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Analysis of Story Vectors

As discussed in the main paper, the intention of this paper is not to compare

representations produced by doc2vec to other story-level representations. Our aim is to

show that aggregated story-level embeddings can be used to decode narrative-processing

fMRI data. Nonetheless, we performed a behavioral experiment to demonstrate the

representativeness of doc2vec vectors compared to aggregate word2vec vectors.

As discussed previously, doc2vec has been shown to be more effective in capturing

the semantics of long pieces of text compared to other word-level techniques (Dai, Olah,

& Le, 2015; Lau & Baldwin, 2016). Here we present a behavioral experiment

demonstrating that doc2vec captures the overall meaning of stories more precisely than

aggregated word-level operations (i.e. word2vec). Specifically, we compare the stories to

their nearest neighbors in two semantic spaces, one constructed using doc2vec and the

other using word-level operations, and show that the semantic representations at the

story level are more indicative of the overall meaning of the stories. Further, we

investigate how much overlap there is between the first three nearest neighbors

constructed using the two techniques.

Method. First, doc2vec was used to represent each story in our corpus of 40

English stories in 100 dimensional semantic space. For each story, we then queried the

closest nearest neighbor (in the semantic space) for that story from the rest of the 39

stories. Thus, for each story, we obtained a nearest neighbor prediction from doc2vec.

Next, we used word2vec to represent each word in each story in a semantic space, and

aggregated the word vectors to represent the full story. Summation of word vectors is

an operation that is meaningful and used frequently in natural language processing

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). We then, queried the closest

nearest neighbors of each word2vec represented story using this word-level summation

technique. We then randomly chose 10 stories (out of 40) along with their nearest

neighbors calculated using the two methods described above and used them as stimuli

in the behavioral experiment described below.

One-hundred American participants were recruited through Amazon Mechanical



NEURO-SEMANTIC REPRESENTATION OF STORIES: SUPPLEMENTARY
MATERIALS 2

Turk. The task was described as follows to the participants:

Thank you for taking time to participate in this experiment. In this task, you will

be reading several different stories. For each story, you will be asked to judge how

similar that story is to two other stories. You should base your judgment on the

overall meaning of the stories, or what is often refer to as “the gist” of the stories,

not on the similarity of the individual words included them. Please read each story

separately, and think about the overall meaning of it before making any judgments.

Again, we appreciate your help with this task.

Each participants was then presented with four sets of stories, along with the two

nearest neighbors (calculated using the above techniques) for each story. We also

presented two attention check questions to each participant. For each story, the

participants were asked the following question: "Is the overall meaning of the above

story more similar to the first or second option?". The order of the stories, and the two

choices for each story, were fully randomized.

Results and Discussion. 38 participants failed one of the two attention test

questions and were excluded from the analysis. Overall, a significantly larger number of

participants chose the doc2vec nearest neighbor as the option that represented the

“gist” of the original stories compared to the word-level method

χ2(1) = 11.121, p = 0.0008. This result provides further evidence that the method we

used in the paper represents the overall meaning of the stories more precisely that

closely related word-level analysis techniques.

Further, we investigated how many of the first three closest neighbors of the

stories match across the two representations. Knowing this detail is important as it

provides insight into how much the semantic spaces constructed using the word-level

technique and doc2vec are similar. Supporting our argument, this analysis revealed only

a 21.67% overlap between the nearest neighbors of the same stories between the two

representations. In other words, in 78% of the cases the closest neighbors did not match

between the space constructed using doc2vec and the one constructed using word2vec.

Together, these studies indicate that doc2vec representations more closely
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approximate human perceptions of narrative similarity, compared to word2vec

representations, and that doc2vec predictions of similarity are substantially different

from word2vec predictions of similarity. While these results do not prove that doc2vec

actually represents higher-level meaning, rather than mere word-level meaning, in

conjunction with the recent literature reviewed above, it is difficult to argue the

converse.

Whole Brain Analysis

Whole brain analysis was also performed on the data discussed in the paper. The

goal here was to predict the story vectors based on fMRI data from the whole brain,

rather than within spatially restricted searchlight neighborhoods (as discussed the main

text). For each participant, a ridge regression model was fitted on the 40*212,018 fMRI

matrix, with its accompanied responses at 40*100 story matrix. The fitted model was

evaluated using k-fold cross-validation: the ridge regression model was trained on every

possible pair of 38 stories and tested on the two remaining stories, resulting in
(

40
2

)
analyses per participant. In each fold, using the trained model on the 38 stories, the

story vectors were predicted for the two left-out stories. The evaluation criteria was

exactly the same as formula (1) in the paper.

Similar to the first experiment, the decoding accuracy for each subject was

calculated by averaging the accuracies of the classification over the 780 folds. In order

to do the cross-lingual analyses, the same process as described above was performed,

with one difference: the fMRI vectors of one cultural group and story vectors of another

language were used for decoding.

In order to establish a baseline chance performance, forty 100 dimensional random

vectors with the same variance and mean as the actual story vectors were generated for

each language, and were analyzed using the same procedure as actual story vectors.

We also tested two alternative numeric representations of the English stories: 1.

Latent Dirichlet Allocation (LDA, Blei, Ng, & Jordan, 2003): we used LDA to generate

100 topics for a corpus of 1000 English personal stories (subset of the corpus discussed



NEURO-SEMANTIC REPRESENTATION OF STORIES: SUPPLEMENTARY
MATERIALS 4

in the Distributed Representation of Stories section). We then calculated topic weights

for the stimuli stories. These weights were used to decode the fMRI data. 2. Linguistic

Inquery and Word Count (LIWC, Tausczik & Pennebaker, 2010): We ran LIWC 2010

on the stimuli set and used the weights of the 64 LIWC categories as the

representations of the stories. These representations were then used to decode the data.

Results and Discussion. The intra and inter-language results are illustrated in

Figure 1. Overall, the intra-lingual decoding was performed with an accuracy of 59.1%.

This performance is both higher than chance t(29) = 14.366, p < 0.0001, d[95% CI] =

3.7093[2.8608, 4.5454] and higher than the performance of the random story vectors

t(58) = 8.7492, p < 0.0001, d[95% CI] = 2.2590[1.6016, 2.9044]. The inter-lingual

decoding was performed with accuracy of 58.9% which is again higher than chance

t(29) = 9.9939, p < 0.0001, d[95% CI] = 2.5804[1.8846, 3.2638] and higher than using

random vectors t(58) = 7.5023, p < 0.0001, d[95% CI] = 1.9371[1.3151, 2.5476] for

decoding. Figure 2 illustrates the results broken down by language and culture (See

Table 1 for the complete statistics of this figure). A possible explanation for why the

decoding performance on American participants is higher could be due to the fact that

all these stories originated from a corpus of English stories from popular American

blogposts.

The LDA representation of the stories did not perform better than the random

vectors t(58) = 1.6524, p = 0.1039, nor chance t(29) = 1.409, p = 0.1695. The LIWC

representations, however, performed better than the random vectors

t(58) = 3.6572, p = 0.0005, d[95 %CI] = 0.9443[0.4063 , 1.4749] and chance

t(29) = 4.0067, p = 0.0004, d[95 %CI] = 1.0345[0.4908, 1.5703]. LIWC representations

perform significantly lower than doc2vec t(58) = −2.9188, p = 0.005, d[95 %CI] =

-0.7536[-1.2748, -0.2264]. We would like to note that both (vanilla) LDA and LIWC are

bag-of-words approaches, and therefore they do not capture sequential relation between

words in passages. doc2vec, on the other hand, sequentially adds words to the model

and hence, in theory, can capture these relations.
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FSL Randomise program

These steps were all implemented by a single line of code to the FSL Randomise

program:

randomise -i <inputData> -o <outputName> -1 -v 5 -T

The -i option identifies the input data, a single 4-D image (3 spatial dimensions

plus a 4th concatenating data from 30 subjects). The -o option attaches the specified

prefix to the output files. The -1 option indicates a one-sample t-test. The -v option

selects variance smoothing at the default 5 mm value. The -T option selects the TFCE

procedure.

Individual Language Searchlight Maps

Individual intra-language searchlight maps are presented in Figure 3, and

inter-language maps in Figure 4.

Relationship to Default Mode Network

In order to visualize the relationship between our classification results and the

spatial distribution of the Default Mode Network, we have overlayed the intra-language

searchlight map on the seed-based correlation map of the DMN from (Kaplan et al.,

2016). This map of the DMN was derived from an analysis of resting state data from

the same participants, using a seed centered in the precuneus to identify functionally

correlated brain regions. This relationship is visualized in Figure 6.
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Table 1

Decoding accuracy of story vector models for three languages, based on the fMRI

activations of three cultural groups.

Culture Comparison d[95% CI] df t sig

(Language vs random vectors)

Americans

English 1.7070[1.1081, 2.2950] 58 6.6112 <.001

Farsi 1.6658[1.0709, 2.2500] 58 6.4517 <.001

Mandarin 1.9265[1.3056, 2.5359] 58 7.4613 <.001

Iranians

English 1.3351[0.7692, 1.8915] 58 5.1708 <.001

Farsi 1.0235[0.4805, 1.5587] 58 3.9639 <.001

Mandarin 1.0576[0.5123, 1.5949] 58 4.0962 <.001

Chinese

English 1.0124[0.4702, 1.5470] 58 3.9212 <.001

Farsi 0.6039[0.0837, 1.1192] 58 2.3391 0.0228

Mandarin 0.7425[0.2158, 1.2632] 58 2.8759 0.0056
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Figure 1 . Intra and Inter language decoding performances
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Figure 2 . Decoding performances broken down by language and culture
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Figure 3 . Intra-language searchlight maps
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Figure 4 . Inter-language searchlight maps
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Figure 5 . Overlap of intra- and inter-language searchlight maps. The maps from

intra-language classification (red, see Fig. 1 in main text) and inter-language

classification (green, see Fig. 2) are superimposed onto the same brain, with

overlapping regions shown in yellow. There is large overlap between maps, with the

notable exception of intra language-specific decoding observed in left superior and

middle frontal gyrus.
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Figure 6 . Relationship between story classification and Default Mode Network. A

precuneus seed-based correlation map of the DMN is shown in blue, with intra-language

classification overlayed in green.


