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1. Mathematical definitions and intuitive descriptions of network metrics 
As described in the main text, we characterized the MTL networks as graphs, comprised 

of nodes and edges. Such graphs can display heterogeneous structure that is important for the 
system’s function (Bassett, Zurn, & Gold, 2018). While a number of graph statistics have been 
defined to understand this heterogeneous structure, many of them are correlated with one 
another, especially in brain networks (Li, Wang, De Haan, Stam, & Mieghem, 2011; Lynall et 
al., 2010).  It is useful to choose a set of graph statistics that describe important dimensions of 
variation in brain networks but that are not necessarily redundant. Historically, measures that 
have proven particularly useful in characterizing brain graphs include the connectivity strength, 
clustering coefficient, and network efficiency (Bullmore & Sporns, 2009), largely due to their 
sensitivity to the markers of small-world architecture (Bassett & Bullmore, 2016). We therefore 
computed local connectivity strength, clustering coefficient, and network efficiency for the 
functional networks. Because the most widely-applied definitions for these metrics require non-
negative edge weights (Rubinov & Sporns, 2010), and because the meaning of negative 
correlations is not well understood (Chai, Castañón, Öngür, & Whitfield-Gabrieli, 2012; Fox, 
Zhang, Snyder, & Raichle, 2009; Murphy & Fox, 2016), we set negative edge weights to zero. 
We define the network metrics used in this study below. 

 
1) Connectivity Strength: The local connectivity strength k(i) at node i for a weighted network 
with a set of nodes, N, is the sum of the weights of all connections to node i as follows: 
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where wij is the edge weight between node i and node j. 
 
2) Clustering Coefficient: The local clustering coefficient c(i) at node i can be conceptualized as 
the likelihood that the neighbors of i are interconnected. One way in which to quantify this 
concept for weighted networks is: 
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where the weights are scaled by the largest weight in the network, i.e. 𝑤3") = 𝑤")/𝑚𝑎𝑥(𝑤")) 
(Onnela, Saramäki, Kertész, & Kaski, 2005). 
 
3) Network Efficiency: The local network efficiency e(i) is often thought of as a measure of the 
capacity of node i to transfer information throughout the network (V Latora & Marchiori, 2003; 
Vito Latora & Marchiori, 2001), although for caveats in this interpretation, see also Rubinov and 
Bassett, 2011. It can be defined as follows (Achard & Bullmore, 2007): 
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where Lij is the shortest weighted path length between node i and node j, where the length of each 
edge is given by the reciprocal of the edge weight, 1/wij. 
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2. Supplementary Figures 
 

 
Supplementary Figure 1: Individual subject level heat maps of (A) volumetric and (B) 
functional network asymmetries for the whole-hippocampus and for individual MTL subregions 
in TLE-NL patients and TLE-MTS patients. 
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Supplementary Figure 2: Normalized MTL functional subregional asymmetries in TLE-NL 
and TLE-MTS patients, using (A) strength asymmetry (B) clustering coefficient asymmetry, and 
(C) local efficiency asymmetry (*p < 0.05). 
 
 

 Z-SCORED VOLUMETRIC 
ASYMMETRY 

Z-SCORED FUNCTIONAL NETWORK 
ASYMMETRY 

SUBREGION TLE-MTS 
(mean +/- SD) 

TLE-NL 
(mean +/- SD) P TLE-MTS  

(mean +/- SD) 
TLE-NL  

(mean +/- SD) p 

HIPP 10 +/- 2.7 0.98 +/- 1.2 * 0.8 +/- 0.71 -0.66 +/- 0.58 * 
CA1 5.3 +/- 1.5 0.45 +/- 0.89 * 0.9 +/- 0.53 -0.62 +/- 0.70 * 
CA2 2.9 +/- 0.8 0.36 +/- 0.89 * 0.02 +/- 1.27 -0.54 +/- 0.98 n.s 

DG 2.8 +/- 1.7 0.18 +/- 1.12 * 0.42 +/- 0.84 -0.4 +/- 0.52 n.s 
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CA3 2.8 +/- 1.2 0.28 +/- 1.19 * 0.11 +/- 0.72 -0.11 +/- 0.48 n.s 

SUB 4.1 +/- 1.2 -0.06 +/- 1.06 * 0.19 +/- 0.29 -0.53 +/- 1.2 n.s 
ERC 0.6 +/- 0.93 -0.10 +/- 1.78 n.s 0.78 +/- 1.13 -0.09 +/- 0.48 n.s 

BA35 2.4 +/- 1.36 0.94 +/- 2.01 n.s 0.99 +/- 0.30 0.34 +/- 1.15 n.s 
BA36 -0.01 +/- 1.6 0.18 +/- 0.51 n.s -0.29 +/- 1.0 -0.38 +/- 0.38 n.s 
PHC -0.04 +/- 0.75 0.50 +/- 0.93 n.s 0.18 +/- 0.45 0.49 +/- 0.54 n.s 

 
Supplementary Table 1: Table of volumetric and functional asymmetry values for each 
subregion. *p <0.05; n.s: not significant (two sample, two-tailed permutation test). 
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