
Editor:
Thank you very much for submitting your Research Article entitled 'Linking high GC content to the 
repair of double strand breaks in prokaryotic genomes' to PLOS Genetics. Your manuscript was fully 
evaluated at the editorial level and by independent peer reviewers. The reviewers appreciated the 
attention to an important topic but identified some aspects of the manuscript that should be improved. 
In particular, reviewer 3 makes suggestions for inclusion of additional data on homologous 
recombination, and use of the PHI test as in previous comparable studies, and we would like to 
encourage the authors to follow these suggestions.

We thank the editor for their consideration of our manuscript.  See below for specific responses 
to reviewer comments as well as detailed changes to the manuscript.  Specifically we would like to
call the editor’s attention to Figure 4 and S10 Fig which address Reviewer #3’s suggestion that we
apply the PHI test to our dataset. Also see additional analyses in S1, S8, and S11 Figures and 
described in response to specific reviewer requests below.

We have also made our intermediate datasets and code available: https://github.com/jlw-
ecoevo/gcku

Reviewer #1: In this study, Weissman and colleagues explore a new mechanism potentially explaining 
the evolution of GC-content in bacteria. Many works have been published on this question, but yet, no 
single explanation has imposed itself. The authors hypothesize that DNA breaks and repair could be the
underlying cause of GC-content evolution across bacteria. Although they cannot provide direct 
evidence supporting their hypothesis, the results show, at the very least, a clear link between NHEJ and 
GC-content. The methods used by the author are generally sound and only have a few criticisms. The 
manuscript is well written and very pleasant to read. I think this is an interesting hypothesis and a good 
study. As mentioned by the authors, future experimental works could potentially test this hypothesis.

The methods appear adequate as far as I can judge, and I don’t have any major concerns. However, I 
am not sure to understand how the authors calculated the incidence of Ku across the data set. For what I
understood, it represents the probability that Ku is really present in a genome. Figure S1 is particularly 
intriguing, but that I am not sure what to get from it. It seems to represent a correlation of correlation 
coefficients, which might be a very indirect way to show a correlation. It would be more 
straightforward to represent the correlation between Ku incidence and GC-content directly.

We thank the reviewer for their comments and apologize for any confusion here. We searched 
each genome against a hidden Markov model provided by the Pfam database for the Ku protein, 
using the program hmmer. This is a standard method to search for protein homologs in a set of 
sequences, and is widely used in the literature. In practice, this is similar to running a BLAST 
search, though is far more sensitive in terms of detecting distance protein homology. Like 
BLAST,  hmmer returns an evalue for each search, essentially the probability that a given 
sequence is a homolog of the protein family in question (corrected for the size of the database 
being searched). It is standard to apply a cutoff evalue (similar to a threshold for significance) to 
classify genomes as having or lacking a given gene (with some inevitable rate of false positives). 

In the case of Fig 1, where we associate traits with Ku and GC, we have trait values at the species 
level. Therefore, we sampled a single genome from RefSeq for each species. As the reviewer notes,
this is essentially a point estimate of the probability that a member of a given species has Ku. In 
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general, our sampling should not be an issue since Ku tends to be uniformly present or absent 
within a species. We have clarified this point in the methods (lines 385-390) and added S11 Fig:

“To assess trait vs. Ku relationships we
sampled a single genome per species from our RefSeq dataset to determine Ku
presence/absence in species with trait data available (617, 2062 without). Most
species either always have or always lack Ku (S11 Fig), meaning that sampling
should give a reliable estimate of whether we can expect a species to typically
have Ku.”

With respect to S1 Fig (now S2 Fig), this was meant simply to quantify the agreement apparent in
Fig 1 with respect to trait values. The  relationship between Ku and GC content is, in fact, shown 
in Fig 2a (using all genomes in RefSeq rather than only the subset for which we had trait data). 
We have modified the legend of Fig S2 to clarify:

“The correlation of trait values for microbial species with their average
genomic GC content is similar to the correlation of trait values with the pres-
ence/absence of Ku. Note that each point is an individual trait, as shown in
Fig 1. The dashed diagonal line indicates the x = y line. For a direct analysis
of the relationship between GC content and Ku incidence among organisms see
Fig 2 and Table 1.”

and we have also noted the correlation between Ku and GC across all genomes in the main text 
(lines 104-107):

“Using a large
set of genomes from RefSeq we found that genomes with Ku have a dramatically
shifted GC content relative to genomes without Ku (Fig 2A, S3 Fig; Pearson cor-
relation between GC content and Ku across genomes, r = 0.54, p < 2.2×10−16)”

The main issue with the results of the manuscript is that the authors are using the presence of Ku as 
evidence for more frequent DSBs. As stated by the authors, the NHEJ pathway is either present or 
absent but DSBs can occur at different rates. Figure 2A is rather convincing but it would be interesting 
to indicate the size of each sample. Also, it is not clear to me whether the data were computed on the 
entire dataset of genomes or if only one genome were selected for each species. 

We agree with the reviewer (and discuss in the main text, as the reviewer notes) that Ku 
presence/absence is an imperfect measure of the rate of DSB formation an organism experiences. 
That said, we do expect that NHEJ will be favored in specific environments (e.g., Fig 1), and it's 
widespread but sparse distribution makes it a promising indicator of frequent damage. We hope 
to motivate future work that surveys the rate of DSB formation directly in the environment, 
though as we note in our conclusions this is a non-trivial task. 

We also thank the reviewer for pointing out a part of the analysis that was inadequately 
described. While the sample size was indicated in the methods (21389 out of 104297 genomes with
Ku), it was not specified on the actual figure. We have modified the legend of Fig 2 to reflect this:

“The relationship between genomic GC content and the NHEJ pathway
in prokaryotes. (a) Microbes that code for the Ku protein tend to have much



higher genomic GC content than those that do not (all RefSeq assemblies shown,
21389 out of 104297 genomes encode Ku).”

Species that don’t encode Ku appear to present a wider range of GC-content while species that encode 
Ku appear much more biased toward high GC-content. It would be informative to explore and discuss 
the rare species that encode Ku but present a relatively low GC-content. These cases might be 
insightful, but maybe the authors did not find anything worth reporting in the manuscript.

It is true that Ku-encoding organisms have a much narrower range of GC content than Ku-
lacking organisms. This is partially attributable to the fact that there are many more Ku-lacking 
organisms in the dataset. At the same time, we might expect this pattern for other reasons. 
Specifically, while the presence of Ku might indicate environmental conditions with high damage 
and low growth, the lack of Ku does not necessarily indicate low rates of damage. Organisms 
without Ku but still experiencing high rates of DSB formation would still be expected to have 
high GC content under our hypothesis. We make this point briefly in our conclusions (lines 352-
357):

“While the presence of NHEJ cannot single-handedly explain
high GC content in all organisms (there are many organisms incapable of NHEJ
that still have high GC content, Fig 2), it is possible that DSB formation can
(or at least come close). For example, Deinococcus radiodurans is resilient to
extremely high rates of DSB formation [61] and has high genomic GC content,
but lacks Ku.”

The reviewer makes an interesting point about the organisms encoding Ku but with low GC 
content. In fact, 80% of these genomes come from the Baccilaceae.  This family typically has low 
GC content (>99% of genomes in RefSeq have <50% GC, and 76% have <40% GC), and an 
ancestral state reconstruction suggests that the MRCA of the group had Ku (which has been lost 
multiple times). We have added these analyses to the manuscript (lines 170-178) along with S8 
Fig:

“Finally, we note that there is a small subset of genomes in Fig 2 that both
encode Ku and have a low GC content (< 40%). Of these, 80% belong to
the family Baccilaceae. This family has uniformly low GC content (> 99% of
genomes have GC content < 50%, and 76% have GC content < 40%), and an
ancestral state reconstruction suggests that its most recent common ancestor
encoded Ku (S8 Fig and see methods), though Ku has been lost multiple times
across the group. We do not know why the Baccilaceae violate the pattern seen
across the rest of the dataset; it may be an accident of evolutionary history or
some particular aspect of this group's ecology and/or physiology.”

and (lines 422-429):

“We performed an ancestral state reconstruction of the presence/absence of Ku
in the Baccilaceae (S8 Fig). We used the R package corHMM to reconstruct
the evolutionary history of this trait on the subtree of the SILVA phylogeny
describing the Baccilaceae [67]. We allowed for up to two rate classes (for
trait evolution) across the tree when building our evolutionary model (rate.cat
parameter in function corHMM, otherwise default parameters), but found that



a model with a single rate class had a lower AICc (257.3119 vs. 263.8347). Thus
we only retained a model using a single rate class across the tree.”

The authors argue the restriction systems might elevate the frequency of DSBs and use the presence of 
RM systems as an indirect indicator for elevated DSBs. If we follow their logic, we might expect 
species encoding larger numbers of RM systems to present higher GC-content. I find this argument not 
very convincing considering that Helicobacter pylori encodes an exceptionally high number of RM 
systems (Oliveira, Touchon and Rocha, NAR 2014) but present a relatively low GC-content (~39%).

This doesn’t necessarily follow, since even genomes with an exception number of RM systems are 
likely to potentially target only a small proportion of the genome. It would be possible to see a 
local effect of RM systems, which have very specific target sites, without seeing much overall 
signal for high GC across the genome. The very specificity of these systems constrains the 
magnitude of these effects (Especially since we see that often target sites themselves are selected 
against). We now note this in the main text (Lines 323-329):

“Finally, we caution that one is unlikely to see genome-wide differences in GC
content when comparing across organisms with different numbers of restriction
enzymes, since restriction sites comprise a very limited subset of loci along the
genome (and self targeting should be somewhat restrained via methylation of
the host chromosome). Presumably if self targeting was frequent enough to
select for elevated GC content at a genome-wide scale, the corresponding cost
of encoding these enzymes would be prohibitively high.”

This is similar to the logic described in Lassalle et al. [7] that you might see correlations between 
recombination rate and GC content along a genome, but not within genomes.

Finally, I think it is interesting that GC-content and genome length correlate. This observation is not 
new, but it supports the hypothesis of the authors. I believe it can be safely assumed that, overall, 
bacteria with larger genomes endure more frequent DSBs. Under the authors’ assumption, the higher 
GC-content of larger genomes could be explained by the need to repair more frequent DNA breaks. I 
think this was not explicitly formulated in the manuscript and could be emphasized.

We generally agree with the reviewer and, in fact, have made this point in a previous version of 
this manuscript (submitted to another journal). Unfortunately a different reviewer took issue 
with this point previously, and since we deemed it non-essential to our overall message we opted 
to remove it. Specifically, they questioned the assumption that larger genomes are more prone to 
breaks, and suggested that the rate of DSB formation would have to scale super-linearly with 
genome size to see this type of effect (though we suspect that this intuition may be incorrect, since
all breaks must be repaired before replication can proceed and thus are likely felt on a per-
genome rather than a per-base scale). Nevertheless, since we do not know of any datasets 
describing how the rate of DSB formation scales with genome size, we are wary of making this 
point in the paper. It occurs to us that we already speculate about mechanisms to a degree some 
readers may find excessive, and we think it may be wise to restrain ourselves here (since this is a 
minor, though interesting, point).

Reviewer #2: I have reviewed this article before for another journal. In this new version, most of my 
initial critics have been addressed and I find the article quite good. The relationships between genomic 
GC-content and the presence of the NHEJ pathway is an interesting point to bring to the debate on the 



evolution of GC-content in genomes. However, I still have difficulties with the hypothesis of the 
authors that there is selection for high GC-content to favor double strand breaks repair. It is not clear to 
me why the hypothesis that NHEJ is itself a repair mechanism that is biased toward GC (just like BGC 
in HR) is not considered and discussed. The argument that GC-rich regions are better repaired seems 
relatively weak to me.

We thank the reviewer for spending multiple rounds of review on our manuscript. We do feel that
the work has substantially benefited from previous review.

There is an important distinction here between the mutation-generation process and the fixation 
process. The data (fig 3) shows that GC alleles are fixed at a higher rate than AT alleles (not 
simply produced at a higher rate). If Ku repair favored the creation of GC alleles, we would see a 
mutational rather than a fixation bias among Ku-favoring organisms. BGC is slightly different 
since it is not producing novel GC alleles, but rather is increasing their rate of spread across a 
population. We have clarified this in the main text (lines 162-169):

“Thus, the association between Ku and genomic GC content is not due to
differences in mutational bias. This implies that DSBs are either leading to
selection for high GC content or influencing the rate and/or biases of homologous
recombination to increase the overall action of BGC. We emphasize that this
e#ectively rules out the possibility that biases during NHEJ repair are causing
the observed patterns. NHEJ repair may be error-prone, but if those errors (i.e.,
mutations) were driving genome-wide GC-bias it would affect the GC-bias of
polymorphisms as well as fixed alleles in the test described above.”

We readily admit that we do not have direct evidence for our repair hypothesis. Nevertheless, we 
think this hypothesis is particularly useful as it proposes a specific mechanistic basis for selection 
on GC content across the entire genome that can be directly probed with experimental 
approaches. 

Reviewer #3: This manuscript presents new observations and a new hypothesis to explain the long-time
puzzle of prokaryotic GC content heterogeneity, and the discrepancy between observed GC contents 
and their – almost universally lower – expected value based on mutational patterns. They report that the
non-homologous end-joining (NHEJ) protein Ku is strikingly associated with high genome GC content,
and also with the departures from mutational equilibrium, in a stronger way than any previously 
considered trait (notably those associated to lifestyle). The authors interpret this Ku-GC association as a
signature of GC elevation being a response to frequent exposure to double-stranded DNA (dsDNA) 
break (DSBs). This is considered under several hypotheses, including that GC elevation and Ku 
occurrence may both be correlated responses the high incidence of DSBs, via separate mechanisms. 
Alternatively, they investigate a hypothesis where Ku is causally linked to GC elevation, via selective 
process promoting the elevation of GC content in the genome and in particular in regions susceptible to
regular DSBs such as self-target sites for restriction enzymes to improve the efficiency of Ku repair 
function. They conclude that Ku (or the NHEJ pathway) is unlikely to account on its own for the whole
higher-than-expected-GC phenomenon, but may at least be the functional mechanism of a selective 
process that accounts for part of this phenomenon.

The manuscript is very well written and documented, and presents relevant analyses to test the new 
hypothesis. The authors also attempt to link these new results to observations made previously 
regarding other hypotheses of mechanism for above-mutational-equilibrium genome GC contents, 



namely selection for higher %GC per se, and biased gene conversion (BGC).

The evidence presented in support of the Ku-GC association is sufficient and convincing, and its 
interpretation is cautiously discussed to consider known evidence, and to take into account potential 
interactions or confounding signatures with other mechanisms.

However, it would be desirable that the authors bring their study a step further, and bring a bit more 
material to help the reader (and future investigations) to resolve this puzzle. Namely, in order to test the
relevance of the BGC hypothesis in the light of the facts presented in this study, they confront Ku 
occurrence and GC content data are to homologous recombination (HR) data, which are only recovered
from other studies. This brings the concern that these data are not properly matched with the sty’s own 
datasets: summary statistic from studies using different genome sets (and potentially different set of 
sequences within genomes) on the basis of the sole species name is unlikely to reflect the exact 
properties of the genome datasets investigated here. Considering the scale of the present investigation 
(the whole prokaryotic tree of life), it is crucial that each data point be accurately representing the 
properties of the considered organism, and hence that all measurements be made on the same dataset. 
As explained below, applying the HR test/quantification procedures described in the cited literature to 
this dataset would be a feasible undertaking, and would add much value to the paper.

Finally, I notice that the intermediary data is not made available. This includes tables describing the 
sets of genomes used, the occurrence of Ku in these genomes, the list of restriction enzyme found in 
them and their corresponding target sequences, the genome tree presented Fig 2 in machine-readable 
format, the estimates of GC at the mutational equilibrium, etc. the scripts used to generate such data, as 
well as those used to test their association, should be provided as well. I think that publication in 
scientific journal, and especially in the open-access pioneer PLoS journals, should always be backed by
full access to data and proceedings of the analyses so they can be replicated. Please attach them as a 
supplement, or provide a link to an external data/code repository (my recommendation).

I let the editor appreciate the relevance of the request for additional data on HR. Provided that the few 
minor comments below are addressed and that intermediary data are provided, I think the manuscript 
would be otherwise generally fit for publication in PLoS Genetics. I thus recommend the paper for 
minor revision.

We thank the reviewer for their in-depth comments. As detailed below, we have incorporated an 
analysis of recombination using the PHI statistic as requested (which nicely complemented our 
other analyses and resulted in the addition of a figure to the main text – Fig 4). We have also 
made our code and intermediate datasets available on github: https://github.com/jlw-ecoevo/gcku

Detailed comments

L70-82: this paragraph belongs to the introduction, with which it is slightly redundant.

While we appreciate that there is some redundancy here, we think having a bit of motivation at 
the outset of our Results and Discussion section helps adequately frame the section and guide the 
reader. Additionally, we feel this context is important for readers who tend to read papers out of 
order.  Since this is a combined Results/Discussion section we do feel it is appropriate to have 
some discussion of previous work here. As this is a matter of style rather than substance, we are 
opting to go with our gut in this specific instance and keep the paragraph as is.

https://github.com/jlw-ecoevo/gcku


L87-89: this correlation of the Ku and GC, as revealed by correlation of each with ‘third-party’ trait, is 
striking. However, it would be nice to have a more straightforward estimate and visualisation of their 
association. Could the authors provide a correlation r^2 and p-value for GC ~ Ku occurrence? In 
complement of the PCA in fig. 1, could they also plot the result of a linear discriminant analysis (LDA)
maximizing the separation of the samples based on their Ku +/- state, and plotting the %GC over it (as 
well as showing the explained variance of such a projection)?
Actually, something like a heatmap of a correlation matrix of all these traits would be helpful (in 
supplement) for the reader to see how the traits are associated with each other.

We agree that such information will be useful to our readers. We now note the correlation 
between Ku and GC across all genomes in the main text (lines 104-107):

“Using a large
set of genomes from RefSeq we found that genomes with Ku have a dramatically
shifted GC content relative to genomes without Ku (Fig 2A, S3 Fig; Pearson cor-
relation between GC content and Ku across genomes, r = 0.54, p < 2.2×10−16)”

We also have added S1 Fig that describes the pairwise correlation between traits as requested.

With respect to the recommended LDA analysis, we do not understand quite what the reviewer is 
asking for. In addition, we are worried that many redundant analyses of the trait data may 
confuse a reader and dilute the overall message (especially since our more central and robust 
analysis of the GC-Ku relationship comes in the next section – the trait analysis was meant 
mostly to motivate downstream analyses). 

L90-92 / S1 Table: I think that the table legend should spell out how the model was formulated (like 
give the R code or a more formal string like ‘y ~ trait1 + trait2’). Once that is clarified, it would be 
interesting to present results of a general linear model where the prioritization of would have been 
different: with Ku as first explanatory variable, would the other traits have any variance left to explain?

We have modified the S1 Table legend to include the model formula.

With respect to the reviewers other request, we are not entirely sure what is meant. When 
including all variables in the model both Ku and many traits have significant p-values, meaning 
that all of these variables explain some of the variance even in the presence of the others (so in 
response to the above question: yes). This is also stated in the main text (lines 93-98):

“Nevertheless, the inclusion of Ku along with ecological traits in a linear
model to explain genomic GC content resulted in most other environmental
traits still being statistically significant (S1 Table), indicating that either there
is some aspect of the environment affecting GC content that is not attributable
to DSBs or that NHEJ is an imperfect indicator of the rate of DSB formation
(or both).”

L95-96: “In fact this is trivially true, as Ku presence is a discrete, binary variable whereas the rate of 
DSB formation is continuous.”
This is a relevant point, and should be considered further. In fact, the presence/absence of the Ku 
protein (used as a proxy of a functional NHEJ pathway) is a trait that can vary among strains of a clade 
or species, as stated by the authors L176-178. Transitions between the Ku +/- states might have 



happened recently in certain strain lineages, and at potentially high frequency over time. On the 
contrary, %GC increase is expected to be a long process, given that the effect size of either selection for
higher %GC or BGC phenomena are likely small, that they act against the mutational bias, and that 
selection for other traits may interfere with this background amelioration process. This is to be opposed
to phenotypic traits (usually considered for correlation under BM or OU models) that result from the 
expression of the genotype of an individual organism, i.e. in sync with its current genotype.
It follows that the association between a potentially recently acquired trait (Ku presence) and the result 
of a long-standing process (%GC increase away from the mutational equilibrium) could possibly be 
coincidental. The authors should try and repeat their analyses by restricting them to genomes in clades 
where the Ku +/- state is conserved, and where we can expect that it has been present/absent for long 
enough so that the base substitution process is in its steady state. The situation that “Ku 
presence/absence is sprinkled throughout the prokaryotic phylogeny”, and described in Figure 2B, 
where it seems that many clades have a homogeneous pattern of Ku occurrence, should allow them to 
run such restricted analyses with enough statistical power (while still using the phylogenetically-aware 
regression models to avoid over-counting the replicated data points within such homogeneous clades).
This is an important point, as most studies trying to confirm/invalidate the hypothesis of BGC have 
tried to correlate the %GC with the recombination rate inferred from recent polymorphism data, which 
again reflect a recent property of the population, but might not reflect the long-term average 
recombination rate that the lineage has experienced – a major issue that prevented most past analyses to
settle the debate on the existence or not of BGC in Prokaryotes. Ku occurrence is a simple binary trait 
and its past distribution is more easily estimated than the past recombination rate, which estimation 
from polymorphism data is inherently biased towards recent times due to saturation of homoplasy 
signals; by studying this simpler trait, the authors here have an opportunity to bring stronger evidence 
on that subject than any other previous study.

We thank the reviewer as we had not considered this type of analysis previously. We performed 
the requested analysis (lines 416-420):

“Finally, for our “Uniform Ku” models we excluded all genera from our dataset
that had fewer than two genomes with which to assess Ku incidence, and then
excluded any genera for which Ku incidence was not uniform (all genomes had
Ku or all genomes lacked Ku). We then repeated our above analysis (779 taxa
with Ku, 2365 without).”

and found that our results were qualitatively unchanged (lines 117-121):

“Finally, to control for the possibility that Ku gain/loss via horizontal
transfer is frequent and potentially confounding, we also restricted our analysis
to a subset of the data where Ku presence/absence did not vary within each
genera (discarding variable genera) and found qualitatively the same result (Ta-
ble 1).”

Section “No Apparent Relationship Between Rate of Homologous Recombination and NHEJ”:
I agree with the general conclusions of the authors for this section, that is the impossibility to conclude 
given the data, but I think they could try and provide further evidence to fuel the debate. In particular, 
they only rely on data from previous study to quantify the effect of homologous recombination (HR) on
species they investigated in their own dataset. The third-party data they report is likely to be inadequate
to answer the question asked, for several reasons.
The quantification of HR rates (r/m) by Vos and Didelot (ref [44]) is made using ClonalFrame, a 



method that is able to grasp the long-term average HR rate (see comment above), which is a good 
thing, but was based on multi-locus data and on quite a variable set of strains depending on the species,
thus unlikely to reflect findings from sets of whole-genomes of calibrated diversity (from the ATGC 
database) used in the present study.
The data from Ruendules et al. [45] are also unlikely to have used the same set of genomes, and use 
simple linkage disequilibrium-based metrics which have been designed to perform test of occurrence of
HR, not to quantify it, and which application at the whole-genome scale is unlikely to grasp any nuance
in such signal.
The fairer comparison is with the data from Lassalle et al. (ref [7]), but again the genome datasets are 
unlikely to be matched. Published genome data expand rapidly and, as a consequence, prokaryotic 
species definitions are being regularly revised; the genomes available for what was considered to be B. 
anthracis by Lassalle et al. in 2015 is thus unlikely what is available today in ATGC database under this
same name. I believe this drastically limits the scope of what the authors are able to say about HR in 
the framework of this study.
I would suggest that the authors replicate the procedure used by Lassalle et al., that is running the PHI 
test on the core gene alignments of their species datasets (or at least a representative subset), as 
provided by the ATGC database. The PHI test is very fast and can easily be ran in parallel on a large 
collection of gene alignments. This is not essential to the core argument of the paper, but would help 
going further on the matter.

We thank the reviewer for pointing out a potential issue with our analysis. Nevertheless, since Ku 
incidence tends to be relatively uniform within a species (S11 Fig) this is something of a moot 
point (this can also be seen in S9 Fig and S10 Fig as most of the points lie at the extremes of the x-
axis). Nevertheless, we agree it is important to be sure that our data is consistent. As requested we
ran the PHI test (S10 Fig) and found nearly identical results to those using separate datasets (S9  
Fig), (lines 187-192):

“We saw no positive as-
sociation between Ku incidence and inferred rates of homologous recombination
looking between genomes, as would be predicted by this hypothesis (S9 Fig with
data from [44, 45], and S10 Fig with data from the ATGC database [43]). In
fact the relationship appeared to be negative regardless of method to measure
recombination rate (though not significant).”

The idea to replicate the within-genome analysis of Lassalle et al. using the ATGC data is an 
interesting one, and led to some results that we think nicely complement our other analyses (so 
much so that we have added a figure to the main text – Fig 4). We found some evidence that could
by taken as supporting BGC in general (though see Bobay and Ochman [10] for why this type of 
evidence is flawed), but that rejects any link between BGC and the Ku-GC pattern we observe 
(lines 215-228):

“Given the small number of organisms in Lassalle et al.'s dataset that had Ku,
we endeavoured to repeat this analysis using a larger set of organisms. Using
the ATGC database (as we did with our analysis of polymorphism earlier), we
obtained multiple alignments of all orthologous genes for each cluster of organ-
isms [43]. We then classiffed genes as recombining or non-recombining using the
PHI statistic [46]. Similar to Lassale et al. [7], we found that recombining genes
had higher GC content than non-recombining genes, though this difference was
small (paired t-test, df = 154, p = 1.503 × 10−11; Fig 4). Interestingly, while a



link between recombination and GC content was apparent, it seemed to explain
none of the difference between Ku-encoding and Ku-lacking organisms (Fig 4a).
In fact the difference in GC content between recombining and non-recombining
genes was actually smaller for Ku-encoding organisms than Ku-lacking ones,
the opposite of what we would expect if recombination were driving the link
between Ku and GC content (t-test, df = 83.698, p = 0.0308; Fig 4b).”

and (Fig 4 legend):

“Recombination contributes to GC content locally but cannot ex-
plain the relationship between GC content and Ku incidence. (a) The mean
GC content of genes with evidence for recombination (PHI statistic, [46], see
methods) plotted against the mean GC content of genes without evidence for
recombination in a given closely related cluster of organisms (ATGC databse
[43]). Recombining genes have slightly higher GC content than non-recombining
genes (points mostly lie above the dashed x = y line). (b) The difference in GC
content for recombining and non-recombining genes within a cluster is smaller
for Ku-encoding than Ku-lacking clusters. Clusters classiffed as Ku-lacking if
no members encoding Ku (n = 114) and Ku-encoding if at least one member
has Ku (n = 41). Clusters excluded if no evidence for recombination was found
for any of their genes.”

See methods for details (lines 483-493):

“We obtained all available alignments of shared genes within each cluster of
organisms in the ATGC database ([43]). We then ran the program PhiPack
[46] using 10000 permutations to generate p-values for the occurrence of re-
combination in each cluster-gene pair. To correct for multiple testing we used
a Benjamini-Hochberg correction with a false-discovery rate of 5%. Altogether
this yielded 52117 genes with significant evidence of recombination out of 438580
cluster-gene pairs with sufficient information to run PhiPack. To obtain GC con-
tent for each cluster-gene pair we took the mean GC content across sequences in
the relevant alignment. To obtain cluster-wide estimates of GC content and Ku
incidence we took the mean across genomes associated with organisms in that
cluster (each cluster member in ATGC is associated with a RefSeq genome).”

L216-220: “the extremely strong and specific association between GC and Ku suggests that this 
relationship may be particular to the specific conditions selecting for Ku (especially considering the 
absence of an association between HR and GC when looking between genomes [5]; S7 Fig)”
As discussed above, these datasets are very unlikely to be matched with the authors’, and rejecting the 
association of elevated %GC (or Ku occurrence) with HR rates on this basis is possibly flawed.
Again, I would suggest the authors run their own recombination tests/quantifications on their own 
datasets so they can draw robust conclusions.

See comments directly above and S10 Fig.

Also, we would like to point out that even Lassalle et al. didn’t find a link between recombination 
and GC content when looking between genomes, but only when looking within genomes. 



L217 “association between GC and Ku”; L219 “association between HR and GC”; L223 “association 
223 between NHEJ and high GC content” and more:
The authors need to use a consistent term to refer to the A/T vs. G/C base composition of genomes; the 
early sections of the manuscript use the acronym ‘%GC’, but later just name it ‘GC’, or ‘GC content’. 
One term should be chosen and used throughout the manuscript

All instances have been changed to “GC content”.

L223: “Given our lack of enthusiasm for BGC as a mechanism”
I appreciate the author’s willingness to disclose any subjective bias they may have towards one or 
another scientific hypothesis, but I don’t think it is appropriate to use it to justify what they investigate. 
Please rephrase into something like “Given the lack of evidence in support of the BGC hypothesis as 
reported above, we chose to investigate an alternative hypothesis.”
Importantly, the authors should make clear that they are not opposing hypotheses, i.e. rejecting BGC 
because of support for the selection hypothesis, or vice versa. In principle, both hypotheses could be 
true, and so could be a third (or more) alternative that was not yet proposed in the literature.

Changed as requested, now using Fig 4 as a motivation (lines 262-263):

“Given the inability of BGC to explain the association between NHEJ and high
GC content (Fig 4), perhaps selection can provide an alternative hypothesis.”

L228-229: “high GC content may promote DNA repair, both by facilitating canonical NHEJ 228 (i.e., 
Ku-dependent) and alternative NHEJ (i.e., Ku-independent) pathways.”
Please cite relevant literature supporting these claims. If they are supported by the references [50, 51, 
52] cited in the following paragraph, please connect these text sections (e.g. by not ending the sentence 
L229 and connecting it to the next with a colon) so to make it clear.

References added and clarified as requested (lines 266-268):

“In fact, high GC content may
promote DNA repair, both by facilitating canonical NHEJ (i.e., Ku-dependent
[51, 52, 53]) and alternative NHEJ (i.e., Ku-independent [32, 54]) pathways.”

L232-234 “Any factor that stabilizes this interaction (e.g., high GC via an increased number of 
hydrogen bonds) may thus increase the efficiency of NHEJ repair.”
L238-239: “It stands to reason that high GC content in these regions of microhomology might help 
stabilize the end-pairings and improve the efficiency of repair.”
Again, please cite the relevant literature (redundancy of citation with the previous sentence is not an 
issue in my opinion) so to clarify whether this is a (reasonable) speculation of mechanism by the 
authors or something that is backed by experimental evidence.

We do feel that the requested redundant citation is a bit awkward, but have followed the 
reviewers suggestion (lines 271-273):

“ Any factor that stabilizes
this interaction (e.g., high GC via an increased number of hydrogen bonds)
may have the potential to increase the efficiency of NHEJ repair [51, 52, 53].”



and (lines 278-280):

“It stands to reason that high GC content in these
regions of microhomology might help stabilize the end-pairings and improve
the efficiency of repair [32, 54].”

L235-237: “alternative high-fidelity end-joining pathways that are independent of the NHEJ machinery,
and that these pathways are primarily dependent on nearby microhomology to tether the DNA ends 
together”
Please clarify which bits of sequence are required to present microhomology for the NHEJ or NHEJ-
independent end-joining pathways to function. If it is the immediate sequence on both free ends of the 
broken dsDNA, this means that sequences with short repeats would be more likely to be repaired by 
these pathways. This would come as a confounding factor for the prediction of effect of %GC in this 
system (for instance, because short repeats are enriched in mobile elements like phages, transposons or 
integrons, which are themselves generally AT-rich…); the authors should mention these potential 
pitfalls as they develop this hypothesis.

Apologies for any confusion here. These homologous stretches are typically short and internal to 
the DNA ends, meaning this pathway should not be dependent on the existence of short repeats. 
We have clarified this in the main text (lines 274-278):

“It has also been shown that prokaryotes can employ alternative high-fidelity
end-joining pathways that are independent of the NHEJ machinery [32, 54],
and that these pathways are primarily dependent on short (2-5bp [32]) nearby
microhomology (DNA ends are typically degraded to reveal internal homologies
[32, 54, 55]) to tether the DNA ends together..”

L262-264: “We further predicted that, for restriction enzymes with low GC recognition sequences, the 
bases flanking restriction sites on the genome would have elevated GC”
The test presented afterwards could also support selection-free hypotheses where the converse rationale
would stand, i.e. that increased repair at those DSB-prone sites would induce higher %GC; typically, it 
would be in line with the BGC hypothesis as HR-associated pathways are also taking part in the repair 
or restriction enzyme-induced breaks.

A fair point, which we now note in the main text (lines 310-314):

“In principle, evidence
of high GC content near breaks could also be taken as support for BGC (despite
other evidence to the contrary [10, 49]) since the rate of HR repair should in-
crease locally, meaning that ultimately experimental approaches will be needed
to tease apart these hypotheses.”

Though again we emphasize that other groups have strongly questioned the basis for BGC as a 
driver of GC content (Bobay and Ochman [10], Liu et al. [49]). BGC also cannot explain Fig 5a 
(though, again, this evidence is rather indirect and experimental approaches are preferable).

L259: “to help ameliorate the effects of autoimmunity”
‘mitigate’ instead of ‘ameliorate’



Changed.

L316:” This identified 21389 genomes containing Ku out of a 316 total 104297 genomes analysed”
Please provide a list of the genomes, and of which were deemed positive for the Ku protein-coding 
gene.
L322: “we downloaded alignments from the Alignable Tight Genomic Cluster (ATGC) database [43]”
Please provide the list of genomes assigned to cluster, the number of gene alignments and clarify how 
many were dropped/retained when filter were applied.
L324: “Trait data were obtained from the ProTraits microbial trait database (2679 species; [39])”
Please provide the table of how genomes from RefSeq were matched with entries of ProTraits (or if 
sharing identifiers, a list of genomes covered by both databases).

Please see the github for this paper (as requested): https://github.com/jlw-ecoevo/gcku

L382: “The rationale behind this test”
No test has been described at this point; I assume the authors refer to the comparison of the expected 
%GC (based on the mutational pattern estimated from phased polymorphism data) to the realized 
genomic %GC, which they describe right after; please rephrase.

Changed (lines 457-458):

“In order to estimate mutational biases, we assume that recent polymorphisms
will not have had a chance to undergo selection (or BGC).”

L413: “no genomes with multiple AT-rich enzymes”
Please clarify how you define AT-rich enzymes (if based on the composition of the target sequence, 
what threshold of %GC?).

We apologize if this was unclear, as it was noted directly before this phrase (>75% AT). We have 
rephrased the sentence to be clearer (lines 496-499):

“We then restricted
our analyses to genomes encoding enzymes that had low-GC content restric-
tion sequences (AT-rich restriction sequences defined as those with ≥ 75% AT,
n = 214; no genomes had multiple enzymes with AT-rich targets).

L424: “We then repeated the above”
Please specify how many draws of thee permutations were conducted.
 
Again, apologies if this was unclear. We simulated only a single dataset, though it is quite large. 
Repeated simulation might reduce the variance in our estimates of excess GC near restriction 
sites, but our current approach should be unbiased (i.e., more simulations could give us slightly 
more power potentially, but the already large size of the dataset makes this unlikely). We have 
clarified this in the main text (lines 510-512):

We then repeated the above flank-analysis
with this set of “fake” restriction recognition sequences (a single, large simulated
dataset was generated with 15923 genome-enzyme pairs)”

https://github.com/jlw-ecoevo/gcku

