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Supplementary Materials 1 

The effect of sample size on the predictability and reliability of CCM 2 

The applicability of CCM can be affected by the sample size of data, as the predictability of causal 3 

interactions increases with the increasing sample size (Sugihara, et al., 2012). Here, we performed two 4 

analyses to examine the sample size effect on the predictability and reliability of CCM in fMRI data. 5 

 6 

Predictability of CCM in simulated data. First, we investigated the sample size effect on the 7 

predictability of CCM based on the simulated data. We simulated a nonlinear dynamical system 8 

containing two coupled difference equations that exhibit chaotic behaviors, as demonstrated by 9 

Sugihara, et al. (2012):  10 

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋(𝑡𝑡)[𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑥𝑥𝑋𝑋(𝑡𝑡) − 𝛽𝛽𝑥𝑥,𝑦𝑦𝑌𝑌(𝑡𝑡)] 11 

𝑌𝑌(𝑡𝑡 + 1) = 𝑌𝑌(𝑡𝑡)[𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑦𝑦𝑋𝑋(𝑡𝑡) − 𝛽𝛽𝑦𝑦,𝑥𝑥𝑋𝑋(𝑡𝑡)] 12 

where rx = 3.8, ry = 3.5, βx,y = 0.002, and βy,x = 0.1. The initial states of X(0) and Y(0) were randomly 13 

chosen from the standard uniform distribution with the interval (0,1). In this system, variable X exerted 14 

the causal influence on variable Y, while considerably weak vice versa. Using this model, we simulated 15 

1200 time points raw signals of both X and Y and simply assumed that the simulated time series 16 

represented the underlying neural activities of two brain regions. Then, the Balloon–Windkessel 17 

hemodynamic model was applied on the raw signals to generate corresponding BOLD signals (Buxton, 18 

et al., 1998; Friston, et al., 2000). Parameters in the model (e.g., the signal decay, transit time, echo time, 19 

etc.) were assigned as default values in the fMRI Simulation Toolbox (SimTB) (Erhardt, et al., 2012). 20 

Finally, the first 200 time points of the resultant time series were discarded to enable variables achieve 21 

stable dynamics. The causality between X and Y was calculated by implementing CCM on the raw time 22 

series and simulated BOLD signals, separately. The length of time series was selected as a range of 50-23 
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1000 time points with steps of 50 to investigate the sample size effect on the predictability. The whole 24 

simulation and estimation process were repeated for 100 times. 25 

For both types of time series (e.g., the raw time series and simulated BOLD signals), we found that 26 

the average causality coefficients of X to Y were much larger than Y to X (around zero), indicating the 27 

credible predictability for the causal direction of CCM. Meanwhile, the causality coefficients of X to Y 28 

were the higher for the raw time series than the simulated BOLD signals, suggesting that the 29 

hemodynamic response can affect the predictability of CCM. Moreover, we found that the causality 30 

coefficient tended to remain stably above 0.8 for raw time series and 0.6 for simulated BOLD signals 31 

when sample size is larger than 200, suggesting a reliable predictability of CCM in detecting causal 32 

relationship with sample size larger than 200 (Fig. S5). 33 

 34 

Reliability of CCM in real data. To estimate the sample size effect on the reliability of CCM, we 35 

constructed the directed functional networks with different signal length for each individual and 36 

calculated the intra-class correlation coefficient (ICC) for each connection. Briefly, based on the 37 

preprocessed data, we constructed the directed functional networks with the first 100, 150, 200, 250 and 38 

300 time points for each individual, respectively.  Then, the ICC for each connection was calculated 39 

between each network constructed with cut time series and the network constructed with the full time 40 

series length (i.e., 365), using the following formula (Shrout and Fleiss, 1979):  41 

𝐼𝐼𝐼𝐼𝐼𝐼 = (𝜎𝜎𝑏𝑏𝑏𝑏2 − 𝜎𝜎𝑤𝑤𝑏𝑏2 )/[𝜎𝜎𝑏𝑏𝑏𝑏2 + (𝑚𝑚 − 1)𝜎𝜎𝑤𝑤𝑏𝑏2 ] 42 

where σbs is the between-subject variance, σws is the within subject variance, and m is the number of 43 

repeated measures. Thus, we obtained an ICC map for each time point segment, which represents the 44 

reliability to the network constructed with full time series length. Notably, ICC is a normalized measure 45 

which has a maximum of 1. The ICC values were commonly categorized into five intervals (Landis and 46 
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Koch, 1977): 0 < ICC ≤ 0.2 (slight), 0.2 < ICC ≤ 0.4 (fair), 0.4 < ICC ≤ 0.6 (moderate), 0.6 < ICC ≤ 0.8 47 

(substantial), and 0.8 < ICC ≤ 1.0 (almost perfect).  48 

In general, the reliability of CCM increases with increasing sample size and the average ICCs 49 

reached 0.457, 0.596, 0.730, 0.827 and 0.910 for 100, 150, 200, 250 and 300 time points, respectively. 50 

These results suggest the moderate to perfect reliability of CCM in constructing directed functional 51 

networks from real BOLD data, even with a sample size less than 300. (Figure S6). 52 

 53 

The effect of dimension E in CCM on network construction  54 

In our main analysis, we set the reconstructing dimension E = 3 according to analyses on the ratio of 55 

false neighbors (Kennel, et al., 1992). Here, we further investigated whether the selection of 56 

reconstructing dimension E on CCM could affect the construction of the directed functional brain 57 

networks. We chose different E levels, e.g., E = 3, 5, 7, 9 and 11, and redid the causality coefficients 58 

estimation between every two nodes by using CCM, separately. Accordingly, a 160×160 causality 59 

coefficients matrix was obtained at each level of E for each subject. Next, we calculated the ICC scores 60 

across different E levels for each connection within the network to assess the reliability of directed 61 

functional network construction under different E levels. 62 

The result showed that 30.7% of the connections exhibited an excellent reliability of ICC > 0.8, and 63 

96.9% connections had at least moderate reliability of ICC > 0.4. These results suggested that the 64 

construction of the directed functional network retained stable among different selection of the 65 

parameter E in CCM. 66 

 67 

Effect of network construction with random projection method 68 
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The use of the standard delay-coordinate in CCM might decrease the predictability when estimating 69 

causal relationship in a highly heterogeneous system with high dimensionality, and a plenty of data 70 

samples are thus required to maintain the high predictability in CCM (Tajima, et al., 2015). To reduce 71 

the dimensionality of data, a random projection method was proposed by Tajima, et al. (2015). Here, we 72 

employed this method in network construction procedures and re-performed the analyses to examine 73 

whether our main results were sensitive to the mapping algorithm. In detail, when constructing the 74 

phase-shifted space, we projected the delay vector (i.e., the reconstructed variable), x(t) = [x(t-T), x(t-75 

2T), …, x(t-(E-1)T)], to a randomized coordinate space by multiplying a square random matrix, R, from 76 

the left of x(t) to obtain a transformed vector: xd(t)  = Rx(t). The random matrix was generated from the 77 

Gaussian distribution centered at zero with the standard deviation of one. The randomized vector xd(t), 78 

instead of x(t), was used for following steps of causality estimation. Then, we performed the same 79 

analysis protocol as those in the main text. 80 

We found the resultant causality coefficient matrix was highly similar to the one constructed by the 81 

standard CCM algorithm, indicated by a spatial correlation of r = 0.98 between the group-level matrices. 82 

The network also exhibited a small-world architecture, with σ = 1.64, γ = 1.71 and λ = 1.04. Moreover, 83 

the network demonstrated highly similar motif patterns with our main findings that there were 1397 84 

unidirected motifs and 1425 reciprocal motifs, three-node motif ID = 4, 6, 9, 12 and 13 were identified 85 

with significantly great frequencies (Z > 1.96), and the three-node motif profiles were almost same with 86 

the standard one (r = 0.997). Together, these results suggest our findings are robust to the dimensionality 87 

reduction method. 88 

 89 

Hubs in directed functional brain networks constructed by Granger causality analysis 90 
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To compare the hub set between networks constructed using CCM and Granger Causality (GC), we used 91 

the GC method to construct the directed functional brain networks and identified their hubs. The code of 92 

GC was downloaded from https://www.mathworks.com/matlabcentral/fileexchange/25467-granger-93 

causality-test, which is based on the original GC definition (Granger, 1969), and uses Bayesian 94 

information criterion to determine the lag length. For each subject, the F-statistic value was calculated 95 

by performing GC test between every two nodes. Consequently, a 160×160 F-statistic matrix was 96 

obtained for each subject and the group-level GC network was yielded by averaging all individual 97 

matrices. The same density level of 18.5% to the CCM network was chosen as the threshold to binarize 98 

the group-level GC matrix. Those nodes with total-degree values of at least one standard deviation (SD) 99 

greater than the average total-degree of the network were identified as brain hubs. 100 

We identified 27 hubs from the GC-derived directed network according to the total-degree, 13 101 

(48.15%) of which were overlapped with those in the CCM network. These overlapped hubs were 102 

mainly located in the medial prefrontal, visual and lateral parietal cortices (Fig. S8 and Table S4).  103 

 104 

  105 

https://www.mathworks.com/matlabcentral/fileexchange/25467-granger-causality-test
https://www.mathworks.com/matlabcentral/fileexchange/25467-granger-causality-test
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Supplemental Figures 106 

 107 

Figure S1. Brief description of the BH task design. During the T-fMRI scan, participants were required 108 

to perform a block-designed BH task with 7 repeated blocks (top). Within each block of 36 s, 109 

participants were instructed to keep rest for the first 10 s, then to get ready, breath in, breath out, deep 110 

breath for 2 s, separately, and finally to hold their breath for 18 s (bottom). During the data 111 

preprocessing, the 31 volumes before the 2nd block were discarded in analysis due to MRI signal 112 

equilibrium and subjects’ adaptation to the task. 113 

 114 

 115 

 116 

Figure S2. Within-/between-module three-node motif significance. Z scores were obtained by 117 

comparing motif count in the brain network to 100 stringent random networks conserving same number 118 



7 
 

of nodes, in-/out-degree, and number of unidirectional and reciprocal edges. Motif classes showing Z > 119 

1.96 were defined as significant.  120 

 121 

 122 

Figure S3. Nodal-level three-node motif significance. Z scores were obtained by comparing motif count 123 

in the brain network to 100 stringent random networks conserving same number of nodes, in-/out-124 

degree, and unidirectional and reciprocal edges. Motif classes showing Z > 1.96 were defined as 125 

significant.  126 

 127 

 128 

Figure S4. The significant profile (SP) curves of the three-node motifs in different validation analyses. 129 
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The profiles of SP curves were consistent across different validation cases. 130 

 131 

 132 

Figure S5. The relation between CCM predictability and data sample size. The simulation model 133 

contains two variables X and Y, where X causally affect Y, but not vice versa. The causality coefficients 134 

for X to Y increase with the increasing sample size, but reach a relative stability after sample size ≥ 200. 135 

The causality was estimated for the raw time series of the model (top panel) and the simulated BOLD 136 

signals (bottom panel). Blue line denotes the estimated average causality coefficient from X to Y. Red 137 

line denotes the estimated average causality coefficient from Y to X. 138 

 139 
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 140 

Figure S6. Edge-wise ICC between matrices at sample size 365 and lower sample size levels. The 141 

central mark of each box is the median, the edges of the box are the 25th and 75th percentiles, the 142 

whiskers extend to the most extreme data points not considered outliers. 143 

 144 

 145 

Figure S7. Edge-wise ICC across different E levels. 30.7% connections showed ICC > 0.8, and 96.9% 146 

connections exhibited ICC > 0.4. 147 

 148 

 149 
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 150 

Figure S8. Total-degree Hubs in the GC derived functional brain network. Red: overlapping with the 151 

CCM-derived results in the main text. Yellow: non-overlapping hubs only identified in GC-derived 152 

network.  153 
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Supplemental Tables 154 

Table S1. Demographic information of the participants 155 

Subject ID Gender Age Whether included in current study (if not, give reasons) 

2475376 Male 21 included 

9630905 Female 36 included 

2799329 Male 30 included 

8735778 Female 31 included 

3808535 Male 25 included 

7055197 Female 22 included 

1427581 Female 27 included 

3201815 Male 48 included 

4176156 Male 46 included 

3315657 Male 19 included 

2842950 Male 27 excluded (unknown volumes in T-fMRI data)  

21001 Male 57 excluded (brain atrophy) 

3795193 Male 57 excluded (excessive head motion) 

21006 Male 32 excluded (no diagnositic information) 

21024 Male 22 excluded (no diagnositic information) 

21018 Male 36 excluded (no diagnositic information) 

21002 Male 52 excluded (no diagnositic information) 

3893245 Male 38 excluded (psychiatric disease) 

3313349 Female 22 excluded (psychiatric disease) 

1961098 Female 21 excluded (psychiatric disease) 

8574662 Male 42 excluded (psychiatric disease) 

1793622 Male 60 excluded (psychiatric disease) 

4288245 Male 22 excluded (psychiatric disease) 

6471972 Male 32 excluded (psychiatric disease) 

  156 
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Table S2. Hub nodes of the directed functional brain network 157 

Hub regions MNI coordinates IN degree OUT degree TOTAL degree (IN-OUT) / TOTAL 

Angular gyrus -48 -63 35 64 54 118 0.08 

Ventromedial prefrontal cortex 9 51 16 55 62 117 -0.06 

Dorsolateral prefrontal cortex 46 28 31 58 56 114 0.02 

Temporal 46 -62 5 71 42 113 0.26 

Ventrolateral prefrontal cortex 46 39 -15 54 58 112 -0.04 

Ventromedial prefrontal cortex 6 64 3 65 46 111 0.17 

Anterior cingulate cortex -1 28 40 50 58 108 -0.07 

Medial prefrontal cortex 0 51 32 56 49 105 0.07 

Occipital -29 -75 28 51 51 102 0 

Occipital -16 -76 33 45 57 102 -0.12 

Inferior parietal sulcus -36 -69 40 57 43 100 0.14 

Inferior parietal lobe -48 -47 49 46 54 100 -0.08 

Supplementary motor area 0 -1 52 49 51 100 -0.02 

Temporoparietal junction -52 -63 15 56 41 97 0.15 

Anterior Prefrontal cortex 27 49 26 47 49 96 -0.02 

Occipital -2 -75 32 49 44 93 0.05 

Dorsolateral prefrontal cortex 40 36 29 47 46 93 0.01 

Anterior insula 38 21 -1 48 45 93 0.03 

Post cingulate 1 -26 31 44 48 92 -0.04 

Post occipital -4 -94 12 50 41 91 0.10 

Lateral cerebellum -34 -57 -24 51 40 91 0.12 

Ventral prefrontal cortex 42 48 -3 45 45 90 0 

Parietal -47 -18 50 45 45 90 0 

Dorsolateral prefrontal cortex -44 27 33 49 38 87 0.13 

Superior frontal -16 29 54 35 51 86 -0.19 

Inferior cerebellum -21 -79 -33 47 39 86 0.09 

Inferior parietal lobe -53 -50 39 38 47 85 -0.11 

  158 
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Table S3. Summary of the small-world architecture and whole-brain motif patterns in validations 159 

Validation cases Density 

Small-worldness two-node motifs three-node motifs 

γ λ σ 

unidirectional / 

reciprocal  

motif count 

Zrand 

(reciprocal motif) 

significant motifs’ 

ID (Z > 1.96) 

In the text 18.5% 1.61 1.03 1.56 1573 / 1568 61.8 4, 6, 9, 12, 13 

Individual networks 
18.5% 

±4.0% 

1.28 

±0.13 

1.02 

±0.02 

1.25 

±0.13 

1891±362/ 

1409±360 

44.3 

±3.54 
4, 6, 9, 12, 13 

Scanning session 17.8% 1.58 1.03 1.53 1493 / 1514 61.8 4, 6, 9, 12, 13 

Head motion 24.6% 1.30 1.01 1.29 2049 / 2099 58.7 4, 6, 9, 12, 13 

Tau range in BH 18.1% 1.58 1.03 1.53 1484/ 1560 56.0 4, 6, 9, 12, 13 

Sparsity (0.10) 10.0% 2.81 1.12 2.5 702 / 921 63.2 4, 6, 9, 12, 13 

Sparsity (0.25) 25.0% 1.3 1.01 1.28 2094 / 2133 69.5 4, 6, 9, 12, 13 

Parcellation 

(AAL90) 
34.9% 1.17 1.02 1.14 595 / 1098 38.3 9, 13 

Parcellation 

(Power 264) 
15.9% 1.34 1.02 1.31 4085 / 3468 85.9 4, 6, 9, 12, 13 

  160 
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Table S4. Hub nodes of the directed functional brain network derived by Granger causality analysis 161 

Hub regions MNI coordinates IN degree 
OUT 

degree 

TOTAL 

degree 
(IN-OUT) / TOTAL Overlap with CCM network 

Temporal -54 -22 9 70 57 127 0.10 NO 

Ventromedial prefrontal cortex 9 51 16 57 63 120 -0.05 YES 

Post insula 42 -24 17 78 39 117 0.33 NO 

Anterior cingulate cortex -2 30 27 55 61 116 -0.05 NO 

Angular gyrus -48 -63 35 67 47 114 0.18 YES 

Medial prefrontal cortex 0 51 32 87 26 113 0.54 YES 

Post occipital -4 -94 12 24 84 108 -0.56 YES 

Lateral cerebellum -34 -57 -24 30 77 107 -0.44 YES 

Post occipital -5 -80 9 46 58 104 -0.12 NO 

Ventromedial prefrontal cortex 6 64 3 71 32 103 0.38 YES 

Occipital 9 -76 14 50 50 100 0 NO 

Inferior cerebellum 32 -61 -31 55 42 97 0.13 NO 

Inferior cerebellum 33 -73 -30 54 43 97 0.11 NO 

Occipital -2 -75 32 57 38 95 0.20 YES 

Medial cerebellum 5 -75 -11 21 74 95 -0.56 NO 

Anterior cingulate cortex -1 28 40 59 35 94 0.26 YES 

Temporal -59 -47 11 76 15 91 0.67 NO 

Medial prefrontal cortex 0 15 45 33 57 90 -0.27 NO 

Dorsolateral prefrontal cortex 46 28 31 52 37 89 0.17 YES 

Anterior Prefrontal cortex 29 57 18 36 51 87 -0.17 NO 

Anterior Prefrontal cortex -29 57 10 60 27 87 0.38 NO 

Temporal -53 -37 13 57 30 87 0.31 NO 

Inferior parietal lobe -53 -50 39 56 30 86 0.30 YES 

Ventrolateral prefrontal cortex 39 42 16 63 22 85 0.48 NO 

Occipital -29 -75 28 34 51 85 -0.20 YES 

Ventrolateral prefrontal cortex 46 39 -15 43 41 84 0.02 YES 

Anterior Prefrontal cortex 27 49 26 30 54 84 -0.29 YES 

Medial cerebellum 14 -75 -21 44 40 84 0.05 NO 

  162 



15 
 

References 163 

Buxton, R.B., Wong, E.C., Frank, L.R. (1998) Dynamics of blood flow and oxygenation changes 164 

during brain activation: the balloon model. Magn Reson Med, 39:855-64. 165 

Erhardt, E.B., Allen, E.A., Wei, Y., Eichele, T., Calhoun, V.D. (2012) SimTB, a simulation toolbox for 166 

fMRI data under a model of spatiotemporal separability. Neuroimage, 59:4160-7. 167 

Friston, K.J., Mechelli, A., Turner, R., Price, C.J. (2000) Nonlinear responses in fMRI: the Balloon 168 

model, Volterra kernels, and other hemodynamics. Neuroimage, 12:466-77. 169 

Granger, C.W.J. (1969) Investigating Causal Relations by Econometric Models and Cross-spectral 170 

Methods. Econometrica, 37:424-438. 171 

Kennel, M.B., Brown, R., Abarbanel, H.D.I. (1992) Determining Embedding Dimension for Phase-172 

Space Reconstruction Using a Geometrical Construction. Phys Rev A, 45:3403-3411. 173 

Landis, J.R., Koch, G.G. (1977) The measurement of observer agreement for categorical data. 174 

Biometrics, 33:159-74. 175 

Shrout, P.E., Fleiss, J.L. (1979) Intraclass correlations: uses in assessing rater reliability. Psychol 176 

Bull, 86:420-8. 177 

Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M., Munch, S. (2012) Detecting causality 178 

in complex ecosystems. Science, 338:496-500. 179 

Tajima, S., Yanagawa, T., Fujii, N., Toyoizumi, T. (2015) Untangling Brain-Wide Dynamics in 180 

Consciousness by Cross-Embedding. PLoS Comput Biol, 11:e1004537. 181 

 182 


	Supplementary Materials
	The effect of sample size on the predictability and reliability of CCM
	The effect of dimension E in CCM on network construction
	Effect of network construction with 44Trandom projection method
	Hubs in directed functional brain networks constructed by Granger causality analysis
	Supplemental Figures
	Figure S7. Edge-wise ICC across different E levels. 44T30.7% connections showed ICC > 0.8, and 96.9% connections exhibited ICC > 0.4.
	Supplemental Tables
	Table S1. Demographic information of the participants
	Table S2. Hub nodes of the directed functional brain network
	Table S4. Hub nodes of the directed functional brain network derived by Granger causality analysis
	References

