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SUPPLEMENTARY METHODS 

Participants  

20 young (mean age±SD=24±4 years, 10 females) and 19 older (mean age±SD=68±5 years, 
10 females) adults were selected from a larger ongoing study on heathy aging at Cornell 
University. Participants were recruited from the community and completed a comprehensive 
cognitive test battery and magnetic resonance image (MRI). Young and old participants were 
combined to create a final sample of 39 subjects (20 females, age range: 18-77 years, 
mean±SD=45±22.9 years) from which the neocortical and hippocampal connectivity gradients 
were generated. To be eligible for the study, participants had to be between the ages of 18-35 
(Young) or over age 60 (Old). Exclusion criteria included any MRI contraindications and/or a 
history of neurological, neuropsychiatric, or cardiovascular disease. All participants were 
cognitively normal based on self-report on intake and cognitive screen (MMSE > 26). All 
participants provided informed consent consistent with procedures approved by the 
Institutional Review Board of Cornell University.  

 

Structural MRI Acquisition 

Imaging data for participants recruited at Cornell University were acquired using 3T GE 
Discovery MR750 scanner (General Electric, Milwaukee, United States) with a 32-channel 
receive-only phased-array head coil at the Cornell Magnetic Resonance Imaging Facility in 
Ithaca.  Anatomical scans were acquired with a 3D T1-weighted MPRAGE scan (repetition 
time (TR)=2530ms; echo time (TE)=3.44ms; flip angle (FA)=7°; 1.0mm isotropic voxels, 176 
slices). Anatomical scans were acquired during one 5m25s run with 2x acceleration with 
sensitivity encoding. Structural data was corrected for non-uniform intensities, affine-
registered to Montreal-Neurological Institute (MNI) atlas and skull-stripped using FSL.  

 

Multi-Echo Resting-State fMRI Acquisition 

Participants completed one 10 min 6 second long resting-state multi-echo BOLD functional 
scan with eyes open, while blinking and breathing normally in the dimly lit scanner bay. 
Functional scans were acquired using a multi-echo echo-planar imaging (ME-EPI) sequence 



with online reconstruction (TR=3000ms; TE’s=13.7, 30, 47ms; FA=83°; matrix size=72x72; 
field of view (FOV)=210mm; 46 axial slices; 3.0mm isotropic voxels]. 

 

Multi-Echo Resting-State fMRI Pre-Processing 

Multi-echo fMRI facilitates removal of noise components from resting fMRI datasets (Kundu 
et al., 2013, 2012; Power et al., 2018). The method relies on the acquisition of multiple echoes, 
enabling direct measurement of T2* relaxation rates. Blood oxygen level dependent (BOLD) 
signal can then be distinguished from non-BOLD noise based on TE dependence. To remove 
noise components (e.g., CSF, movement) from the data, independent components analysis is 
used to recombine and analyze the multiple echo-times. This method has shown to be 
successful in denoising BOLD signal of motion and physiological artifacts (Kundu et al., 2013, 
2012). In the current work, data were preprocessed with multi-echo independent components 
analysis (ME-ICA) version 3.2 beta1 (https://github.com/ME-ICA/me-
ica/blob/master/meica.py) and aligned to MNI space. ME-ICA processing was run with the 
following options: -e 13, 30, 46, -b 4v; –no_skullstrip; –space = young-
old_n100_template.nii.gz. Anatomical images were skull stripped using FSL-BET prior to 
processing. Young-old_n100_template.nii.gz represents an averaged MNI152-space template 
of a larger sample of younger and older adults. Further filtering was omitted, as ME-ICA has 
shown to be successful in denoising BOLD signal of artifacts (Kundu et al., 2013, 
2012). Components identified as signal were visually inspected for further quality control. All 
included participants had at least 10 signal components. 

 

Generation of principle connectivity gradient in neocortex and hippocampus 

a) Neocortical. To generate models of the cortical surface, each participant’s T1-weighted 
image was processed following the same methods outlined in the manuscript (see Materials 
and Methods at P.6). Resting-state fMRI time series were then mapped to surface-space, 
followed by resampling to fsaverage5. The principle gradient of neocortical connectivity was 
generated following the methodology outlined by Margulies et al. (2016) and Vos de Wael et 
al (2018). In brief, functional connectivity matrices were calculated from time-series cross-
correlations, followed by Fisher r-to-z-transformation. Z-score matrices were averaged across 
all participants. For each region, we retained z-scores for the 10% strongest connections, with 
all others zeroed. An affinity matrix was subsequently generated that captures similarity in 
connectivity, based on a norm angle formulation. The principal gradient was then derived from 
this affinity matrix using diffusion map embedding (Coifman et al., 2005), which serves to 
recover a low dimensional embedding from high-dimensional connectivity data. 

b) Hippocampus. To generate the principal gradient of hippocampal connectivity, we followed 
the methodology previously described by Vos de Wael et al. (2018). In brief, we first sampled 
each subject’s volumetric rs-fMRI time series to the average medial sheet mesh across each 
subfield and calculated Pearson correlation coefficient maps across all vertices. Correlation 
coefficient maps were r-to-z converted followed by norm angle affinity matrix calculation and 
diffusion map embedding as in a). 

A MATLAB implementation of the diffusion embedding algorithm is available at 
https://github.com/MICA-MNI/micaopen/. 

 



SUPPLEMENTARY FIGURES 

 

 
SUPPLEMENTARY FIGURE 1.  Analysis of Aβ deposition along neocortical (left) and hippocampal subfield (right) 
surfaces. Aβ deposition is normalized by cerebellar grey matter but not controlled for PVE CSF. Effects of age 
on A) Aβ deposition. Models controlled for gender, age, and education. A two-tailed pFDR of <0.05 was used. 
Age-related increases are shown in warm colors. Regions significant at pFDR<0.05 are shown with black outlines, 
uncorrected trends relating to increased hippocampal Aβ are shown in semi-transparent. Correlations between age 
and Aβ are displayed in B). SUVR = Standardized Uptake Value Ratio. NS = Non-Significant. 

 

 

 

 

 

 

 

 

 

 

 

 



 

SUPPLEMENTARY FIGURE 2. Panel displays a histogram showing that age of the final study sample (n=102) to 
be normally distributed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
SUPPLEMENTARY FIGURE 3. Analysis of age effects on cortical thickness, hippocampal volume, and Aβ 
deposition along neocortical (left) and hippocampal surfaces (right). Aβ deposition is normalized by cerebellar 
grey matter and controlled for PVE CSF. Models controlled for gender, age and education. Regions significant at 
a two-taield pFDR<0.0001 are shown with black outlines. 

 

 

 

 



	

SUPPLEMENTARY FIGURE 4. Topographic profiling of age effects (A, B) and cognitive correlations (C) in 
neocortical and allocortical hippocampal regions. Models do not control for effect of gender or education.  

	



	

SUPPLEMENTARY FIGURE 5.  Topographic profiling of age effects (A, B) and cognitive correlations (C) in 
neocortical and allocortical hippocampal regions. Models control for effect of gender, education, and APOEe4 
genotype (n=99).  

 

	 	



	

SUPPLEMENTARY FIGURE 6. Topographic profiling of age effects (A-B) and cognitive correlations (C) in 
neocortical and allocortical hippocampal regions. Participants with e3/e4 and e4/e4 genotype were removed from 
analysis (n = 23). Models control for effect of gender and education.  

	

 

 



 
SUPPLEMENTARY FIGURE 7. Partial least squares analysis on the covariance between brain metrics with 
demographic and cognitive scores. The rows represent four models with alternative brain metrics; i) cortical 
thickness, ii) cortical amyloid deposition, iii) hippocampal columnar volume, iv) hippocampal amyloid deposition. 
(Far left) Inputs were z-standardised surface-based brain measures and z-standardized demographic/cognitive 
measures, including age, sex, education, as well as the fourteen neuropsychological measures outlined in 
Supplementary Table 1. (Middle left) The loadings of the first component for each analysis were back projected 
onto the cortical surface and hippocampal blades, respectively. (Middle right) Barplots show the top five and 
bottom five loadings on demographic/psychometric measures. (Far right) Scatterplots show the correlation 
between latent variables.  



 

SUPPLEMENTARY FIGURE 8. Topographic profiling of age effects (A) and cognitive correlations (B) in 
neocortical regions. Functional connectivity gradient (Top left panel) was derived from a healthy lifespan data set 
(n=39, 20 females, age range: 18-77, mean±SD=45±22.9 years). Both age effects and cognitive correlations 
demonstrated similar results to those observed when using the original connectivity gradient derived from the 
HCP data set. 

 

 

 

 

 

 

 

 

 

 

 

 



 

SUPPLEMENTARY FIGURE 9. Topographic profiling of age effects (A) and cognitive correlations (B) in 
hippocampal regions. Functional connectivity gradient (Top left panel) was derived from a healthy lifespan data 
set (n=37, 19 females, age range: 18-77, mean±SD=45±23.1 years). Both age effects and cognitive correlations 
demonstrated similar results to those observed when using the original connectivity gradient derived from the 
HCP data set. 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY TABLES 

SUPPLEMENTARY TABLE 1. Factor Loading and tests.  

 

	

	

 

 

 
TEST 

 
MEASURE FACTOR 1 LOADING FACTOR 2 LOADING 

MMSE General Cognition 0.3309 0.2999 

RAVENS 
PROGRESSIVE 

MATRICES 
Fluid Reasoning 0.7903 0.2377 

LETTER NUMBER 
SEQUENCING Working Memory 0.3908 0.2290 

HVL IMMEDIATE 
RECALL Episodic Memory 0.1834 0.8257 

HVL DELAYED 
RECALL Episodic Memory 0.1275 0.8628 

HVL RECOGNITION Episodic Memory 0.1575 0.5421 

ETS ADVANCE 
VOCABULARY Crystalized Ability 0.0908 0.1975 

ETS LETTER SETS Fluid Reasoning 0.7412 0.1524 

DIGIT SYMBOL 
Processing Speed 

 
0.6140 0.2558 

DIGIT COMPARISON Processing Speed 0.5333 0.3214 

CANTAB VERBAL 
RECOGNITION Working Memory 0.3844 0.4533 

CANTAB SPATIAL 
WORKING Working Memory 0.5666 0.0339 

CANTAB STOP 
SIGNAL Executive Function 0.2716 0.1745 

CANTAB 
STOCKINGS OF 

CAMBRIDGE 
Executive Function 0.5160 0.1476 


