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A Supplementary Materials

A.1 Related Work

Study Decoding
problem

Input
do-
main

Conv/
dense lay-
ers

Design
choices

Training
strategies

External
baseline

Visualization
type(s)

Visualization findings

This manuscript, Schirrmeis-
ter et. al (2017)

Imagined and
executed move-
ment classes,
within subject

Time,
0–125
Hz

5/1 Different ConvNet
architectures

Nonlinearities and
pooling modes

Regularization
and interme-
diate normal-
ization layers

Factorized
convolutions

Splitted vs one-
step convolutions

Trial-wise vs.
cropped training
strategy

FBCSP +
rLDA

Feature activa-
tion correlation

Feature-
perturbation
prediction
correlation

See Section 3.5

Single-trial EEG classifica-
tion of motor imagery us-
ing deep convolutional neu-
ral networks, Tang et al.
(2017)

Imagined move-
ment classes,
within-subject

Time,
8–30 Hz

2/2 FBCSP

EEGNet: A Compact Con-
volutional Network for EEG-
based Brain-Computer Inter-
faces, Lawhern et al. (2016)

Oddball re-
sponse (RSVP),
error response
(ERN), move-
ment classes
(voluntarily
started and
imagined)

Time,
0.1–40
Hz

3/1 Kernel sizes

Remembered or Forgotten?
— An EEG-Based Computa-
tional Prediction Approach,
Sun et al. (2016)

Memory perfor-
mance, within-
subject

Time,
0.05–15
Hz

2/2 Different time win-
dows

Weights (spa-
tial)

Largest weights found over
prefrontal and temporal cor-
tex

Multimodal Neural Network
for Rapid Serial Visual
Presentation Brain Com-
puter Interface, Manor et al.
(2016)

Oddball re-
sponse using
RSVP and im-
age (combined
image-EEG
decoding),
within-subject

Time,
0.3–20
Hz

3/2 Weights

Activations

Saliency maps
by gradient

Weights showed typi-
cal P300 distribution

Activations were high at
plausible times (300-500ms)

Saliency maps showed
plausible spatio-temporal
plots

A novel deep learning ap-
proach for classification of
EEG motor imagery signals,
Tabar and Halici (2017)

Imagined and
executed move-
ment classes,
within-subject

Frequency,
6–30 Hz

1/1 Addition of six-layer stacked au-
toencoder on ConvNet features

Kernel sizes

FBCSP,
Twin SVM,
DDFBS, Bi-
spectrum,
RQNN

Weights (spa-
tial + frequen-
tial)

Some weights represented
difference of values of two
electrodes on different sides
of head
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Study Decoding
problem

Input
do-
main

Conv/
dense lay-
ers

Design
choices

Training
strategies

External
baseline

Visualization
type(s)

Visualization findings

Predicting Seizures from
Electroencephalography
Recordings: A Knowledge
Transfer Strategy, Liang
et al. (2016)

Seizure predic-
tion, within-
subject

Frequency,
0–200
Hz

1/2 Different subdi-
visions of fre-
quency range

Different lengths
of time crops

Transfer learning
with auxiliary
non-epilepsy
datasets

Weights

Clustering of
weights

Clusters of weights showed
typical frequency band sub-
division (delta, theta, alpha,
beta, gamma)

EEG-based prediction of
driver’s cognitive perfor-
mance by deep convolutional
neural network, Hajinoroozi
et al. (2016)

Driver per-
formance,
within- and
cross-subject

Time,
1–50 Hz

1/3 Replacement of convolutional layers by
restricted Boltzmann machines with
slightly varied network architecture

Deep learning for epileptic
intracranial EEG data, An-
toniades et al. (2016)

Epileptic
discharges,
cross-subject

Time,
0–100
HZ

1–2/2 1 or 2 convolu-
tional layers

Weights

Correlation
weights and
interictal
epileptic dis-
charges (IED)

Activations

Weights increasingly corre-
lated with IED waveforms
with increasing number
of training iterations

Second layer captured
more complex and
well-defined epileptic
shapes than first layer

IEDs led to highly syn-
chronized activations for
neighbouring electrodes

Learning Robust Features
using Deep Learning for Au-
tomatic Seizure Detection,
Thodoroff et al. (2016)

Start of epilep-
tic seizure,
within- and
cross-subject

Frequency,
mean
ampli-
tude for
0–7 Hz,
7–14 Hz,
14–49
Hz

3/1 (+ LSTM
as postproces-
sor)

Hand crafted
features +
SVM

Input occlu-
sion and effect
on prediction
accuracy

Allowed to locate areas criti-
cal for seizure

Single-trial EEG RSVP clas-
sification using convolutional
neural networks, Shamwell
et al. (2016)

Oddball re-
sponse (RSVP),
groupwise
(ConvNet
trained on all
subjects)

Time,
0.5–50
Hz

4/3 Weights (spa-
tial)

Some filter weights had
expected topographic
distributions for P300

Others filters had large
weights on areas not tra-
ditionally associated with
P300

Wearable seizure detection
using convolutional neural
networks with transfer learn-
ing, Page et al. (2016)

Seizure detec-
tion, cross-
subject, within-
subject, group-
wise

Time,
0–128
Hz

1-3/1-3 Cross-subject su-
pervised training,
within-subject
finetuning of fully
connected layers

Multiple:
spectral
features,
higher order
statistics +
linear-SVM,
RBF-SVM, ...
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Study Decoding
problem

Input
do-
main

Conv/
dense lay-
ers

Design
choices

Training
strategies

External
baseline

Visualization
type(s)

Visualization findings

Learning Representations
from EEG with Deep
Recurrent-Convolutional
Neural Networks, Bashivan
et al. (2016)

Cognitive load
(number of
characters to
memorize),
cross-subject

Frequency,
mean
power
for 4–7
Hz, 8–
13 Hz,
13–30
Hz

3–7/2 (+
LSTM or
other tem-
poral post-
processing
(see design
choices))

Number of con-
volutional layers

Temporal process-
ing of ConvNet
output by max
pooling, tempo-
ral convolution,
LSTM or tempo-
ral convolution +
LSTM

Inputs that
maximally acti-
vate given filter

Activations of
these inputs

”Deconvolu-
tion” for these
inputs

Different filters were
sensitive to differ-
ent frequency bands

Later layers had more spa-
tially localized activations

Learned features had no-
ticeable links to well-known
electrophysiological markers
of cognitive load

Deep Feature Learning for
EEG Recordings, Stober
(2016)

Type of music
rhythm, group-
wise (ensembles
of leave-one-
subject-out
trained models,
evaluated on
separate test
set of same
subjects)

Time,
0.5–
30Hz

2/1 Kernel sizes Pretraining first
layer as convolu-
tional autoencoder
with different
constraints

Weights
(spatial+3
timesteps,
pretrained as
autoencoder)

Different constraints led to
different weights, one type
of constraints could enforce
weights that are similar
across subjects; other type
of constraints led to weights
that have similar spatial
topographies under different
architectural configurations
and preprocessings

Convolutional Neural Net-
work for Multi-Category
Rapid Serial Visual Presen-
tation BCI, Manor and Geva
(2015)

Oddball re-
sponse (RSVP),
within-subject

Time,
0.1–50
Hz

3/3 (Spatio-
temporal
regulariza-
tion)

Weights

Mean and
single-trial
activations

Spatiotemporal regular-
ization led to softer
peaks in weights

Spatial weights showed
typical P300 distribution

Activations mostly had
peaks at typical times
(300-400ms)

Parallel Convolutional-
Linear Neural Network
for Motor Imagery Clas-
sification, Sakhavi et al.
(2015)

Imagined move-
ment classes,
within-subject

Frequency,
4–40 Hz,
using
FBCSP

2/2 (Final
fully con-
nected layer
uses con-
catenated
output by
convolutional
and fully
connected
layers)

Combination
ConvNet and
MLP (trained on
different features)
vs. only ConvNet
vs. only MLP

Using Convolutional Neu-
ral networks to Recognize
Rhythm Stimuli form Elec-
troencephalography Record-
ings, Stober et al. (2014)

Type of music
rhythm, within-
subject

Time
and fre-
quency
evalu-
ated,
0-200
Hz

1-2/1 Best values from
automatic hy-
perparameter
optimization:
frequency cutoff,
one vs two layers,
kernel sizes, num-
ber of channels,
pooling width

Best values from
automatic hy-
perparameter
optimization:
learning rate,
learning rate de-
cay, momentum,
final momentum

3



R
o
bin

T
ibo

r
S

ch
irrm

eister
A

S
U
P
P
L
E
M
E
N
T
A
R
Y

M
A
T
E
R
IA

L
S

Study Decoding
problem

Input
do-
main

Conv/
dense lay-
ers

Design
choices

Training
strategies

External
baseline

Visualization
type(s)

Visualization findings

Convolutional deep belief
networks for feature extrac-
tion of EEG signal, Ren and
Wu (2014)

Imagined move-
ment classes,
within-subject

Frequency,
8–30 Hz

2/0 (Con-
volutional
deep belief
network, sepa-
rately trained
RBF-SVM
classifier)

Deep feature learning using
target priors with applica-
tions in ECoG signal decod-
ing for BCI, Wang et al.
(2013)

Finger flex-
ion trajectory
(regression),
within-subject

Time,
0.15–
200
Hz

3/1 (Con-
volutional
layers trained
as convolu-
tional stacked
autoencoder
with target
prior)

Partially super-
vised CSA

Convolutional neural net-
works for P300 detection
with application to brain-
computer interfaces, Cecotti
and Graser (2011)

Oddball /
attention re-
sponse using
P300 speller,
within-subject

Time,
0.1-20
Hz

2/2 Electrode subset
(fixed or automat-
ically determined)

Using only one
spatial filter

Different ensem-
bling strategies

Multiple:
Linear SVM,
gradient
boosting, E-
SVM, S-SVM,
mLVQ, LDA,
...

Weights Spatial filters were similar
for different architectures

Spatial filters were different
(more focal, more diffuse) for
different subjects

Table S1: Related previous publications using convolutional neural networks for EEG decoding. Frequency domain input always only contains amplitudes
or a transformation of amplitudes (power, log power, etc.), never phase information. The number of dense layers includes parametrized classification layers. Layer
numbers always refer to EEG decoding models in cases of articles that use multiple modalities for decoding. Special features of the model written in parentheses after
the number of layers, especially if these features make the number of layers misleading. External baseline: the study includes directly comparable baseline accuracies of
non-deep-learning approaches of other authors. Visualization types and findings both refer to visualizations of the trained networks used for EEG decoding; findings are
paraphrased from the original publications. Note that none of the previous studies using time-domain input showed, using a suitable visualization technique, that the
ConvNets learned to use band power features, in contrast to our present study. Also note that other previous studies used artificial neural networks without convolutions
for EEG analysis, e.g. Santana et al. (2014); Sturm et al. (2016).
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A.2 FBCSP implementation

As in many previous studies (Lotte et al., 2007), we used regularized linear discriminant analysis (RLDA)

as the classifier, with shrinkage regularization (Ledoit and Wolf, 2004). To decode multiple classes, we used

one-vs-one majority weighted voting: We trained an RLDA classifier for each pair of classes, summed the

classifier outputs (scaled to be in the same range) across classes and picked the class with the highest sum

(Chin et al., 2009; Galar et al., 2011).

FBCSP is typically used with feature selection, since few spatial filters from few frequency bands often

suffice to reach good accuracies and using many or even all spatial filters often leads to overfitting (Blankertz

et al., 2008; Chin et al., 2009). We use a classical measure for preselecting spatial filters, the ratio of

the corresponding power features for both classes extracted by each spatial filter (Blankertz et al., 2008).

Additionally, we performed a feature selection step on the final filter bank features by selecting features using

an inner cross validation on the training set, see published code 1 for details.

In the present study, we designed two filter banks adapted for the two datasets to capture most discrim-

inative motor-related band power information. In preliminary experiments on the training set, overlapping

frequency bands led to higher accuracies, as also proposed by Sun et al. (2010). As the bandwidth of physio-

logical EEG power modulations typically increases in higher frequency ranges (Buzsáki and Draguhn, 2004),

we used frequency bands with 6 Hz width and 3 Hz overlap in frequencies up to 13 Hz, and bands of 8 Hz

width and 4 Hz overlap in the range above 10 Hz. Frequencies above 38 Hz only improved accuracies on

one of our datasets, the so-called High-Gamma Dataset (see Section 2.7, where we also describe the likely

reason for this difference, namely that the recording procedure for the High-Gamma Dataset — but not for

the BCI competition datasets — was specifically optimized for the high frequency range). Hence the upper

limit of used frequencies was set at 38 Hz for the BCI competition datasets, while the upper limit for the

High-Gamma Dataset was set to 122 Hz, close to the Nyquist frequency, thus allowing FBCSP to also use

information from the gamma band.

As a sanity check, we compared the accuracies of our FBCSP implementation to those published in

the literature for the same BCI competition IV dataset 2a (Sakhavi et al., 2015), showing very similar

1https://github.com/robintibor/braindecode/blob/f9497f96a6dfdea1e24a4709a9ceb30e0f4768e3/braindecode/csp/

pipeline.py#L200-L408
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Robin Tibor Schirrmeister A SUPPLEMENTARY MATERIALS

performance: 67.59% for our implementation vs 67.01% for their implementation on average across subjects

(p>0.7, Wilcoxon signed-rank test, see Result 1 for more detailed results). This underlines that our FBCSP

implementation, including our feature selection and filter bank design, indeed was a suitable baseline for the

evaluation of our ConvNet decoding accuracies.

A.3 Residual network architecture

In total, the ResNet has 31 convolutional layers, a depth where ConvNets without residual blocks started to

show problems converging in the original ResNet paper (He et al., 2015). In layers where the number of chan-

nels is increased, we padded the incoming feature map with zeros to match the new channel dimensionality

for the shortcut, as in option A of the original paper (He et al., 2015).

Layer/Block Number of Kernels Kernel Size Output Size

Input 1000x44x1
Convolution (linear) 48 3x1 1000x44x48
Convolution (ELU) 48 1x44 1000x1x48
ResBlock (ELU) 48 3x1
ResBlock (ELU) 48 3x1
ResBlock (ELU) 96 3x1 (Stride 2x1) 500x1x96
ResBlock (ELU) 96 3x1
ResBlock (ELU) 144 3x1 (Stride 2x1) 250x1x96
ResBlock (ELU) 144 3x1
ResBlock (ELU) 144 3x1 (Stride 2x1) 125x1x96
ResBlock (ELU) 144 3x1
ResBlock (ELU) 144 3x1 (Stride 2x1) 63x1x96
ResBlock (ELU) 144 3x1
ResBlock (ELU) 144 3x1 (Stride 2x1) 32x1x96
ResBlock (ELU) 144 3x1
ResBlock (ELU) 144 3x1 (Stride 2x1) 16x1x96
ResBlock (ELU) 144 3x1
Mean Pooling 10x1 7x1x144
Convolution + Softmax 4 1x1 7x1x4

Table S2: Residual network architecture hyperparameters. Number of kernels, kernel and output
size for all subparts of the network. Output size is always time x height x channels. Note that channels here
refers to input channels of a network layer, not to EEG channels; EEG channels are in the height dimension.
Output size is only shown if it changes from the previous block. Second convolution and all residual blocks
used ELU nonlinearities. Note that in the end we had seven outputs, i.e., predictions for the four classes,
in the time dimension ( 7x1x4 final output size). In practice, when using cropped training as explained in
Section 2.5.4, we even had 424 predictions, and used the mean of these to predict the trial.

6
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A.4 Optimization and early stopping

Adam is a variant of stochastic gradient descent designed to work well with high-dimensional parameters,

which makes it suitable for optimizing the large number of parameters of a ConvNet (Kingma and Ba,

2014). The early stopping strategy that we use throughout this study, developed in the computer vision

field 2, splits the training set into a training and validation fold and stops the first phase of the training

when validation accuracy does not improve for a predefined number of epochs. The training continues on

the combined training and validation fold starting from the parameter values that led to the best accuracies

on the validation fold so far. The training ends when the loss function on the validation fold drops to

the same value as the loss function on the training fold at the end of the first training phase (we do not

continue training in a third phase as in the original description). Early stopping in general allows training

on different types of networks and datasets without choosing the number of training epochs by hand. Our

specific strategy uses the entire training data while only training once. In our study, all reported accuracies

have been determined on an independent test set.

A.5 Visualization methods

A.5.1 EEG spectral power topographies

To visualize the class-specific EEG spectral power modulations, we computed band-specific envelope-class

correlations in the alpha, beta and gamma bands for all classes of the High-Gamma Dataset. The group-

averaged topographies of these maps could be readily compared to our input-feature unit-output network

correlation maps, since, similar to the power-class correlation map described in Section 2.6.2, we computed

correlations of the moving average of the squared envelope with the actual class labels, using the receptive field

size of the final layer as the moving average window size. Since this is a ConvNet-independent visualization,

we did not subtract any values of an untrained ConvNet. We show the resulting scalp maps for the four classes

and did not average over them. Note that these computations were only used for the power topographies

shown in Figure 14 and did not enter the decoding analyses as described in the preceding sections.

2https://web.archive.org/web/20160809230156/https://code.google.com/p/cuda-convnet/wiki/Methodology
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A.6 Dataset details

The BCI competition IV dataset 2a is a 22-electrode EEG motor-imagery dataset, with 9 subjects and 2

sessions, each with 288 four-second trials of imagined movements per subject (movements of the left hand,

the right hand, the feet and the tongue) (Brunner et al., 2008). The training set consists of the 288 trials of

the first session, the test set of the 288 trials of the second session.

The BCI competition IV dataset 2b is a 3-electrode EEG motor-imagery dataset with 9 subjects and 5

sessions of imagined movements of the left or the right hand, the latest 3 sessions include online feedback

(Leeb et al., 2008). The training set consists of the approx. 400 trials of the first 3 sessions (408.9±13.7,

mean±std), the test set consists of the approx. 320 trials (315.6±12.6, mean±std) of the last two sessions.

Our “High-Gamma Dataset” is a 128-electrode dataset (of which we later only use 44 sensors covering the

motor cortex, (see Section 2.7.1), obtained from 14 healthy subjects (6 female, 2 left-handed, age 27.2±3.6

(mean±std)) with roughly 1000 (963.1±150.9, mean±std) four-second trials of executed movements divided

into 13 runs per subject. The four classes of movements were movements of either the left hand, the right

hand, both feet, and rest (no movement, but same type of visual cue as for the other classes). The training

set consists of the approx. 880 trials of all runs except the last two runs, the test set of the approx. 160 trials

of the last 2 runs. This dataset was acquired in an EEG lab optimized for non-invasive detection of high-

frequency movement-related EEG components (Ball et al., 2008; Darvas et al., 2010). Such high-frequency

components in the range of approx. 60 to above 100 Hz are typically increased during movement execution

and may contain useful movement-related information (Crone et al., 1998; Hammer et al., 2016; Quandt et al.,

2012). Our technical EEG Setup comprised (1.) Active electromagnetic shielding: optimized for frequencies

from DC - 10 kHz (-30 dB to -50 dB), shielded window, ventilation & cable feedthrough (mrShield, CFW

EMV-Consulting AG, Reute, CH) (2.) Suitable amplifiers: high-resolution (24 bits/sample) and low-noise

(<0.6 µV RMS 0.16–200 Hz, <1.5 µV RMS 0.16–3500 Hz), 5 kHz sampling rate (NeurOne, Mega Electronics

Ltd, Kuopio, FI) (3.) actively shielded EEG caps: 128 channels (WaveGuard Original, ANT, Enschede, NL)

and (4.) full optical decoupling: All devices are battery powered and communicate via optic fibers.

Subjects sat in a comfortable armchair in the dimly lit Faraday cabin. The contact impedance from

electrodes to skin was typically reduced below 5 kOhm using electrolyte gel (SUPER-VISC, EASYCAP

8
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GmbH, Herrsching, GER) and blunt cannulas. Visual cues were presented using a monitor outside the

cabin, visible through the shielded window. The distance between the display and the subjects’ eyes was

approx. 1 m. A fixation point was attached at the center of the screen. The subjects were instructed to

relax, fixate the fixation mark and to keep as still as possible during the motor execution task. Blinking

and swallowing was restricted to the inter-trial intervals. The electromagnetic shielding combined with the

comfortable armchair, dimly lit Faraday cabin and the relatively long 3-4 second inter-trial intervals (see

below) were used to minimize artifacts produced by the subjects during the trials.

The tasks were as following. Depending on the direction of a gray arrow that was shown on black back-

ground, the subjects had to repetitively clench their toes (downward arrow), perform sequential finger-tapping

of their left (leftward arrow) or right (rightward arrow) hand, or relax (upward arrow). The movements were

selected to require little proximal muscular activity while still being complex enough to keep subjects in-

volved. Within the 4-s trials, the subjects performed the repetitive movements at their own pace, which had

to be maintained as long as the arrow was showing. Per run, 80 arrows were displayed for 4 s each, with

3 to 4 s of continuous random inter-trial interval. The order of presentation was pseudo-randomized, with

all four arrows being shown every four trials. Ideally 13 runs were performed to collect 260 trials of each

movement and rest. The stimuli were presented and the data recorded with BCI2000 (Schalk et al., 2004).

The experiment was approved by the ethical committee of the University of Freiburg.

The Mixed Imagery Dataset (MID) was obtained from 4 healthy subjects (3 female, all right-handed, age

26.75±5.9 (mean±std)) with a varying number of trials (S1: 675, S2: 2172, S3: 698, S4: 464) of imagined

movements (right hand and feet), mental rotation and mental word generation. All details were the same as

for the High Gamma Dataset, except: a 64-electrode subset of electrodes was used for recording, recordings

were not performed in the electromagnetically shielded cabin, thus possibly better approximating conditions

of real-world BCI usage, and trials varied in duration between 1 to 7 seconds. The dataset was analyzed

by cutting out time windows of 2 seconds with 1.5 second overlap from all trials longer than 2 seconds (S1:

6074 windows, S2: 21339, S3: 6197, S4: 4220), and both methods were evaluated using the accuracy of the

predictions for all the 2-second windows for the last two runs of roughly 130 trials (S1: 129, S2: 160, S3:

124, S4: 123).

9
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A.7 EEG preprocessing

We resampled the High-Gamma Dataset to 250 Hz, i.e., the same as the BCI competition datasets, to be

able to use the same ConvNet hyperparameter settings for both datasets. To ensure that the ConvNets only

have access to the same frequency range as the CSPs, we low-pass filtered the BCI competition datasets to

below 38 Hz. In case of the 4–fend-Hz dataset, we highpass-filtered the signal as described in 2.7.1 ( for the

BCI competition datasets, we bandpass-filtered to 4-38 Hz, so the previous lowpass-filter step was merged

with the highpass-filter step). Afterwards, for both sets, for the ConvNets, we performed electrode-wise

exponential moving standardization with a decay factor of 0.999 to compute exponential moving means and

variances for each channel and used these to standardize the continuous data. Formally,

x′t = (xt − µt)/
√
σ2
t (1)

µt = 0.001xt + 0.999µt−1 (2)

σ2
t = 0.001(xt − µt)

2 + 0.999σ2
t−1 (3)

where x′t and xt are the standardized and the original signal for one electrode at time t, respectively. As

starting values for these recursive formulas we set the first 1000 mean values µt and first 1000 variance values

σ2
t to the mean and the variance of the first 1000 samples, which were always completely inside the training

set (so we never used future test data in our preprocessing). Some form of standardization is a commonly used

procedure for ConvNets; exponentially moving standardization has the advantage that it is also applicable

for an online BCI. For FBCSP, this standardization always worsened accuracies in preliminary experiments,

so we did not use it. We also did not use the standardization for our visualizations to ensure that the

standardization does not make our visualizations harder to interpret. Overall, the minimal preprocessing

without any manual feature extraction ensured our end-to-end pipeline could in principle be applied to a

large number of brain-signal decoding tasks.

We also only minimally cleaned the datasets to remove extreme high-amplitude recording artifacts. Our

cleaning method thus only removed trials where at least one channel had a value outside ±800 µV . We

kept trials with lower-amplitude artifacts as we assumed these trials might still contain useful brain-signal

information. As described in Sections 2.6 and 3.5, we used visualization of the features learned by the
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ConvNets to verify that they learned to classify brain signals and not artifacts. Furthermore, for the High-

Gamma Dataset, we used only those sensors covering the motor cortex: all central electrodes (45), except

the Cz electrode which served as the recording reference electrode. Interestingly, using all electrodes led

to worse accuracies for both the ConvNets and FBCSP, which may be a useful insight for the design of

future movement-related decoding/BCI studies. Any further data restriction (trial-or channel-based cleaning)

never led to accuracy increases in either of the two methods when averaged across all subjects. For the

visualizations, we used all electrodes and common average re-referencing to investigate spatial distributions

for the entire scalp.

A.8 Software implementation and hardware

We performed the ConvNet experiments on Geforce GTX Titan Black GPUs with 6 GB memory. The

machines had Intel(R) Xeon(R) E5-2650 v2 CPUs @ 2.60 GHz with 32 cores (which were never fully used as

most computations were performed on the GPU) and 128 GB RAM. FBCSP was computed on an Intel(R)

Xeon(R) CPU E5-2650 v2 @ 2.60 GHz with 16 cores and 64 GB RAM. We implemented our ConvNets using

the Lasagne framework (Dieleman et al., 2015), preprocessing of the data and FBCSP were implemented

with the Wyrm library (Venthur et al., 2015). The code used in this study is available under https:

//github.com/robintibor/braindecode/.
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