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1. Supplementary tables

Table S1: Region names of the Harvard-Oxford cortical brain atlas together with their abbre-
viations. In the text and figures we additionally use the shorthand notations “L” and “R” to
denote the left and right sides of the brain.

Abbr Brain region

ACC Cingulate Gyrus, anterior division

AnG Angular Gyrus

CntrOper Central Opercular Cortex

Cuneus Cuneal Cortex

FMC Frontal Medial Cortex

FOper Frontal Operculum Cortex

FrontPole Frontal Pole

FrOrbC Frontal Orbital Cortex

HeschlG Heschl’s Gyrus (includes H1 and H2)

IFGop Inferior Frontal Gyrus, pars opercularis
IFGtr Inferior Frontal Gyrus, pars triangularis

Ins Insular Cortex

intCal Intracalcarine Cortex

ITGant Inferior Temporal Gyrus, anterior division
ITGpos Inferior Temporal Gyrus, posterior division
ITGto Inferior Temporal Gyrus, temporooccipital part
LingualG Lingual Gyrus

LOCinf Lateral Occipital Cortex, inferior division
LOCsup Lateral Occipital Cortex, superior division
MFG Middle Frontal Gyrus

MTGant Middle Temporal Gyrus, anterior division
MTGpos Middle Temporal Gyrus, posterior division
MTGto Middle Temporal Gyrus, temporooccipital part
OccipPole Occipital Pole

OFuG Occipital Fusiform Gyrus

ParaCingC Paracingulate Gyrus

PCgG Cingulate Gyrus, posterior division

PHGant Parahippocampal Gyrus, anterior division
PHGpos Parahippocampal Gyrus, posterior division
PlanTemp Planum Temporale

PoG Postcentral Gyrus

POper Parietal Operculum Cortex

PPolare Planum Polare

PreCentG Precentral Gyrus

PreCun Precuneous Cortex

SCA Subcallosal Cortex

SFG Superior Frontal Gyrus

SMA Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex)
SMGant Supramarginal Gyrus, anterior division

SPL Superior Parietal Lobule

STGant Superior Temporal Gyrus, anterior division
STGpos Superior Temporal Gyrus, posterior division
SupraCalc Supracalcarine Cortex

SupramGpos Supramarginal Gyrus, posterior division
TFuant Temporal Fusiform Cortex, anterior division
TFupos Temporal Fusiform Cortex, posterior division
tmp Temporal Pole

TOFuG Temporal Occipital Fusiform Cortex




Table S2: Locations and sizes of the clusters found for the StudyForrest data. If cluster
comprises of spatially disjoint subclusters, information is listed separately for the largest
subclusters in the decreasing order of their size. The following information is listed for each
cluster/subcluster: 1) the brain region name where the center of mass (COM) of the cluster
is located (if available), 2) the coordinate of COM (in MNI space), 3) the most representative
cortical brain region covered by the cluster (in terms of the number of voxels), and 4) cluster
size (in terms of the total number of voxels).

Cluster COM area CcoM Cortical area Size
index coordinate
1 (1) 58.8 —29.0 5.0 PlanTemp R 4567
(2) PlanTemp L —53.8 —28.2 6.5 PlanTemp L 4257
2 (1) 55.2 -33.5 8.0 AnG R 7045
(2) PlanTemp L —-50.1 -30.3 9.4 POper L 5455
(3) IFGop R 51.9 12.4 14.9 IFGop R 436
3 (1) PreCun R 10.9 —61.6 25.8 PreCun R 6130
4 (1) IFGtr L —40.5 32.8 16.8 MFG L 2706
(2) HeschlG L —-50.3 -23.4 10.4 CntrOper L 2313
(3) PlanTemp R 50.3 —28.8 11.8 SupramGpos R 2000
(4) IFGtr R 44.2 31.6 15.1 FrontPole R 1919
(5) PCgG R 5.7 —43.4 27.4 PCgG R 790
(6) LOCinf R 53.4 -62.5 -2.7 LOCinf R 717
(7) PreCun L —7.1 -70.7 31.7 PreCun L 460
5 (1) AnG L —48.5 —54.9 16.5 AnG L 2514
(2) LOCsup R 52.1 -63.5 22.3 LOCsup R 2246
(3) IFGop R 50.6 18.9 10.4 IFGop R 894
(4) MTGpos R 61.4 -32.9 -5.7 MTGpos R 548
(5) STGant L 52.8 ~8.6 ~11.3 MTGpos L 526
(6) ParaCingC L ~7.8 41.1 9.6 ParaCingC L 448
(7) LOCsup L —37.2 -79.3 27.7 LOCsup L 409
6 (1) 21.1 36.0 17.3 FrontPole R 5288
(2) —28.5 39.7 15.1 FrontPole L 4655
(3) FOper L —38.8 8.5 8.6 Ins L 1561
(4) Ins R 33.9 9.2 2.5 Ins R 1340
7 (1) SupramGpos L —52.2 -47.3 11.8 AnG L 3402
(2) IFGop R 49.4 13.3 12.1 IFGop R 2869
(3) MTGto R 54.2 -38.5 -1.3 MTGpos R 1590
(4) IFGop L —52.3 14.4 15.0 IFGop L 1475
(5) ParaCingC R 2.8 41.6 22.3 ParaCingC R 1086
(6) AnG R 56.6 —51.6 31.3 AnG R 546
8 (1) LOCsup L —38.7 —66.8 27.0 LOCsup L 2490
(2) PreCun R 19.2 -58.8 35.4 PreCun R 1442
(3) —12.6 36.5 -8.0 ParaCingC L 988
(4) LOCsup R 44.9 —69.2 25.3 LOCsup R 576
(5) MTGpos L —-53.9 -13.3 —-13.7 MTGpos L 407
(6) TOFuG R 27.7 -45.0 -9.5 LingualG R 287
(7) PPolare R 44.1 -17.1 —4.1 PPolare R 269
9 (1) CntrOper L —46.9 —15.0 18.2 CntrOper L 3978
(2) CntrOper R 57.1 —7.0 13.4 CntrOper R 988
(3) OccipPole L —18.6 —93.1 -3.0 OccipPole L 932
(4) Ins R 36.4 —0.8 7.2 Ins R 545
(5) ParaCingC R 6.4 51.4 12.1 ParaCingC R 412
(6) PreCun R 3.5 -52.2 11.4 PreCun R 352
(7) MTGto L -53.1 —61.6 —1.2 LOCinf L 333
10(1) OccipPole R 5.6 —91.3 2.7 OccipPole R 9508
11(1) 16.4 33.4 13.3 FrontPole R 9000
(2) -43.7 9.8 12.6 IFGop L 2549
(3) MTGto L -50.8 —58.9 7.0 MTGto L 589
(4) 48.4 —0.8 26.7 PreCentG R 405
(5) MTGto R 52.1 ~58.5 8.1 MTGto R 386
(6) LOCsup L ~42.1 -75.3 17.8 LOCsup L 324
(7) LingualG R 25.3 —46.2 —10.9 LingualG R 296
12(1) 23.8 30.3 5.8 FrOrbC R 1724
(2) MTGpos L -58.3 —40.2 -3.9 MTGpos L 1013
(3) ParaCingC R 6.3 53.8 14.7 FrontPole R 896
(4) ITGto R 50.9 ~52.6 ~8.8 ITGto R 847
(5) LOCinf L 40.9 -72.3 9.3 LOCinf L 838
(6) IFGop L ~48.6 19.5 2.3 IFGop L 675
(7) LOCsup R 45.0 —70.5 21.2 LOCsup R 668
13(1) ParaCingC L 0.0 48.6 2.5 FrontPole L 6671




Table S3: Locations and sizes of the clusters found for the ICBM data. If cluster comprises of
spatially disjoint subclusters, information is listed separately for the largest subclusters in the
decreasing order of their size. The following information is listed for each cluster/subcluster:
1) the brain region name where the center of mass (COM) of the cluster is located (if available),
2) the coordinate of COM (in MNI space), 3) the most representative cortical brain region
covered by the cluster (in terms of the number of voxels), and 4) cluster size (in terms of the
total number of voxels).

Cluster COM area CcoM Cortical area Size
index coordinate
1 (1) 2 00 4 OccipPole L 2031
2 (1) OccipPole R 30 920 OccipPole R 950
(2) OccipPole L —24 —94 —4 OccipPole L 896
3 (1) IFGop L 48 14 20 PreCentG L 3437
(2) SMA L 26 58 SMA L 619
(3) MTGto L —54 —58 —4 MTGto L 328
(4) PreCun R 6 —60 36 PreCun R 250
4 (1) SupraCalc R 2 846 OccipPole R 3386
5 (1) LingualG K 270 0 LOCsup L 5991
6 (1) LOCinf L —42 —68 —6 LOCinf L 1800
(2) 42 -62 -8 LOCinf R 1692
(3) SPL L —44 —42 52 SPL L 521
7 (1) MFG R 44 20 28 MFG R 1225
(2) ACC L 0440 ParaCingC R 1034
(3) MFG L —40 30 20 FrontPole L 746
(4) LOCsup R 42 58 46 LOCsup R 742
(5) ParaCingC L 0 18 42 ParaCingC R 531
(6) ~36 —58 42 LOCsup L 516
(7) PCgG L —4 —54 30 PreCun L 445
8 (1) 50 -8 18 FrontPole R 1728
(2) —34 -6 22 FrontPole L 3900
(3) PreCun R 4 -52 36 PreCun R 2893
(4) 26 —74 —28 ITGto R 348
(5) 28 —72 —48 ITGto R 285
9 (1) PreCun R 10 66 38 LOCsup R 5663
(2) PreCentG R 44 2 38 PreCentG R 1180
(3) —14 -2 56 PreCentG L 884
10(1) Cuneus L —2 —80 22 LOCsup L 3253
T1(1) PlanTemp L 54 —20 4 STGpos L 1946
(2) STGpos R 56 —22 2 STGpos R 2858
(3) SFG L —6 16 62 SFG L 281
(4) MFG L ~40 8 50 MFG L 270
12(1) 0186 ParaCingC L 5174
(2) 38 28 22 FrontPole R 4153
(3) 0 -70 —26 OccipPole L 2081
(4) LOCsup L ~42 -62 36 LOCsup L 1170
(5) PCgG L —2 -38 38 PCgG L 1132
(6) —34 38 18 FrontPole L 715
(7) 38 —58 36 LOCsup R 620
13(1) LingualG L -2 —62 6 LingualG L 5222
14(1) PreCentG L —4 30 54 PoG L 9443
(2) PreCentG R 542 16 PreCentG R 437
(3) 12 -56 —16 LingualG R 403
(4) 22 -52 48 LingualG R 384
(5) LOCinf R 48 —62 8 LOCinf R 332




2. Performance evaluation

We used the adjusted rand index (ARI) (Hubert and Arabie, 1985) to as-
sess the stability and performance of clustering. ARI compares two parti-
tions/segmentations U and V based on information of the contingency table
(see Table S4). In the contingency table, the partition U consists of R clusters
Uy, Us, ..., ur and the partition V' consists of C clusters v, ve,...,vc. Elements
n;; are the numbers of voxels belonging to clusters u; and v;, n; are the row
sums of the table, n ; are the column sums of the table, and n is the total num-
ber of data points (voxels) in the data set. Using these notations, ARI compares
two partitions as follows:

S () =[S0 () 2, ()] /)

ARI = .
LS )+ ()] = [ ) 2, )] /)




Table S4: Illustration of the contingency table for comparing two partitions

Cluster U1 Vo ... ve | Sums
5 nip N1z ... Nic | N1,
U2 n21 N2z ... na2c | N2.
UR MRl MNRr2 ... MNRC | NR,
Sums n1 No ... nc | n

The expected value of ARI is 0, indicating that the agreement between
two partitions is the same as between two random labelings of the data. The
maximum value of ARI is 1, indicating identical partitions.

As our second performance measure, we used the Dice index (Dice, 1945) to
define common spatial occurrence of two clusters. We used the Dice index as
a similarity measure when we matched individual clusters (u; and v;) between
two segmentations using the Munkres assignment algorithm (Munkres, 1957).
For the algorithm, the Dice index between every cluster pair (u;,v;) was formed
in the following way. First, we reshaped segmentation maps U and V into n-
dimensional vectors, where n corresponds to the total number of voxels in the
fMRI data. Then, for each cluster i (or j), we constructed binary vectors B, (or
B,,), where the element of the vector was 1 if the corresponding voxel belonged
to cluster u; (or v;), and was 0 otherwise. Then we computed the Dice index
as follows:
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&
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=1

where By, [I] (or By, [I]) denotes [th voxel in the binarized vector. The resulting
Dice index values vary between 0-1, where 1 denotes the exact similarity and 0
denotes no overlap between the clusters.



3. Validation of proposed cluster detection algorithm

Here, we validate our cluster detection algorithm presented in Appendix of
the main article and compare its performance with existing algorithms using
synthetic data sets. For this purpose, We generated data sets comprising of
40 spherical clusters drawn from 2- and 10-dimensional Gaussian distributions.
The mean vectors of the distributions were drawn randomly from a uniform
distribution (the range for 2-dimensional data was between —5 and 5 and the
range for 10-dimensional data was between —1 and 1). The standard deviation
of each cluster was 0.2 and the number of data points was 50. We also corrupted
some data sets with spurious data (outliers). Spurious data points were drawn
randomly from a uniform distribution over the same range as the mean vectors.
For better assessment of the clustering quality, we controlled the separation of
the clusters by ensuring that there were no data points within 2¢ -tolerance
regions of the clusters.

We compared the performance of our method (called SNN) against the fol-
lowing clustering algorithms: K-means (MacQueen, 1967), K-means++ (Arthur
and Vassilvitskii, 2007), Farthest first traversal algorithm (Hochbaum and Shmoys,
1985, Gonzalez, 1985), Ward’s minimum variance method (Ward, 1963), and
affinity propagation (AP) (Frey and Dueck, 2007). For all the tested meth-
ods, we used the Euclidean distance as a dissimilarity measure. We used the
minimum SSE criterion with all the tested methods except with farthest first
traversal, which minimizes the maximum distance between points and cluster
centers. Because the solutions of K-means and K-means++ algorithms are de-
pendent on the initial selection of cluster centers, we run these algorithms 100
times using different random initializations and selected the solution with the
minimum SSE. For Farthest first traversal, we tested each possible traversal,
meaning that the total number of initializations corresponded to the total num-
ber of observations in the data. The Ward’s minimum variance method and the
AP algorithm require that the full (dis)similarity matrix is available, restrict-
ing their use only for relatively small data sets. For large data sets, the sparse
(leveraged) version of the AP algorithm has been proposed, which samples from
the full set of potential similarities and performs several rounds of the algorithm
for resulting sparse graphs'. In practice, sparse version of AP is necessary for
whole-brain fMRI data analysis and therefore we investigated its performance.

While comparing different algorithms, we assumed that the total number
of clusters is known to make the comparison between methods more straight-
forward. Thus, for the K-means, K-means++, Farthest first traversal, and
Ward’s minimum variance method, we fixed the total number of clusters for
K=40. Unlike these methods, AP and our SNN method estimate the total
number of clusters indirectly from intrinsic properties of the data sets based on
the preference parameter p and neighborhood size k, respectively. For these two
methods, we run them using several parameters and selected the result having

ISee: http://www.psi.toronto.edu/affinitypropagation/faq.html



the closest match with the actual number of clusters.

We wrote a customized code for our method using Matlab and C program-
ming languages. For the K-means and Ward’s minimum variance methods,
we used the implementations of the Statistics Toolbox of the Matlab. For the
K-means++, we used the efficient Matlab implementation by Laurent Sorber?.
For the AP, we used the efficient C-language implementation provided by Frey
and Dueck (2007).

Figure S1(A) shows the results for the 2-dimensional data sets when there
were no outliers present. The results of the methods are organized in the decreas-
ing order of the clustering quality. Clearly, SNN, AP, Sparse AP and Ward’s
method provided nearly perfect partition of the data sets. The K-means and K-
means++ algorithms provided somewhat lower results although these methods
are theoretically optimal for detecting well-separated spherical Gaussian clus-
ters. This indicates that in practice these methods are highly sensitive for initial
placement of the centroids even when the total number random initializations is
high. The worst result was obtained with the Farthest first traversal — however,
this is not surprising as the method was not designed for minimizing the SSE.

Figure S1(B) shows the corresponding results as a function of outliers in the
data. Clearly, the Ward’s method and the Farthest first were most sensitive
for the effect of outliers. Interestingly, SNN, AP and Sparse AP provided very
high-quality results even in the presence of high number of outliers.

Figure S1(C) shows the results for 10-dimensional data as a function of the
number of data points. Again, SNN and AP provided excellent results. The
result of the Sparse AP was very high for small data sets, but started to degrade
once the size of the data set was increased. This is natural because in Sparse
AP only a small subset of data points is used to run AP algorithm which of
course cannot explain details in large data sets with sufficient accuracy.

Figure S1(D) shows the computation times of the methods for the 10-dimensional
data as function of the number of data points. The fastest methods were SNN
and Ward’s method. The K-means and K-means++ were somewhat slower
which can be explained by the high number of initializations (100) used. AP,
Sparse AP and Farthest first were very slow when compared with the SNN and
Ward’s method. Slow computation times of the Farthest first can be explained
by the high number of initializations used.

Overall, our method and AP outperformed the other methods in terms of
clustering quality. In fact, both methods provided highly consistent and similar
results in our tests. Figure S2 shows some examples of the estimated cluster
centroids from synthetic 2-dimensional data sets. However, the sparse version
of the AP, which would be required to analyze large fMRI data sets, turned
out to be less accurate than our method and original AP algorithm. Moreover,
our method was superior against both the original and sparse AP in terms of
computation time. Thus, we integrated our method with the FuSeISC.

2See http://www.mathworks.com/matlabcentral/fileexchange/28804-k-means++/
content/kmeans.m)
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Figure S1: Performance comparison of the seven clustering algoritms: our SNN based method
(denoted by “SNN”), Affinity propagation (denoted by “AP”), Sparse affinity propagation
(denoted by “Sparse AP”), Ward’s minimum variance method (denoted by “Ward’s method”),
K-means, K-means++, and farthest first traversal (denoted by “Farthest first”). For each
method, the average results across ten realizations are shown together with the standard
error bars. (A) clustering quality for 2-dimensional data containing 40 spherical clusters,
(B) the corresponding results after corrupting the data with outliers, (C) clustering quality
for 10-dimensional data involving 40 clusters as a function of the sample size, and (D) the
corresponding computation times.
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Figure S2: Estimated cluster centroids for 2-dimensional synthetic data sets containing 40
Gaussian clusters: (A) The centroids of the best K-means result among 100 random ini-
tializations. Despite of high number of initializations, K-means failed to detect all clusters
correctly. (B) The centroids of our method (blue triangle) and AP (red circle) for the same
data set. Both methods detected all the clusters correctly. (C) The corresponding results
when spurious data points (shown in green color) were present. Even in this case, SNN and
AP were able to find the clusters. (D) The centroids of our method for the data set when
clusters had arbitrary non-spherical shapes, and therefore SSE criterion was replaced with
BIC. The estimation of centroids was highly successful also in this case (the mean ARI across

10 realizations was 0.99).

10



4. Effect of neighborhood size k

In practice, our initialization procedure requires that the neighborhood size
k is selected a priori. Here we present simulation results for different values of
k and discuss the choice of k. Figure S3(A) shows the results of the SNN for the
2-dimensional data as a function of the neighborhood size k. As can be seen,
the clustering quality is nearly perfect when k is chosen between 20 and 45.
This is natural because the local neighborhood is somewhat smaller than the
number of data points in the clusters and the SNN graph can thus capture very
well the variations within each cluster. This result indicates that to detect all
the clusters in data, k should be chosen slightly lower than the smallest cluster
size of interest in the data set. If the minimum cluster size is not known, we
can plot the total number of clusters found as a function of k (see Fig. S3(B)).
Clearly, there is a stable region in the number of clusters: by choosing any of
the solutions within this region we can recover a correct clustering result. We
use this heuristic with real data sets to find a good choice for k.

A

10 20 30 40 50 60 70
neighborhood size k

number of clusters

10 20 30 40 50 60 70
neighborhood size k

Figure S3: Clustering results and the estimated number of clusters for our SNN based method
as a function of neighborhood size parameter k: (A) Clustering quality, (B) the total number
of estimated clusters. By comparing the two curves, it can be seen that the solution is
near perfect when k is chosen from the stable region (the range between k=20 and k=45)
in the curve shown in (B). The vertical line denotes the cluster sizes and the horizontal line
corresponds to the total number of clusters.
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5. Effect of model selection criterion

Here we compare results obtained with two model selection criteria, SSE
and BIC, with simulated fMRI data. Figure S4(A) presents the performance
of the functional segmentation for the simulated ICBM data as a function of
the neighborhood parameter k. Two curves are shown, one for the SSE and
one for the BIC criterion used in the selection of the candidate graph. For a
wide range of parameters, ARI values resulted in “moderate agreement” (ARI
between 0.4-0.6) between the ground truth and the estimated cluster labeling
computed across the 72,577 voxels. The difference in ARI values between the
two criteria is relatively minor for most solutions. The exceptions are the largest
values of k, which show higher performance for the SSE criterion. Figure S4(B)
shows the total number of clusters found by the two criteria. As we expected,
the number of clusters reduces as a function of chosen resolution (k). Especially
the curve of the SSE shows stabilization in the number of clusters as a function
of k (for k > 175). Based on these results, we concluded that the SSE criterion
to select the best candidate SNN graph is suitable for the analysis of fMRI data.

A1 B 150
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0.4

o
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"

g
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50 75 100 125 150 175 200 225 250 275 300 50 75 100 125 150 175 200 225 250 275 300
k k

Figure S4: The results of FuSeISC for the simulated ICBM data: (A) segmentation quality,

and (B) the total number of clusters. The results are plotted as a function of k for the two
criteria, SSE and BIC, used in the selection of the candidate SNN graph.
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6. Clusters detected as noise

Fig. S5 shows the number of voxels within the noise mask for each cluster.
The noise mask consisted of cerebral white-matter, brainstem, and ventricles.
Figs. S6 and S7 show the discarded clusters over an anatomical image as well as
their ISC features, together with the retained clusters. The discarded clusters of
the StudyForrest data were spatially fragmented around the white-matter area.
In contrast, the white-matter area in the ICBM data was segmented into a single
huge cluster. Clearly, the discarded clusters of the ICBM data could have also
been detected by their very low ISC mean values. For the StudyForrest data,
some—but not all—mnoise clusters could have been detected just by their ISC
features (low ISC mean or high ISC variability).

x10* A StudyForrest data B ICBM data
35r—mrm—r—m/m—rv—7/" v 7r 7 r 77T 7T T T T T T T T[T T T T T T T T T T T T T T T T
I Retained clusters
sl [ Removed clusters |
----- Rejection threshold

Number of voxels inside the noise mask

0
1234567 89101112131415161718192021 1 2 3 4 56 7 8 9 1011121314151617
Cluster index # Cluster index #

Figure S5: Total number of voxels within the noise mask for each cluster: (A) StudyForrest,
and (B) ICBM data. The bar graph shows the total number of voxels for each cluster within
the noise mask consisting of ventricles, white-matter area and brainstem. Clusters having
the highest numbers of voxels within this mask were discarded as noise. The exact number of
discarded clusters was determined based on visual inspection of the spatial distributions of the
clusters so that the clusters mainly distributed close or inside the noise mask were discarded.
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Figure S6: Investigation of the discarded clusters from the StudyForrest data: (A) spatial
maps of the discarded clusters, and (B) ISC mean and variability information of all clusters in
the increasing order of relative ISC variability. The discarded clusters are denoted by vertical
arrows.
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Figure S7: Investigation of the discarded clusters from the ICBM data: (A) spatial maps of
the discarded clusters, and (B) ISC mean and variability information of all clusters in the
increasing order of relative ISC variability. The discarded clusters are denoted by vertical
arrows.
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7. Mean and variability features of the StudyForrest data
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Figure S8: Scatter plots of the ISC mean and variability features of the StudyForrest data for
each time series (ClipsO—CLips4). The number of data points in each plot corresponds to the
number of voxels within the brain (449,612). The ISC variability tends to increase together
with the ISC mean.
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8. Spatial maps of different ICBM data sets

ICBM data #1 with 37 subjects ICBM data #2 with 37 subjects

Dice index between the clusters in the two data sets

0.21

Figure S9: Raw functional segmentation results (k = 250) of two real ICBM data set with 37
different subjects. Clusters in the two data sets are matched using the Munkres assignment
algorithm. Similarity between the clusters according to the Dice index is shown next to the
color bar, “NaN” meaning that the corresponding cluster is present only in the leftmost data
set.
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ICBM data with 37 subjects

B ICBM data with 25 subjects

Dice index between the clusters in the two data sets

Figure S10: Raw functional segmentation result (k = 225) of (A) real ICBM data set with
37 subjects, and (B) real ICBM data set with 25 subjects. Clusters in the two data sets are
matched using the Munkres assignment algorithm. Similarity between the clusters according
to the Dice index is shown next to the color bar, “NaN” meaning that the corresponding
cluster is present only in the leftmost data set.

A ICBM data with 37 subjects ICBM data with 15 subjects

Dice index between the clusters in the two data sets

Figure S11: Raw functional segmentation result (k = 225) of (A) real ICBM data set with
37 subjects, and (B) real ICBM data set with 15 subjects. Clusters in the two data sets are
matched using the Munkres assignment algorithm. Similarity between the clusters according
to the Dice index is shown next to the color bar, “NaN” meaning that the corresponding
cluster is present only in the leftmost data set.

18



ICBM data with 25 subjects ICBM data with 15 subjects

Dice index between the clusters in the two data sets

Figure S12: Raw functional segmentation result (k = 225) of (A) real ICBM data with 25
subjects, and (B) real ICBM data set with 15 subjects. Clusters in the two data sets are
matched using the Munkres assignment algorithm. Similarity between the clusters according
to the Dice index is shown next to the color bar, “NaN” meaning that the corresponding
cluster is present only in the leftmost data set.
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