | 426 (27), 219 (18), 218 (100), 203 (49), 189 (17), 135   |
|                |                          | (11), 109 (13), 105 (12), 95 (15), 81 (18), 69 (14)      |
| 40.0-40.2      | α-Amyrenone              | 424 (12), 219 (19), 218 (100), 203 (24), 189 (16), 135   |
|                |                          | (19), 133 (18), 122 (18), 119 (17), 95 (16), 55 (18)     |
| 40.4-40.8      | α-Amyrin/                | 426 (4), 218 (100), 203 (20), 189 (36), 135 (35), 121    |
|                |                          | (32), 109 (32), 107 34), 95 (40), 81 (33), 55 (31)       |
|                | Lupeol                   | 426 (18), 207 (67), 189 (90), 135 (83), 121 (80) 109     |
|                | 1                        | (85), 121 (80), 95 (100), 93 (87), 81 (86),              |
| 40.9-41.1      | Tremulone (stigmasta-    | 410 (32), 187 (27), 174 (100), 161 (37), 159 (26), 91    |
|                | 3,5-dien-7-one)          | (28), 57 (28), 55 (37), 43 (44), 41 (28)                 |
| 41.3-41.5      | Fern-7-en-3β-ol          | 426 (12), 411 (72), 259 (100), 241 (54), 137 (54), 109   |
|                |                          | (58), 107 (62), 95 (93), 81 (77), 55 (80)                |
| 41.8-42.0      | 24-methylenecycloartanol | 440 (5), 121 (60), 119 (55), 109 (62), 107 (76), 105     |
|                |                          | (57), 95 (98), 93 (64), 81 (72), 69 (99), 55 (100)       |
| 42.3-42.5      | Svert-9(11)-en-36-ol     | 426 (27), 411 (82), 393 (29), 259 (100), 241 (63), 137   |
|                |                          | (30), 119 (32), 95 (45), 81 (28), 69 (31)                |
| 42.7-42.8      | Moretenol                | 426 (15), 207 (42), 189 (100), 147 (18), 135 (24), 107   |
| -              |                          | (25), 95 (40), 81 (35), 67 (22), 55 (23)                 |
| 43.5-43.7      | D:C-friedours-7-en-3-ol  | 426 (7), 247 (100), 229 (78), 123 (49), 109 (54), 107    |
|                |                          | (48), 105 (48), 95 (77), 81 (55), 69 (66), 55 (59)       |
|                |                          |                                                          |

Table S1. Retention times and characteristic ions of mass spectra of identified steroids and triterpenoids

| 44.3-44.5                               | Taraxasterol               | 426 (14), 207 (57), 189 (100), 135 (51), 121 (74), 109<br>(57) 107 (62) 95 (70) 93 (47) 81 (48) 67 (43) |
|-----------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|
|                                         | <b>D</b> · 1 P             |                                                                                                         |
| 46.2-46.4                               | Friedelin                  | 426 (6), 125 (65), 123 (78), 109 (82), 107 (46), 96                                                     |
|                                         |                            | (62), 95 (94), 81 (77), 69 (100), 67 (56), 55 (71)                                                      |
| 48.3-48.5                               | Oleanolic aldehyde         | 440 (2), 232 (28), 207 (20), 204 (39), 203 (100), 189                                                   |
|                                         |                            | (29), 105 (18), 81 (19), 69 (20), 55 (29)                                                               |
| 48.9-49.1                               | Cycloart-23-ene-3,25-diol  | 442 (10), 203 (48), 121 (73), 109 (100), 107 (82), 95                                                   |
|                                         |                            | (75), 81 (91), 69 (54), 55 (62), 43 (77)                                                                |
| 49.8-50.0                               | Hopenone                   | 424 (33), 205 (29), 189 (100), 107 (39), 95 (56), 93                                                    |
|                                         |                            | (29), 81 (35), 69 (36), 55 (27), 41 (21)                                                                |
| 51.4-51.6                               | Ursolic aldehyde           | 440 (1), 207 (26), 204 (23), 203 (100), 133 (42), 119                                                   |
|                                         |                            | (18), 105 (18), 95 (18), 81 (18), 55 (18), 43 (20)                                                      |
| 53.2-53.4                               | Erythrodiol                | 442 (1), 204 (17), 203 (100), 133 (7), 119 (9), 105 (8),                                                |
|                                         |                            | 95 (9), 93 (8), 81 (8), 69 (9), 55 (8)                                                                  |
| 53.9-54.1                               | 3,12-oleandione            | 440 (25), 234 (92), 205 (98), 177 (98), 135 (73), 95                                                    |
|                                         |                            | (100), 81 (60), 69 (72), 55 (89), 41 (55),                                                              |
| 56.3-56.5                               | Uvaol                      | 442 (1), 207 (13), 204 (17), 203 (100), 133 (33), 119                                                   |
|                                         |                            | (13), 105 (11), 95 (12), 81 (10), 69 (10), 55 (11)                                                      |
| 57.8-58.0                               | Betulin                    | 442 (8), 203 (100), 189 (77), 133 (66), 121 (55), 107                                                   |
|                                         |                            | (57), 105 (49), 95 (56), 93 (54), 81 (67)                                                               |
| Acids*:                                 |                            |                                                                                                         |
| 22.4-22.6                               | Olean-2.12-dien-28-oic     | 452(11), 425 (9), 263 (11), 262 (61), 221 (14), 203                                                     |
|                                         | acid methyl ester          | (100), 190 (15), 189 (22), 133 (14), 119 (12)                                                           |
| 25 1-25 3                               | Ursa-2 12-dien-28-oic      | 452 (12) 425 (9) 263 (20) 262 (100) 221 (27) 203                                                        |
| 23.1-23.3                               | asid methyl aster          | (79) 190 (18) 189 (27) 133 (58) 119 (23)                                                                |
|                                         |                            | (7), 100 (10), 100 (27), 105 (50), 119 (25)                                                             |
| 25.5-25.6                               | 3-Oxo-olean-12-en-28-oic   | 408(0), 202(32), 204(17), 203(100), 202(21), 189                                                        |
|                                         | acid methyl ester          | (29),133 (17), 119 (14), 105 (12), 55 (12)                                                              |
| 26.9-27.2                               | Oleanolic acid methyl      | 470 (1), 262 (48), 207 (13), 204 (16), 203 (100), 202                                                   |
|                                         | ester                      | (21), 189 (22), 133 (17), 119 (13), 105 (14)                                                            |
| 28.0-28.2                               | 3-Oxo-urs-12-en-28-oic     | 468 (3), 263 (21), 262 (96), 249 (20), 204 (17), 203                                                    |
|                                         | acid methyl ester          | (100), 189 (29), 133 (79), 119 (30), 105 (19)                                                           |
| 29.8-30.2                               | Ursolic acid methyl ester  | 470 (1), 263 (20), 262 (100), 207 (32), 203 (93), 189                                                   |
|                                         |                            | (29), 133 (76), 119 (34), 105 (21), 95 (18)                                                             |
| 32.0-32.2                               | Maslinic acid methyl ester | 486 (2), 263 (10), 262 (53), 204 (17), 203 (100), 202                                                   |
|                                         |                            | (20), 189 (20), 133 (16), 119 (13), 105 (12), 69 (10)                                                   |
| 34.6-34.8                               | Corosolic acid methyl      | 486 (1), 263 (15), 262 (74), 204 (17), 203 (100), 202                                                   |
|                                         | ester                      | (22), 189 (21), 119 (18), 105 (14), 55 (12)                                                             |
| 13 0-13 1                               | Pomolic acid mathyl actor  | 486 (3) 263 (12) 263 (55) 204 (16) 203 (100) 202                                                        |
| <b>⊣J.U<sup>-</sup>TJ.</b> <del>T</del> | i omorie acie metryr ester | (20) 189 (17) 119 (12) 105 (10), 75 (14)                                                                |

\*retention times of metyl esters analyzed under isothermal conditions



Figure S1. Changes in the content of triterpenoids in cuticular waxes during lingonberry *Vaccinium vitis-idaea* fruit development.



Figure S2. Changes in the content of triterpenoids in cuticular waxes during bilberry *Vaccinium myrtillus* fruit development.



Figure S3. Changes in the content of triterpenoids in cuticular waxes during strawberry tree *Arbutus unedo* fruit development.



Figure S4. Changes in the content of triterpenoids in cuticular waxes during honeysuckle *Lonicera caerulea* fruit development.