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Supplementary Results

Clusters are enriched for hubs. To describe the topological role of each type of hyperedge, we first identified hub edges within
the hypergraph. We defined the strength of an edge m to be the mth column sum of the hypergraph H, and we defined
a hub edge as an edge that lay in the top 1% of strengths. We observed that hub edges are predominantly located within
cluster hyperedges (Fig. S1A). In contrast, stars contain the fewest hub edges, with bridges containing an intermediate number
(Fig. S1B). Note that the number of hub edges within each type is proportional to the total number of edges in that type,
after subtracting that expected in the null distribution. This differential distribution of hub edges throughout the three types
suggests that clusters form a densely connected functional core within the hypergraph, while less-connected stars occupy the
hypergraph’s periphery. Furthermore, it raises the possibility that the bridge hypergraphs may explicitly link densely connected
core clusters and peripheral stars. The post-hoc multiple comparisons with FDR q < 0.001 reject all the null hypothesis of no
difference among groups.

Fig. S1. Anatomical Distribution of Hub Edges. (A) We observed that hub edges – functional connections that strongly co-evolve with one another – are predominantly
located in visual, motor, and default mode areas. (B) Hub edges are more likely to concentrate in the cluster hyperedges than in stars or bridges.

Architecture of the hypergraph with age, sex, and movement regressed. To determine whether our results were biased by the
age, sex, and movement of participants, we constructed a separate hypergraph after regressing out participant age, sex, and
movement from each edge in the network. Next, we performed the clustering with the same parameter settings as those
reported in the main text, and we tested whether bridges were more likely to connect stars with clusters. We found that bridges
were more likely to connect stars with clusters than expected under the null hypothesis (p < 10−20) and less likely to connect
stars to other stars than expected under the null hypothesis (p < 10−20); see Figure. S2.

Supplementary Methods

Subjects. The PNC is a collaboration between the Center for Applied Genomics at Children’s Hospital of Philadelphia (CHOP)
and the Brain Behavior Laboratory at the University of Pennsylvania (Penn). Study procedures were approved by the
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Fig. S2. Bridges Connect Stars to Clusters. (A)Testing the intersection of hyperedges versus the null distribution where the nodal occupation is uniformly sampled from all
brain regions (see Methods), we demonstrate that bridges are more likely to connect stars to clusters than expected (p < 10−20). Moreover, bridges were less likely to
connect stars to other stars (p < 10−20).

Institutional Review Boards of both Penn and CHOP. The target population-based sample is of 10,000 youths who presented
to the CHOP network for a pediatric visit and volunteered to participate in genomic studies of complex pediatric disorders [1].
A subsample of 1,445 participants, stratified by age and sex, were randomly selected for neuroimaging [2]. Of these, 1,275
had resting-state data acquired. Participants were excluded due to missing cognitive data, poor imaging data quality, or a
history that suggested potential abnormalities of brain development. Data regarding medical history was gathered from both
self-report at time of study entry as well as electronic medical records available from CHOP. Specifically, 234 participants were
excluded due to a history of medical problems that might affect brain function, a history of inpatient psychiatric hospitalization,
or current use of psychotropic medication. Additionally, 323 participants met exclusion criteria due to poor resting-state image
quality [3–5], including if scan mean relative displacement exceeded 0.2mm (see below), if there were greater than 20 volumes
with relative displacement greater than 0.25mm, or if gross between-run motion resulted in incomplete brain coverage. These
exclusion criteria resulted in a final eligible pool of 780 participants aged 8–22 years (mean age 15.63 (SD=3.28); 333 males; see
Figure S3 for the distribution of ages in our sample). Many participants were excluded due to multiple criteria.

Time series preprocessing. All functional timeseries were slice-time corrected, motion corrected to the median image using a
tri-linear interpolation with six degrees of freedom [6], and spatially smoothed (6mm FWHM, isotropic). Confound regression
was performed with a 36-parameter model [7, 8] including 6 motion parameters and the temporal derivative, quadratic term,
and temporal derivative of the quadratic of each and global signal regression [3, 4]. Before confound regression, the confound
parameters were band-pass filtered identically to the timeseries to prevent mismatch in the frequency domain and to permit
confound parameters to best fit retained signal frequencies [9]. Because spike regression and scrubbing have been found to bias
graph properties, they were not applied [8]. Processed subject-level BOLD images were coregistered to the subject’s T1 image
with boundary-based registration with integrated distortion correction from FSL 5 [10]. Whole-head T1 images were registered
to the Montreal Neurological Institute 152 1mm template with top-performing diffeomorphic SyN registration from ANTs
[11–13]. Each subject’s registration was inspected manually and evaluated for accuracy using spatial correlations. Network
nodes were registered to subject space for timeseries extraction by concatenating the coregistration, distortion correction, and
normalization transformations such that only one interpolation was performed in the entire process.

Hyperedges: Clusters of co-evolving functional connections. We hypothesized that functional connections would vary with one
another over subjects, being driven by collective neurophysiological processes from intrinsic computations, extrinsic stimulation,
or mutually trophic effects on connectivity [14]. To test this hypothesis, we sought to identify significant clusters of co-evolving
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Fig. S3. Distribution of Ages in PNC Cohort A histogram showing the number of subjects from ages 8 to 22 years that were included in this study. N=780 participants (mean
age 15.63 (SD=3.28); 333 males).

edges by applying a common network-based community detection algorithm [15, 16] to the hypergraph H. Due to its simplicity,
computational power, and previous utility in neuroimaging contexts, we chose the modularity maximization technique [17].
Using a Louvain-like locally greedy algorithm [18, 19] we optimized the modularity function
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H−mn, γ+ and γ− are resolution parameters that tune the relative size of clusters detected. After performing a

fine-scale parameter sweep, we observed that γ+ = γ− = 7 offered the greatest stability in cluster structure (See supplementary
results below). We refer to each cluster in the hypergraph H as a hyperedge, since it represents a collection of functional
connections (edges) that co-evolve with one another [20].

Next, we wished to determine the statistical significance of each cluster, which we obtained by nonparametric permutation
testing. We began by denoting G = (V,H) to be the network of E edges, where V = {1, · · · , E} is the edge set, H ∈ RE×E

is the adjacency matrix that represents the hypergraph, and Hmn is the weight of the link between edge m and edge n.
A community structure is characterized by a partition C = {C1, · · · , CK}, where Cr ⊂ V consists of the edges in the rth
community and K is the number of communities in G. Using Eq.1, we define the community-specific modularity, which
measures the strength of the rth community [21]. We then generate a null community structure C′, which has exactly the
same number of communities and the same number of edges in each community as the original community structure C. To
achieve this, we simply permute the order of nodes in V . In this way, we generate T = 1000 null community structures, and we
then determine their community-specific modularity. The p-value for the significance of a community r is then given by the
number of communities r′ in the null community structure that display a greater community-specific modularity than the true
community r, divided by the number of permutations T (for further details, see final section below). Using this approach, we
observed that 363 hyperedges were statistically significant, and we discarded all hyperedges that were not significant.

Hyperedge archetypes. For the significant hyperedges, we defined the hyperedge archetypes that each displayed based on their
interpretable spatial configurations in the brain, and their differential contributions to the ongoing dynamic processes. For
each hyperedge, we listed the edges that composed the associated community r, and then determined the set of nodes (brain
regions) that were touched by at least one of those edges. We then defined a binary adjacency matrix Br whose elements Br

ij

indicated the presence (1) or absence (0) of an edge between nodes i and j that were also present in the community r. We
observed that the matrices Br fell into one of three categories: focal star hyperedge, bridging bipartite hyperedge, and cluster
hyperedge (see Fig. 2 in the main text). We more simply refer to them as star, bridge and cluster hypergraphs. Stars consist of
edges that are linked to one another via one, two, or three nodes. Bridges consist of edges that connect one set of nodes to a
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second set of nodes, but do not connect nodes within the same set. Clusters consist of edges that connect nodes both within
and between sets.

To classify hyperedge types directly from the data, we implemented a hierarchical approach. First, we applied a bipartivity
test to the matrix Br to determine whether the rth hyperedge was a bipartite structure or a network structure [22]. If the
matrix failed the bipartivity test, we assigned the matrix to the cluster archetype. If the matrix passed the bipartivity test,
we calculated its degree distribution to determine whether it was indeed a bridge or better described as a star. Specifically,
if a matrix was found to involve one, two or three nodes with two or more edges and each other node was associated with
exactly one of these three nodes, we assigned the matrix to the star archetype; we assigned the matrix to the bridge archetype
otherwise.

Choices of resolution parameter in modularity maximization. As described earlier in this supplementary methods section, we
applied common community detection method to identify hyperedges within the hypergraph. The GenLouvain algorithm that
we used is essentially a greedy algorithm that maximizes the modularity quality function at different values of the structural
resolution parameter γ. Lower values of γ lead to a few large hyperedges while larger values of γ lead to more smaller hyperedges.
In the main text, we chose γ = 7 because it provided the most stable community architecture across multiple optimizations
of the modularity quality function. Here we describe the data supporting that choice. Specifically, we run the GenLouvain
algorithm 50 times to get 50 partitions for each different γ ranging from 1 to 10. For each fixed γ, we calculated the z-score of
the Rand coefficient [23] between all pairs of 50 partitions. Note that the z-score of the Rand coefficient is a quantity that
measures the similarity of two partitions; the higher the value of z, the more consistent the partitions are over optimizations,
and therefore the better tuned the γ is to the underlying community structure present in the data [24]. We observed that the
highest z values were present at γ = 7, which implies that when γ = 7, the partitions GenLouvain obtained are most similar.
The average z versus γ plot is shown in Fig. S4.
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Fig. S4. Chooing the optimal resolution of the community detection. The average z-score of the Rand coefficient as a function of the structural resolution parameter γ in
the modularity quality function. Error bars indicated standard error of the mean over optimizations.

Once we obtained the community structure C, we needed to determine which communities were significant. Here we applied
a non-parametric significance test (see below) based on permutation to evaluate the significance of each community in the
community structure C. Most communities were significant except for a few particularly small communities. We discarded
insignificant communities and studied the remaining 364 significant communities (or hyperedges).

Permutation Test for Community Significance. Given a community structure C, its clusterwise-modularity of each cluster in
the community structure is defined as

Q(Ck|C) =
∑

i,j∈Ck

(aij − γpij) [2]

, where γ is a resolution parameter, P is a null model adjacency matrix. The modularity Q(Ck|C) measures how strong the
kth cluster is, but the problem is that this quantity is not normalized, challenging interpretation. We therefore introduce a
permutation test that begins by generating random community structure Cr, which has exactly the same number of clusters
and the same number of nodes in each corresponding cluster as in C. To achieve this, we just simply permuted the order of
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nodes in V . In this way, we generated T copies of independent of random community structures. Then we calculate Q(Ck|Cr)
for every random community structure Cr. Now define

Sig(Ck|C) = Q(Ck|C)−Qmax(k)
Qmax(k)−Qmin(k) [3]

, where Qmin(k) = mini Q(Cr(i)
k |Cr(i)) and Qmax(k) = maxi Q(Cr(i)

k |Cr(i)). Sig(Ck|C) is a normalized quantity that measures
the significance of each cluster in a community structure.
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