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Supplementary	Fig.	1	–	Example	of	bio-electrophysiological	noise	signals.	By	linearly	combining	

EEG	 signals	 collected	 from	 a	 256-channel	 system	 (A)	 we	 obtained	 the	 vertical	 electrooculogram	

(vEOG),	the	horizontal	electrooculogram	(hEOG)	and	the	electromyogram	(EMG)	(B).	
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Supplementary	Fig.	2	–	Electrodes	co-registration	with	individual	MR	image.	(A)	matching	 the	

three	 landmarks	 in	 electrode	 space	with	 the	 three	 landmarks	 in	 individual	MRI	 space;	 (B)	 using	 a	

rigid	transformation	to	match	the	head	shape	extracted	from	the	structural	MR	image	with	the	shape	

of	EEG	sensors;	(C)	projecting	the	electrodes	onto	the	surface	of	the	head.		
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Supplementary	 Fig.	 3	 –	 Example	 of	 head	 tissue	 segmentation	 using	 a	 template	 warping	

approach.	The	MR	image	of	 the	subject’s	head	is	segmented	in	12	compartments:	skin,	 fat,	muscle,	

compact	 bone,	 spongy	 bone,	 cerebrospinal	 fluid	 (CSF),	 cortical	 gray	 matter	 (GM),	 cerebellar	 gray	

matter,	cortical	white	matter	(WM),	cerebellar	white	matter,	brain	stem,	and	eyes.	An	individual	MR	

image	 is	shown	in	the	sagittal	section,	along	with	the	segmented	compartments.	Note	that	eyes	are	

not	shown,	because	they	are	not	visible	in	the	selected	MR	slice.		
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Supplementary	Fig.	4	–	Effect	of	power	envelope	downsampling	on	connectivity	detection.	We	

extracted	power	 time	series	 in	wideband	(1-80Hz)	 for	brain	voxels	 (A)	 in	 the	 left	and	right	middle	

temporal	area,	respectively	(MNI	coordinates:	[-43,	-72,	-8]	and	[42,	-70,	-11]),	and	(B)	in	the	left	and	

right	 primary	 visual	 area	 respectively	 (MNI	 coordinates:	 [-3,	 -101,	 -1]	 and	 [11,	 -88,	 -4]).	We	 then	

downsampled	 the	 same	 power	 time	 series	 to	 1	 Hz	 (C-D),	 and	 examined	 the	 temporal	 correlation	

between	 homologous	 areas	 before	 and	 after	 downsampling.	 Notably,	 this	 procedure	 allowed	 the	

detection	of	connectivity	that	was	not	observable	from	the	original	data.	
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Supplementary	 Fig.	 5	 –	 Comparison	 of	 different	 methods	 to	 estimate	 power	 envelopes.	We	

extracted	neuronal	activity	in	alpha	band	(8-13Hz)	in	the	left	(A)	and	right	(B)	middle	temporal	area,	

respectively	 (MNI	coordinates:	 [-43,	 -72,	 -8]	and	 [42,	 -70,	 -11]).	We	calculated	power	envelopes	by	

using	 the	Hilbert	 transform	used	 in	Brookes	et	al.	 (2011)	 (blue)	and	 the	moving	average	approach	

used	 in	de	Pasquale	et	al.	 (2010)	 (red).	The	correlation	between	 the	 two	estimates	 for	 the	 left	and	

right	middle	temporal	area	was	equal	to	0.995	and	0.997,	respectively.	
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Supplementary	Fig.	6	 –	 Fourteen	 fMRI-RSNs	maps	used	as	 templates	 in	 this	 study.	The	maps	

were	obtained	from	twenty-four	healthy	subjects	at	rest	(Mantini	et	al.,	2013).	

	

	 	



	 8	

	
	

Supplementary	Fig.	7	–	RSN	detection	for	hdEEG	data	filtered	in	selected	frequency	bands.	We	

extracted	 band-limited	 power	 envelopes	 from	 source-space	 signals	 filtered	 in	 the	 following	

frequency	bands:	delta	(1-4	Hz),	theta	(4-8	Hz),	alpha	(8-13	Hz),	beta	(13-30	Hz)	and	gamma	(30-80	

Hz).	 We	 then	 attempted	 to	 reconstruct	 14	 RSNs	 by	 tICA	 for	 each	 frequency	 band.	 Finally,	 we	

evaluated	whether	the	RSN	maps	could	be	fully	or	only	partially	reconstructed.	
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Supplementary	 Fig.	 8	 –	 Comparison	 of	 EEG-RSN	maps	 reconstructed	 using	 tICA	 and	 sICA	 on	

whole-brain	source	space	data.	RSN	detection	was	performed	by	using	 tICA	 (A)	and	 sICA	 (B)	on	

source-space	data	 reconstructed	 in	 the	whole-brain	 instead	of	 the	grey	matter	only.	EEG	networks	

were	selected	and	 labeled	on	 the	basis	of	 the	spatial	overlap	with	 fMRI	networks:	Group-level	RSN	

maps	(N=19)	were	thresholded	at	p<0.01	TFCE-corrected.	
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Supplementary Fig. 9 – Impact of the number of EEG channels, the accuracy of the head 

model and source localization algorithm on EEG-RSN detection by tICA and sICA, 

respectively. We defined the EEG-RSNs obtained with default settings as reference, and 

calculated the dice similarity with the corresponding RSNs calculated using different settings. (A) 

For temporal ICA, we examined the impact of EEG montage density by comparing the maps 

obtained from 256-channel recordings with those obtained from 128-, 64- and 32-channel 

recordings; the impact of head modelling by comparing the maps obtained by using a 12-layer 

FEM with those obtained by 5-layer realistic FEM, 3-layer realistic boundary element model 

(BEM) and 3-layer template BEM; and the impact of source localization by comparing the maps 

for eLORETA with those obtained by sLORETA, LCMV and MNE. (B) We repeated the analyses 

for the maps obtained by sICA. Statistical analyses were conducted using one-way ANOVAs (* 

for p<0.05, ** for p<0.01, *** for p<0.001). 
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Supplementary	Table	1.	Thresholds	used	for	the	automated	detection	of	artifactual	ICs.	These	

were	 set	 in	 accordance	 with	 previous	 EEG/MEG	 studies	 (de	 Pasquale	 et	 al.,	 2010;	 Mantini	 et	 al.,	

2009).	

Parameter	 Threshold	value	
cp	 0.2	
r2	 0.5	
k	 15	
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Supplementary	Table	2.	Conductivity	values	of	different	tissues	used	for	the	calculation	of	the	

head	model.	The	conductivity	values	associated	with	the	tissue	classes	were	extracted	from	relevant	

literature	(Haueisen	et	al.,	1997).	

	

Tissue	name	 Conductivity	(S/m)	
Skin	 0.4348	
compact	bone	 0.0063	
spongy	bone	 0.0400	
CSF	 1.5385	
cortical	gray	matter	 0.3333	
cerebellar	gray	matter	 0.2564	
cortical	white	matter	 0.1429	
cerebellar	white	matter	 0.1099	
brainstem	 0.1538	
eyes	 0.5000	
muscle	 0.1000	
fat	 0.0400	
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