

Figure S1. Correlation among biological replicates of the TraDIS experiments.

The frequency of each mutant in the TraDIS library is shown for the input samples between two models and the three biological replicates of the output samples. The non-parametric Spearman correlation coefficient (R) is shown in each case.



Figure S2. Agreement analysis among biological replicates of the TraDIS analyses.

The frequency of each mutant in the TraDIS library is shown for the input samples between two models and the three biological replicates of the output samples. The limits of agreement (LOA) is shown in each case.



Figure S3. Overview of the ExPEC XM insertion sites and essential genes. (A)

The heat map shows the distribution of the insertion sites. (B) Color-coding data dots (genes) by their essentiality.

| Strain         | Description                                                | Source     |
|----------------|------------------------------------------------------------|------------|
| ExPEC          |                                                            |            |
| ExPEC XM       | Bacteremia isolate, wild-type                              | (1)        |
| APEC O1        | Bacteremia isolate, wild-type                              | (2)        |
| APEC DE471     | Bacteremia isolate, wild-type                              | This study |
| CFT 073        | Bacteremia isolate, wild-type                              | (3)        |
| RS 218         | Bacteremia isolate, wild-type                              | (4)        |
| NMEC 38        | Bacteremia isolate, wild-type                              | (5)        |
| rml            | ExPEC XM (Δ <i>CXG97_RS12075 - CXG97_RS12130</i> )         | This study |
| neu            | ExPEC XM ΔneuSECABD (CXG97_RS17935-CXG97_RS17960)          | This study |
| mprA           | ExPEC XM $\triangle mprA$ (CXG97_RS16045)                  | This study |
| nhaA           | ExPEC XM ΔnhaA (CXG97_RS00095)                             | This study |
| yga            | ExPEC XM <i>ΔygaYZH (CXG97_RS16030 - CXG97_RS16040)</i>    | This study |
| sanA           | ExPEC XM ΔsanA (CXG97_RS12690)                             | This study |
| T6SS2          | ExPEC XM (Δ <i>CXG97_RS01185-CXG97_RS01265)</i>            | This study |
| rnf            | ExPEC XM ΔrnfABCDEG-nth (CXG97_RS09505 - CXG97_RS09535)    | This study |
| bio            | ExPEC XM Δ <i>bioABCDF (CXG97_RS04640 - CXG97_RS04660)</i> | This study |
| cre            | ExPEC XM Δ <i>creABCD (CXG97_RS26720 - CXG97_RS26735)</i>  | This study |
| Plasmid        |                                                            |            |
| pUTmini-Tn5km2 | Constructing TraDIS library                                | (6)        |

| pKD46    | Lambda red recombineering              | (7) |
|----------|----------------------------------------|-----|
| pKD3     | Template for cat                       | (7) |
| pKD4     | Template for kan                       | (7) |
| pCP20    | Eliminating antibiotic resistance gene | (7) |
| pGEN-MCS | Vector for complementation             | (8) |

Table S4 Oligonucleotide primers used in this study

| Primer          | Sequence                                                                               |
|-----------------|----------------------------------------------------------------------------------------|
| TraDIS-F        | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGCACTTG<br>TGTATAAGAGTCAG    |
| TraDIS-R        | CAAGCAGAAGACGGCATACGAG                                                                 |
| <i>∆rml</i> -F  | AAGCAGCGTTACGTGATCTTTCCCTGCTATATAAGGTCAATTATATTATTGTTAATGCGTGTGTAG<br>GCTGGAGCTGCTTCGA |
| ⊿rml-R          | TTAATCAAATCTCGAGCAGTCTATTTCACAGTATGCTCTCTGGCTATATGGAATAAAAAACATATG<br>AATATCCTCCTTAG   |
| <i>rml</i> -F   | CAGCGTTACGTGATCTTTCC                                                                   |
| <i>rml</i> -R   | ACGGCAGTGAAGATTCGTAG                                                                   |
| <i>∆neu-</i> F  | GGAACACAACAACTGCCAACATAATATATATATATATATA                                               |
| ⊿neu-R          | AAGACCTATAGTGGTTACATTCCAATATTATGCCTTGGAAATATTTAACTGAGACATATCCATATG<br>AATATCCTCCTTAG   |
| neu-F           | GTGAGCGCGTCATTTATGTG                                                                   |
| neu-R           | TTGGCTGGTGGATTTCAAGG                                                                   |
| <i>∆mprA</i> -F | ATTTACTTTATTATCACTGTCGTTACTATATCGGCTGAAATTAATGAGGTCATACCCAAGTGTAG<br>GCTGGAGCTGCTTCGA  |
| <i>∆mprA</i> -R | TGCGATGCTGGCCAGTCATTTTTTCTTTTATAAATCTGGATTTTTGAGCGAGATGACGCGCATATG<br>AATATCCTCCTTAG   |
| <i>mprA</i> -F  | ACACGCAGCATTATCATCCC                                                                   |
| mprA-R          | GCGCTCATATTGTTCTCCAC                                                                   |

| <i>∆nhaA</i> -F         | CGATGATTCGTGCGGGGTAAAATCGTGAAAACGATCTATTCACCTGAAGAGAAATAAAAAGTGT   |
|-------------------------|--------------------------------------------------------------------|
|                         | AGGCTGGAGCTGCTTCGA                                                 |
| ⊿nhaA-R                 | TTTCTCTCCCTGATAACAATGAAAAGGGAGCCGTTTATGGCTCCCCAGTACATCGTCCTGCATAT  |
|                         | GAATATCCTCCTTAG                                                    |
| nhaA-F                  | TCTCGCTGATGGCGCAATTC                                               |
| nhaA-R                  | CTGCCCGGTAATGGTTTGTG                                               |
| <i>∆yga</i> -F          | ACATCCGCTATTATTGATTTCCAGCTTAATCATCACCTGATGAACAAAAATAATGACTAAGTGTAG |
|                         | GCTGGAGCTGCTTCGA                                                   |
| <i>∆yga-</i> R          | ATAGTAACGACAGTGATAAATAAAGTAAATGTATTGTTTTAGAAAAATGATTCTTGTGGGCATATG |
|                         | AATATCCTCCTTAG                                                     |
| yga-F                   | GCTGGCGCGTCTTATCATAC                                               |
| yga-R                   | TGCAAAGACGGGTCAGAAGG                                               |
| <i>∆sanA</i> -F         | TGCGCAAAACCAGCGGGTAAAGTAGCCTGATGGAAATTTTCCTTAGATCGAGTCTCCTGCGTGT   |
|                         | AGGCTGGAGCTGCTTCGA                                                 |
| Asan A P                | AACAAAATATCGGGATAAGGAAAAAAACGGCAACGACAAAAAACTGCTGTACATCCATAACAT    |
| <i>∆sanA</i> -R         | ATGAATATCCTCCTTAG                                                  |
| sanA-F                  | AACCAGCGGGTAAAGTAGCC                                               |
| sanA-R                  | TTCGCTCGCCAGACATACAC                                               |
| ∕\rnf-F                 | CTGTTGTCGCCTGCTCTGGATTAACGGATAATAGGCGGCTTTTTTATTTCAGGCCGAAAAGTGTA  |
|                         | GGCTGGAGCTGCTTCGA                                                  |
| $\Lambda$ read <b>D</b> | ATGTTTTAAAAGAGGATAAAGAAAGGTTATGAATGGGGTAATCGGTGTTACCCCTGATCTCATAT  |
| ⊿rnj-к                  | GAATATCCTCCTTAG                                                    |
| <i>rnf</i> -F           | GTCGCCTGCTCTGGATTAAC                                               |
| <i>rnf</i> -R           | GCCACAGCATCGTGATCTTG                                               |

| <i>∆cre</i> -F        | CAATATGTTATTTACCGTGACGAACTAATTGCTCGTGTAATAGATAAAAATGGTAACGATGTGTAG |
|-----------------------|--------------------------------------------------------------------|
|                       | GCTGGAGCTGCTTCGA                                                   |
| <i>∆cre</i> -R        | ATCGGCTTTACCACCGTCAATAAAAACGGCGCTTTTTAGCGCCGTTTTTATTTTTCTACCCATATG |
|                       | AATATCCTCCTTAG                                                     |
| cre-F                 | AACAACGAGCACCTGACATC                                               |
| cre-R                 | GGTGAAGGTTATCGCTTCTG                                               |
| <i>∆bio-</i> F        | ATGAACCCTCCTTTCTTGTTTGCAGAAAGTGTAGCCAGAAACCCTCACGCTGACTTCCCGGTGT   |
|                       | AGGCTGGAGCTGCTTCGA                                                 |
| ⊿bio-R                | GTTAAATTGCAGTCAATCGGAGACGCGATCTCGCTCACAATTTAACCAAGCACAGGATGACATA   |
|                       | TGAATATCCTCCTTAG                                                   |
| bio-F                 | GAAACCCTCACGCTGACTTC                                               |
| bio-R                 | CCTGGGCAATTCCCACATTC                                               |
| <i>∆T6SS2-</i> F      | TAATGTTAAATTGCCTTTTTAAAATATAACAATAATGCAGATGAAAGACTCCCTGGTAACGTGTA  |
|                       | GGCTGGAGCTGCTTCGA                                                  |
| <i>⊿T6SS2-</i> R      | CACAAATGGTGATTCACAGGCGTATAAAGCAAATACAATCACCATGTTTTATATCCTGCACATATG |
|                       | AATATCCTCCTTAG                                                     |
| <i>T6SS2</i> -F       | CAGCCTTGATGTGGCAGAAC                                               |
| <i>T6SS2</i> -R       | GGGCATGAGCACTACCTGTC                                               |
| $C \triangle mprA$ -F | CCGGAATTCGTTTCGTGCCCACACTGGTC                                      |
| C∆mprA-R              | CGCGGATCCCGCGTTAGCTCATCGCTTCG                                      |
| C∆nhaA-F              | CCGGAATTCTGTCAAAGAGCGCGGTGTGG                                      |
| C∆nhaA-R              | CGCGGATCCTCGTCCTGTCAAACTGATGG                                      |
| pGEN-F                | GGCACTTGCTCACGCTCTG                                                |

pGEN-R

GTGGTCACGCTTTTCGTTGG

- Ma J, Bao Y, Sun M, Dong W, Pan Z, Zhang W, Lu C, Yao H. 2014. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun doi:<u>https://doi.org/10.1128/iai.01769-14:IAI</u>.
- Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. 2007. The genome sequence of avian pathogenic Escherichia coli strain O1: K1: H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228-3236 doi:<u>https://doi.org/10.1128/jb.00537-07</u>.
- Mobley H, Green D, Trifillis A, Johnson D, Chippendale G, Lockatell C, Jones B, Warren J. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281-1289
- Teng C-H, Cai M, Shin S, Xie Y, Kim K-J, Khan NA, Di Cello F, Kim KS.
  2005. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 73:2923-2931 doi:<u>https://doi.org/10.1128/iai.73.5.2923-2931.2005</u>.
- 5. Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, Li G, Wannemuehler Y, Nolan LK. 2010. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun 78:3412-3419 doi:<u>https://doi.org/10.1128/iai.00347-10</u>.

- Li G, Laturnus C, Ewers C, Wieler LH. 2005. Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun 73:2818-2827 doi: <u>https://doi.org/10.1128/iai.73.5.2818-2827.2005</u>
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences 97:6640-6645 doi:https://doi.org/10.1073/pnas.120163297.
- Jiang F, An C, Bao Y, Zhao X, Jernigan RL, Lithio A, Nettleton D, Li L, Wurtele ES, Nolan LK. 2015. ArcA Controls Metabolism, Chemotaxis and Motility Contributing to the Pathogenicity of Avian Pathogenic E. coli. Infect Immun doi:<u>https://doi.org/10.1128/iai.00312-15:IAI</u>.