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Supplementary Information  

Supplemental Methods  

Identification of Structural Brain Hub Categories  

Hierarchical Clustering Analysis and Categories of Network Hubs. To determine the suitable category 

number for the hierarchical clustering analysis (HCA), we performed the following analyses [Lange, et 

al., 2004; Yeo, et al., 2011]: a stability analysis to test the stability of the classification results across 

populations and a null-model analysis to assess the organizational uniqueness of the classification results 

for each classified category. In the first analysis, the group-averaged metric-to-metric spatial similarity 

matrix was initially computed by averaging the similarity matrices across all individuals, and the HCA 

classification results (i.e., 2 to 7 categories) of this matrix were referred to as the real assignment. Then, 

we randomly selected 5% of individuals to generate a new averaged similarity matrix and performed 

HCA to generate the classification results for this matrix using different category numbers (the 

bootstrapping assignment). For each category number, an instability value was estimated as the 

disagreement of the classification results between the real assignment and the bootstrapping assignment 

using the following formula [Lange, et al., 2004; Yeo, et al., 2011]: 

𝐸𝐸𝑐𝑐(𝑩𝑩𝑩𝑩,𝑹𝑹𝑩𝑩) = min
𝒍𝒍∈𝑩𝑩𝑩𝑩

1
𝑁𝑁
� 𝛿𝛿(𝑙𝑙𝑖𝑖 ≠ 𝑅𝑅𝑅𝑅𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
 

where 𝐸𝐸𝑐𝑐 specifies the instability value of the category number 𝑐𝑐, 𝑩𝑩𝑩𝑩 represents all possible 

assigning labels for the bootstrapping assignment, 𝑹𝑹𝑩𝑩 is one of the possible assigning labels for the 

real assignment, 𝒍𝒍 specifies one of the possible labels for the bootstrapping assignment, 𝑁𝑁 is the 

number of graph-nodal metrics, 𝑙𝑙𝑖𝑖 and 𝑅𝑅𝑅𝑅𝑖𝑖 are the assigning labels of metric 𝑖𝑖 for the bootstrapping 

assignment and the real assignment, respectively, and 𝛿𝛿 is denoted as 1 if 𝑙𝑙𝑖𝑖 ≠ 𝑅𝑅𝑅𝑅𝑖𝑖, otherwise 0. This 

random sampling procedure was subsequently repeated 1000 times, which resulted in 1000 instability 

values for each category number. By comparing the instability values across different category numbers, 

we determined that the instability values for category numbers 2, 3 and 7 were significantly lower than 

those of the other category numbers (nonparametric permutation tests, 20000 times, P < 0.001, 

Bonferroni corrected, Fig. S1A), suggesting the clustering in these three situations was stable across 

populations.  

Second, in the null model analysis, we assessed whether the spatial pattern among the classified 

categories was significantly different from the random situation. Briefly, for each individual, we initially 

estimated the metric-to-metric spatial similarity matrix and obtained the classification results under 
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categories 2 to 7 using HCA; these classifications were referred to as the individual assignment. One 

hundred corresponding random networks with the same size and degree distribution were subsequently 

generated for each individual and the metric classifications were similarly estimated as the random 

assignments. Thus, for each category number, the disagreement in the classification results between the 

individual assignment and each of the random assignments could be assessed using the previously 

described instability value formula and these instability values were further averaged for each individual 

to represent the differences in individual brain networks and the corresponding random situations. 

Finally, for each category number, we examined whether its averaged instability value was significantly 

higher than zero across individuals; with the exception of the use of 2 categories, the brain networks 

were significantly different from random situations (nonparametric permutation paired tests, 20000 

times, P < 0.001, Bonferroni corrected, Fig. S1B). Collectively, both 3 and 7 categories corresponded to 

across-population stability and topological uniqueness of brain networks. Considering 7 categories are 

less meaningful, we classified the nodal metrics into 3 categories for further analyses.  

R-fMRI Data Preprocessing 

The routine preprocessing of R-fMRI data was performed using DPABI [Yan, et al., 2016] for each 

participant. In detail, the first 5 volumes were removed, and the remaining volumes were corrected for 

slice timing and head motion. The T1-weighted image was co-registered to the mean functional image 

and was subsequently segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) using a unified segmentation algorithm. The resultant GM, WM and CSF images were further 

nonlinearly registered into the Montreal Neurological Institute (MNI) space with the transformation 

parameters estimated. Then, the functional data were normalized to the MNI space by using the 

estimated transformation parameters and resampled to 3-mm isotropic voxels. Next, spatial smoothing 

was applied to the normalized functional images with a 4-mm full width half maximum (FWHM) 

Gaussian kernel. The linear drift was subsequently detrended, and several nuisance signals, including the 

Friston’s 24 head motion parameters, the signals from the whole brain, WM and CSF were regressed out 

to reduce respiratory and cardiac effects. Finally, temporal filtering (0.01 - 0.1 Hz) was performed on the 

time series of each voxel to reduce the effects of low-frequency drifts and high-frequency physiological 

noise. 

R-fMRI Brain Network Analyses 
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Construction of Functional Brain Networks. A group-level voxel-wise functional network (5% network 

density) was constructed based on the preprocessed R-fMRI data. Briefly, for each individual, we 

extracted the time series of each voxel within a GM mask, which was defined by thresholding the priori 

GM probabilistic template in SPM8 (GM probabilistic density > 0.2). The Pearson’s correlation of each 

pair of the time series was subsequently estimated, resulting in a functional connectivity matrix for each 

subject. Finally, we averaged the connectivity matrices across individuals to generate a grouped-

averaged matrix and the top 5% strong connections were selected to define the group-level weighted 

functional network.  

Identification of Functional Brain Systems. To examine the specificity of the distributions of structural 

hubs in functional systems, we identified the functional systems based on our group-level voxel-wise 

functional network. Briefly, we first applied a spectral community algorithm [Newman, 2006] to the 

functional network and 13 functional modules were identified (modules with a size less than 100 voxels 

were removed). According to previous functional connectome studies [Yeo, et al., 2011], we 

subsequently merged some of the 13 modules that were clearly sub-sets belonging to a large functional 

system, and obtained a seven-system parcellation that included the visual, sensorimotor, dorsal attention, 

ventral attention, limbic, frontoparietal and default-mode systems (Fig. S2A). Notably, our recent study 

demonstrated that network density likely affects the properties of voxel-wise functional networks [Du, et 

al., 2015]. Thus, we utilized two additional network densities (i.e., 1% and 10%) for modular 

identification. The adjusted mutual information [Vinh, et al., 2010] was used to quantify the similarity 

between every pair of modular structures. The results showed that the adjusted mutual information value 

was 0.571 between the 1%- and 5%-networks, 0.617 between the 5%- and 10%-networks, and 0.495 

between the 1%- and 10%-networks, respectively. These results suggest a high similarity in modular 

structures among different network densities. Notably, there were no isolated nodes in any of the 

functional networks with different densities. 

Functional Participant Coefficients. The functional participant coefficient quantifies the level that a 

given node connects to different functional systems [Hagmann, et al., 2008; He, et al., 2009; Power, et 

al., 2013]. We calculated the functional participant coefficient (FPc) for each node (i.e., voxel) in our 

group-level voxel-wise functional network using the following formula: 

𝐹𝐹𝐹𝐹𝑐𝑐𝑖𝑖 = 1 −� (𝐷𝐷𝑐𝑐𝑖𝑖𝑖𝑖 𝐷𝐷𝑐𝑐𝑖𝑖⁄ )2
𝑆𝑆

𝑖𝑖 = 1
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where 𝑆𝑆 is the number of functional modules, 𝐷𝐷𝑐𝑐𝑖𝑖𝑖𝑖 specifies the degree of node 𝑖𝑖 within module 𝑠𝑠, 

and 𝐷𝐷𝑐𝑐𝑖𝑖 specifies the degree centrality of node 𝑖𝑖 (Fig. S2B). 

Investigating the Uniqueness of Hub Characteristics 

To determine whether the classification of nodal metrics and subsequent characterization results of the 

categorized hubs were unique in the brain networks or obtained by chance, we performed the following 

analyses. First, we generated all the possible combinations of clusters that had 4, 3, and 1 nodal metrics, 

which resulted in 280 groups with three categories of hub indices (𝐶𝐶84 × 𝐶𝐶43 × 𝐶𝐶11, 1 real combination and 

279 surrogate combinations). Then, for each surrogate combination, we identified three categories of 

surrogate hubs (top 20%) and estimated their characteristics of microstructural organization, wiring cost, 

cognitive flexibility, functional association and topological vulnerability (a total of ten characteristics). 

Similar to our main analyses on miscellaneous characteristics, for each surrogate combination we 

performed statistical comparisons of these characteristics among the three categories of hubs. Finally, by 

applying the same statistical thresholds shown in Fig. 5, for a given surrogate combination we obtained 

the ranks of categorized hubs for each of ten characteristics; we subsequently determined whether the 

ranks in these surrogate combinations are consistent with those in the real combination. If one of 

characteristics is consistent, we called ‘match’ for this characteristic; otherwise, it was defined as ‘not 

match’. The proportions of surrogate combinations with 10, 9, 8, 7 and 6 characteristics that are 

consistent with the real one were subsequently estimated. 

Validation Analysis 

To determine whether our findings are robust under different diffusion imaging protocols and fiber 

reconstructing algorithms, node definitions, hub selection thresholds, and consideration of isolated 

nodes, we implemented the validation analyses via four procedures:  

i) The Effects of Diffusion Imaging Protocol and Fiber Reconstructing Algorithm. It has been argued 

that DTI tractography approaches may introduce false negative long-range connections and false 

positives in tracing between nearby regions because of their inaccuracies in resolving crossing fibers and 

tracts with sharp angles [Wedeen, et al., 2008]. Thus, to determine whether our main findings are 

insensitive to the diffusion imaging protocol and whether they are influenced by the fiber pathway 

reconstruction algorithm, we utilized the HARDI data from Dataset 3 to reconstruct individual structural 

brain networks with 1024 nodes. Specifically, we obtained the minimal preprocessing HARDI data with 
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eddy current and susceptibility distortion correction from the HCP website 

(http://db.humanconnectome.org) [Van Essen, et al., 2013]. The reconstruction of the diffusion profile 

was then implemented in a voxel-by-voxel manner using a generalized q-sampling imaging model [Yeh, 

et al., 2010]. Furthermore, whole-brain fiber tracts were generated, and individual structural networks 

were constructed. Finally, we identified the hub categories and examined their spatial distributions and 

miscellaneous characteristics.  

ii) The Effects of Node Definition of the Structural Network. Previous studies have demonstrated that 

different node definitions used during brain network construction may lead to differences in network 

topological properties [Wang, et al., 2009; Zalesky, et al., 2010]. Using Dataset 1, we validated whether 

our main findings were affected by another regional parcellation with 625 nodes that were generated 

based on the constraint of the anatomical transcendental boundaries of automated anatomical labeling. 

Network construction and analyses were performed again, as previously described. In addition, there 

were some anatomical overlaps across different hubs (e.g. posterior cingulate cortex), which might due 

to the adoption of high resolution 1024-node parcellation. Therefore, we utilized a coarser 360-node 

multi-modal parcellation [Glasser, et al., 2016] to validate our findings on Dataset 3.  

iii) The Effects of Hub Selection Thresholds. In this study, the brain nodes with the top 20% of hub 

indices were defined as hubs, which may influence our conclusions. Therefore, based on Dataset 1, we 

also selected two additional thresholds, the top 15% and the top 25% of hub indices, to define brain 

hubs. The hub characteristics were explored again to verify our main findings. 

iv) The Effects of Isolated Nodes. To examine whether hub classification and identification were 

sensitive to the existence of isolated nodes in the brain networks, we performed the following analyses 

in Dataset 1. Briefly, we first calculated the percentage of isolated nodes for each individual network. 

Then, for each node, the probability of isolation was calculated across individuals, resulting in a 

probabilistic map of isolated nodes at the group-level. Finally, we calculated the nodal metrics on the 

individual networks with the removal of isolated nodes and re-performed the hierarchical clustering 

analysis to identify categorized hubs. 

v) The Effects of Modular Organization for calculating participant coefficient. In our main analysis, the 

participant coefficient was calculated based on the modular organization specifically estimated for each 

subject. To validate whether estimating the modular organization at different levels (i.e., individual-level 



6 
 

or group-level) could affect the distribution of the participant coefficient, we re-calculated the 

participant coefficients according to a group-level modular organization. In detail, we first created a 

group-level binary network by selecting all connections that were present in at least 25.34% of the group 

of individuals (this threshold ensured the same sparsity as the mean of individual networks). Then, we 

implemented the spectral community algorithm [Newman, 2006] for this group-level network and 

obtained the group-level modular organization. Finally, for each subject we estimated the individual 

participant coefficient map according to this group-level modular organization and subsequently re-

performed our analyses. 

Statistical Analysis 

Unless specifically noted, all comparisons involving between-systems, hubs vs. non-hubs, and among 

three categories of hubs were performed using paired nonparametric permutation tests across 

individuals. Briefly, for each pair of samples, the difference of the mean values between two paired 

sample groups (e.g., the mean difference of the FA between the aggregated hubs and non-hubs across 

subjects, or the mean difference of the streamline cost between the aggregated hubs and the distributed 

hubs across subjects) was initially calculated. For each permutation, the paired samples were randomly 

interchanged between two groups and the mean difference between groups was then re-computed. A 

total of 20,000 permutations were performed to generate an empirical distribution of the difference. 

Furthermore, the original difference between two paired sample groups was assigned a P value as the 

proportion of random values in the obtained empirical distribution. The 95th percentile point of the 

empirical distribution was used as a critical value in a one-tailed test to determine whether the observed 

group differences could occur by chance. Notably, the usage of 20,000 permutations ensures that the 

minimum uncorrected P-value obtained from the permutation test can fulfills the condition of the 

Bonferroni correction. 

Supplemental Results 

Validation Results 

Data using Different Imaging and Tractography Protocols. We validated the main findings by re-

performing our analysis on Dataset 3 (HARDI data from HCP). We found remarkably similar or 

different spatial distributions between specific network nodal metrics (range of Spearman’s ρ: 

0.29~1.00), which were highly similar to the main results (Fig. S6A and 3A). The HCA classified the 

eight nodal metric maps into three categories: i) eigenvector centrality, subgraph centrality, K-core 
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centrality, closeness centrality, and degree centrality; ii) betweenness centrality and page-rank centrality; 

and ii) participant coefficient (Fig. S6A). Of note, degree centrality was classified into the first category, 

which may suggest the bipolar topological character of degree centrality and/or its potential sensitivity 

to different diffusion imaging protocols or fiber reconstructing algorithms. Although the classification 

result was slightly changed, the spatial distributions of all three hub indices over the whole brain and 

within functional systems were nearly the same as the main findings; moreover, the commonly 

identified hub nodes in all three categories were primarily located at the default-mode system (P-values 

< 0.005, Bonferroni corrected) with additionally identified hub nodes in the visual system for aggregated 

hubs and in the sensorimotor and ventral attention systems for connector-hubs (P-values < 0.01, 

Bonferroni corrected) (Fig. S6B and S6C). Moreover, all three categories of hubs exhibited better 

microstructural organization, greater wiring costs, higher functional associations, more cognitive 

flexibility and heavier topological vulnerability than non-hubs (P-values < 0.001, Bonferroni corrected). 

Among the three categories of hubs, the aggregated hubs exhibited the largest generalized FA values and 

the longest streamline length, the distributed hubs exhibited the highest streamline cost and topological 

vulnerability, and the connector hubs exhibited the strongest functional association and highest cognitive 

flexibility (P-values < 0.001, Bonferroni corrected) (Fig. S7). These results indicate the strong 

reproducibility of our findings under different imaging and tractography methods.  

625-Node Definition. We used a 625-node constrained-random parcellation to re-construct the whole-

brain WM individual networks (based on Dataset 1) and found that the results were largely consistent 

with our results in the main text. Briefly, the classification of the three categories of metrics was exactly 

the same as the classification used in the main text, and the spatial patterns and system distributions of 

the hub indices were largely consistent with the main results (Fig. S8). Moreover, the distinct 

miscellaneous characteristics of different structural brain hubs were extremely retained, which were 

highly similar to those of the networks with 1024 nodes (for all comparisons of characteristics between 

hubs and non-hubs and among three categories of hubs, P-values < 0.001, Bonferroni corrected) (Fig. 

S9). Collectively, our main findings were independent of the node definition during structural brain 

network construction. 

360-Node Definition. We adopted a 360-node multi-modal parcellation to re-identify the three categories 

of hubs and examined their spatial distribution (based Dataset 3). The spatial distributions of three 

categories of hubs were largely consistent with our main findings except that the closeness centrality 
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was classified into the category of distributed hub (Fig. S10). Overlapped regions are mainly distributed 

in the posterior cingulate cortex, medial prefrontal cortex, temporal pole and visual cortex, particularly 

in the default-mode system (Fig. S10B and S10C). These results indicate that our main findings were 

stable regardless of the resolutions of brain parcellations. 

Thresholds for Hub Identification. The nodes with the top 20% of hub indices were identified as the 

hubs in the main analysis, and two additional thresholds, 15% and 25%, were used for validation 

analyses. We found that under the threshold of 15% (Fig. S11) or 25% (Fig. S12), all three categories of 

hubs exhibited better microstructural organization, greater wiring costs, higher functional association, 

more cognitive flexibility and heavier topological vulnerability than non-hubs, and the diversity of these 

characteristics among brain hubs was highly consistent with the main findings (for all comparisons of 

characteristics between hubs and non-hubs and among three categories of hubs, P-values < 0.001, 

Bonferroni corrected).  

Spatial Distribution of Isolated Nodes and Their Influences on Classification of Nodal Metrics. The 

results showed that only a few nodes were isolated in the individual networks (percentages: 5.4%±1.8% 

nodes; range: 1.7%~11.2% nodes). The majority of the isolated nodes (group-level probability > 25%) 

were mainly located near the midline and lateral regions of the brain (Fig. S13A). Here, the probability 

threshold, 25%, corresponded to the top 60 nodes, which was comparable to the mean number of 

isolated nodes across subjects (i.e., 55.7 nodes) (Fig. S13B). The results with the removal of isolated 

nodes were not different from our main findings (Figs. 3A and S13C), implying that our main findings 

were not affected by the removal of isolated nodes or not. 

Calculation of Participant Coefficient Using Group-level Modular Organization. We repeated our main 

analyses which were performed on Dataset 1 with the participant coefficient defined by group-level 

modular organization. The classification of eight nodal metrics was consistent with the corresponding 

results in the main text (Fig. S3A and S14A). The spatial distributions of the connector hub indices 

derived from group- and individual-level modular organization were significantly similar (ρ = 0.4682, 

P-value = 6.34×10-57; Fig. S14B), and the spatial distributions of the connector hub indices within 

functional systems were nearly the same as our main findings (Fig. 4B and S14C). All three categories 

of hubs exhibited better microstructural organization, greater wiring costs, higher functional association, 

more cognitive flexibility and heavier topological vulnerability than non-hubs (P-values < 0.001, 

Bonferroni corrected, Fig. S15A). Moreover, among the three categories of hubs, the aggregated hubs 
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exhibited the largest FA values and the longest streamline length, the distributed hubs exhibited the 

highest streamline cost and topological vulnerability, and the connector hubs exhibited the strongest 

functional association and highest cognitive flexibility (P-values < 0.001, Bonferroni corrected) (Fig. 

S15B). These results indicate that our findings are stable when calculating participant coefficients 

regardless of using group-level or individual-level modular organizations. 
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Supplemental Tables  

Table S1. Detailed description of eight graph nodal metrics 

Nodal Metric Name 

(Abbreviation) 
Description Formula Annotation 

Betweenness Centrality (Bc) 
Freeman’s betweenness centrality 
specifies the number of times that a 
node is on the shortest path between 
two other nodes in network 
[Freeman, 1980]. 

𝐵𝐵𝑐𝑐𝑘𝑘 = � � 𝑔𝑔𝑖𝑖𝑘𝑘𝑖𝑖 𝑔𝑔𝑖𝑖𝑖𝑖⁄
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
 

𝑁𝑁 is the number of nodes, 𝑔𝑔𝑖𝑖𝑘𝑘𝑖𝑖 
is the number of shortest paths 
between node 𝑖𝑖 and node 𝑗𝑗 
passing through node 𝑘𝑘, and g𝑖𝑖𝑖𝑖 
is the total number of all shortest 
paths between node 𝑖𝑖 and node 
𝑗𝑗. 

Closeness Centrality (Cc) 
Freeman’s normalized closeness 
centrality is defined as the reciprocal 
of averaged distance across all 
shortest paths between a given node 
and the other nodes [Freeman, 1978]. 

𝐶𝐶𝑐𝑐𝑖𝑖 = (𝑁𝑁 − 1) � �𝑑𝑑𝑖𝑖𝑖𝑖�
𝑁𝑁

𝑖𝑖=1
�  𝑁𝑁 is the number of nodes, and 

𝑑𝑑𝑖𝑖𝑖𝑖 is the length of shortest path 
between node 𝑖𝑖 and node 𝑗𝑗. 

Degree Centrality (Dc) Degree centrality is calculated as the 
number of edges connected to a 
given node [Freeman, 1978]. 

𝐷𝐷𝑐𝑐𝑖𝑖 = � 𝑅𝑅𝑖𝑖𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 

𝑁𝑁 is the number of nodes, and 𝑅𝑅 
is the adjacent matrix, if there is 
an edge between node 𝑖𝑖 and 
node 𝑗𝑗, 𝑅𝑅𝑖𝑖𝑖𝑖 = 1, otherwise 
𝑅𝑅𝑖𝑖𝑖𝑖 = 0. 

Eigenvector Centrality (Ec) 

Eigenvector centrality is the 
principal eigenvector of the 
adjacency matrix [Bonacich, 1972]. 
In particular, it mathematically 
equivalent to Katz’s centrality [Katz, 
1953] as the damping factor 
approaches the reciprocal of the 
principal eigenvalue from below 
[Bonacich, 1991], and it is the 
weighted count of all walks for a 

𝐸𝐸𝑐𝑐𝑖𝑖 = 𝜇𝜇𝑖𝑖1~� � (1 𝜆𝜆1⁄ )𝑘𝑘�𝑅𝑅𝑘𝑘�𝑖𝑖𝑖𝑖
+∞

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1
 

𝑁𝑁 is the number of nodes, 𝜇𝜇𝑖𝑖1 is 
the 𝑖𝑖𝑖𝑖ℎ component of the 
principal eigenvector, 𝜆𝜆1 is the 
largest eigenvalue of the 
adjacency matrix, 𝑅𝑅 is the 
adjacent matrix, and �𝑅𝑅𝑘𝑘�𝑖𝑖𝑖𝑖 
specifies the path between node 𝑖𝑖 
and node 𝑗𝑗 with 𝑘𝑘 step walking. 
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given node that considers indirect 
paths. 

K-core Centrality (Kc) 

K-core decomposition assigns a set 
of nodes to k if and only if the 
minimum degree of the subgraph 
comprised of these nodes is k 
[Alvarez-Hamelin, et al., 2006]. It 
assesses the level of interconnection 
between each other for a given set of 
nodes [Hagmann, et al., 2008]. 

𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

𝐻𝐻 = (𝐶𝐶,𝐸𝐸|𝐶𝐶),𝐶𝐶 ⊆ 𝑉𝑉, 

∀𝑣𝑣 ∈ 𝐶𝐶,𝐷𝐷𝑐𝑐𝑣𝑣 ≥ 𝑘𝑘, 

𝐾𝐾𝑐𝑐𝐶𝐶 = 𝑘𝑘 

𝐺𝐺 represents a graph, 𝑉𝑉 is the 
node set, 𝐸𝐸 is the edge set, 𝐻𝐻 is 
the subgraph, 𝑣𝑣 is a given node 
in subgraph 𝐻𝐻, 𝐷𝐷𝑐𝑐𝑣𝑣 specifies 
the degree centrality of node 𝑣𝑣. 

Participant Coefficient (Pc) 
Participant coefficient quantifies the 
level that a given node connects to 
different network modules 
[Hagmann, et al., 2008; He, et al., 
2009; Power, et al., 2013].  

𝐹𝐹𝑐𝑐𝑖𝑖 = 1 −� (𝐷𝐷𝑐𝑐𝑖𝑖𝑖𝑖 𝐷𝐷𝑐𝑐𝑖𝑖⁄ )2
𝑆𝑆

𝑖𝑖=1
 

Where, 𝑆𝑆 is the number of 
modules, 𝐷𝐷𝑐𝑐𝑖𝑖𝑖𝑖 specifies the 
number of edges between node 𝑖𝑖 
and the other nodes within 
module 𝑠𝑠, and 𝐷𝐷𝑐𝑐𝑖𝑖 specifies the 
degree centrality of node 𝑖𝑖. 

Page-rank Centrality (Pr) 

Google’s page-rank centrality [Page, 
et al., 1999] is a variant of the 
eigenvector centrality [Zuo, et al., 
2012]. The damping factor was set to 
0.85, which was generally used in 
previous studies and introduced a 
small probability walking on the 
graph [Boldi, et al., 2009]. 
 

𝐹𝐹𝑃𝑃𝑖𝑖 = (1 − 𝑑𝑑) 𝑁𝑁⁄ + 𝑑𝑑� �𝑅𝑅𝑖𝑖𝑖𝑖 𝐷𝐷𝑐𝑐𝑖𝑖⁄ �
𝑁𝑁

𝑖𝑖=1
 

𝑁𝑁 is the number of nodes, 𝑑𝑑 is 
the damping factor, 𝑅𝑅 is the 
adjacent matrix, and 𝐷𝐷𝑐𝑐𝑖𝑖 
specifies the degree centrality of 
node 𝑖𝑖. 

Subgraph Centrality (Sc) 
Subgraph centrality [Estrada and 
Rodriguez-Velazquez, 2005] 
quantifies the number of subgraphs 
in which a given node is included. 

𝑆𝑆𝑐𝑐𝑖𝑖 = � �𝑅𝑅𝑘𝑘�𝑖𝑖𝑖𝑖 𝑘𝑘!⁄
+∞

𝑘𝑘=0
= � 𝜇𝜇𝑖𝑖𝑖𝑖2e𝜆𝜆𝑗𝑗

𝑁𝑁

𝑖𝑖=1
 

 

�𝑅𝑅𝑘𝑘�𝑖𝑖𝑖𝑖 is the number of 
subgraphs with 𝑘𝑘 step walking, 
𝜇𝜇𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑖𝑖ℎ component of 𝑗𝑗𝑖𝑖ℎ 
eigenvector, and 𝜆𝜆𝑖𝑖 specifies 
𝑗𝑗𝑖𝑖ℎ eigenvalue of the adjacent 
matrix 𝑅𝑅. 
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Supplemental Figures  
 

 

 

Figure S1. Identification of the Category Number of the Hierarchical Clustering Analysis. (A) The 
instability of classification with different category numbers. The symbol “<” indicates that the item to 
the left is significantly lower than the item to the right (P < 0.001, Bonferroni corrected), and the symbol 
“=” represents no significant differences between the left and right items. (B) The assigning differences 
compared with null models when using different category numbers. The symbol “***” indicates that the 
assigning difference is significantly larger than 0 (P < 0.001, Bonferroni corrected), and the symbol 
“n.s.” indicates non-significant. 
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Figure S2. Brain Functional Systems and Functional Participant Coefficient. (A) Seven functional 
systems identified using the fMRI data in Dataset 1. These functional systems were mapped to a brain 
surface and 8 coronal slices (subcortical regions: MNI coordinates from y = -36 to 36 with steps of 12 
mm). (B) The corresponding functional participant coefficient distribution of the group-level voxel-wise 
functional network. 
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Figure S3. Consistency of the Miscellaneous Characteristics between All the Possible Surrogate 
Hubs and Brain Hubs. The three categories of surrogate hubs were obtained from all the possible 
combinations of classification with 4, 3 and 1 nodal metrics (1 real combination and 279 surrogate 
combinations). The statistical comparisons of each characteristic among three categories of hubs were 
then performed. We next compared the statistical results of each characteristic between brain hubs and 
surrogate hubs. If it matches we specify it as orange and otherwise black. The first column represents the 
real combination of the classification of nodal metrics in the brain network.  
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Figure S4. Spatial Similarities of Hub Indices between Scanning Sessions. (A) Individual-level 
spatial correlation. For each box plot, the bottoms and tops of the boxes indicate the first and third 
quartiles of the Spearman’s correlation coefficients across individuals, the band inside the box represents 
the median, and the whiskers specify the 1.5 interquartile range of the lower and upper quartiles. (B, C, 
D) Group-level spatial correlations. The red, blue and green plots indicate the aggregated, distributed 
and connector hub indices, respectively. 
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Figure S5. Intra-subject and Inter-subject variability of three categories of hubs. (A, B, C) The 
maps of spatial correlation coefficients among individuals from two scanning sessions. The on-diagonal 
elements represent intra-subject correlation and the off-diagonal elements specify inter-subject 
correlation. (D, E, F) The corresponding comparison between intra-subject and inter-subject spatial 
correlation coefficients. For each box plot, the bottoms and tops of the boxes indicate the first and third 
quartiles of the Spearman’s correlation coefficients, the band inside the box represents the median, and 
the whiskers specify the 1.5 interquartile range of the lower and upper quartiles. “***” represents the 
significance level (P-values<0.001, Bonferroni corrected).  
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Figure S6. Identification and Spatial Distribution of the Three Categories of Hubs from Dataset 3. 
(A) The group-averaged map of the Spearman’s correlations among the eight nodal metrics and the 
agglomerative hierarchical clustering tree generated from the map. The red, blue and green solid lines 
show the classification results, indicating the three categories of metrics used to identify the following 
aggregated hubs, distributed hubs and connector hubs. (B) Spatial distributions of the three categories of 
hubs on the brain surface. (C) Spatial distributions of the three categories of hubs in the seven functional 
systems. 
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Figure S7. Miscellaneous Characteristics of the Three Categories of Hubs from Dataset 3. (A) 
Comparisons of miscellaneous characteristics between hubs and non-hubs for each category of hubs. (B) 
Comparisons of these characteristics among the three categories of hubs. 
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Figure S8. Identification and Spatial Distribution of the Three Categories of Hubs using the 625-
Node Definition. (A) The group-averaged map of Spearman’s correlations among eight nodal metrics 
and the agglomerative hierarchical clustering tree generated from the map. The red, blue and green solid 
lines show the classification results, indicating the three categories of metrics used to identify the 
following aggregated hubs, distributed hubs and connector hubs. (B) Spatial distributions of the three 
categories of hubs on the brain surface. (C) Spatial distributions of the three categories of hubs in the 
seven functional systems.  
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Figure S9. Miscellaneous Characteristics of the Three Categories of Hubs using the 625-Node 
Definition. (A) Comparisons of the miscellaneous characteristics between hubs and non-hubs for each 
category of hubs. (B) Comparisons of these characteristics among the three categories of hubs.  
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Figure S10. Identification and Spatial Distribution of the Three Categories of Hubs using the 360-
Node Definition. (A) The group-averaged map of Spearman’s correlations among eight nodal metrics 
and the agglomerative hierarchical clustering tree generated from the map. The red, blue and green solid 
lines show the classification results, indicating the three categories of metrics used to identify the 
following aggregated hubs, distributed hubs and connector hubs. (B) Spatial distributions of the three 
categories of hubs on the brain surface. (C) Spatial distributions of the three categories of hubs in the 
seven functional systems. 
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Figure S11. Miscellaneous Characteristics of the Three Categories of Hubs using the 15% Hub 
Selective Threshold. (A) Comparisons of the miscellaneous characteristics between hubs and non-hubs 
for each category of hubs. (B) Comparisons of these characteristics among the three categories of hubs. 
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Figure S12. Miscellaneous Characteristics of the Three Categories of Hubs using the 25% Hub 
Selective Threshold. (A) Comparisons of the miscellaneous characteristics between hubs and non-hubs 
for each category of hubs. (B) Comparisons of these characteristics among the three categories of hubs.  
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Figure S13. Spatial Distribution of Isolated Nodes and Identification of Three Categories of Nodal 
Metrics in the Connected Brain Networks after Removal of Isolated Nodes. (A) Spatial distribution 
of isolated nodes (grouped probability > 0.25). (B) Histogram of the probability of isolated nodes across 
nodes. (C) Identification of nodal metrics with the connected brain networks after removal of isolated 
nodes. 
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Figure S14. Identification and Spatial Distribution of the Three Categories of Hubs when the participant 
coefficient defined by group-level modular organization. (A) The group-averaged map of Spearman’s 
correlations among eight nodal metrics and the agglomerative hierarchical clustering tree generated from the map. 
The red, blue and green solid lines show the classification results, indicating the three categories of metrics used 
to identify the following aggregated hubs, distributed hubs and connector hubs. (B) Left panel: spatial 
distributions of the connector hubs using individual-level modularity. Right panel: spatial distributions of the 
connector hubs using individual-level modularity. (C) Spatial distributions of the three categories of hubs in the 
seven functional systems. 
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Figure S15. Miscellaneous Characteristics of the Three Categories of Hubs when the participant coefficient 
defined by group-level modular organization. (A) Comparisons of the miscellaneous characteristics between 
hubs and non-hubs for each category of hubs. (B) Comparisons of these characteristics among the three categories 
of hubs. 

 

 

 

 


