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Supplementary Note 1: Limitations of PDF/CDF fitting 

One of the single-step approaches to characterize motion is fitting a PDF or CDF over the histogram 

of displacements. For diffusive processes, it is known that displacements per time step follow the 

Rayleigh distribution: 
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with displacements 𝑑 per time step 𝜏 and 𝜎 = √2𝐷𝜏 for Brownian motion in one dimension (because 

displacements are considered instead of coordinates). These distributions can be fit over the 

displacement histogram of the data to get an estimate for 𝐷. For example, this can be done for 

simulated two-state diffusive data (with 𝐷slow = 0.1𝜇𝑚2/𝑠 and 𝐷fast = 1.0𝜇𝑚2/𝑠) using the lmfit 

package in Python (Figure S1a,b). PDF and CDF fitting lead to quite accurate estimations of 𝐷 for this 

simulated data that is purely diffusive. Even though tools based on PDF or CDF fits are a robust way 

to separate populations of diffusing molecules, they will not give accurate results for other types of 

motion or for an unknown number of subpopulations. As an example, fitting two subpopulations to 

three-state simulated data (𝐷 = 1.0µ𝑚2/𝑠 for the fast state, 𝐷 = 0.1µ𝑚2/𝑠 for the slow state, and 

𝐻 = 0.1, 𝜂 = 0.3 for the immobile state) does not give accurate results (Figure S1c,d). Moreover, 

PDF and CDF fitting does not provide any information about mobility switching of particles. 

 

 

 

 

 



 

Figure S1. Example of PDF (left) and CDF (right) fits on displacement histograms for a, b: simulated 

two-state diffusion data with 𝐷𝑠𝑙𝑜𝑤 = 0.1𝜇𝑚2/𝑠 and 𝐷𝑓𝑎𝑠𝑡 = 1.0𝜇𝑚2/𝑠 and c, d: simulated three-

state data with 𝐷 = 1.0µ𝑚2/𝑠 for the fast state, 𝐷 = 0.1µ𝑚2/𝑠 for the slow state, and 𝐻 = 0.1, 

𝜂 = 0.3 for the immobile state. 

  



Supplementary Note 2: Limitations of MSD-based analysis 

Most methods traditionally used in biological applications of single particle tracking are based on 

mean square displacements (MSD): 
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where 𝑛 = 0, 1, 2, …, and 𝜏 is the data acquisition time interval, 𝑁 is the number of available 

windows for the given 𝑛, and 𝑥 and 𝑦 are coordinates. For pure diffusion, exhibiting Brownian 

motion (BM) in two dimensions (2D), it holds that: 

MSDBM(2D) = 4𝐷𝜏 

with diffusion constant 𝐷. Because of this known relationship between MSD and 𝜏, the plot of MSD 

versus 𝜏 will be a straight line and the diffusion constant can be determined from the slope of the 

line, which is equal to 4𝐷. Therefore, by fitting a straight line through the MSD measurements of 

every trajectory, an approximation of the diffusion constant of that trajectory can be calculated. The 

values of the logarithm of the diffusion constants of each particle trajectory can subsequently be 

plotted in a histogram to see if there are distinguishable populations (the logarithmic scale is used to 

magnify the distinction between peaks). This can for instance be done for a BRCA2 dataset (Figure 

S2), resulting in two observable peaks in the MSD histogram. A large drawback of this method is that 

trajectories that switch between mobility classes are being treated as if they exhibit only one type of 

motion, leading to an inaccurate estimation of 𝐷 for each mobility class. Additionally, this method 

does not take into account motion types that are not diffusive. 

  



 

Figure S2. An example of a histogram showing the frequency of diffusion constants that were 

estimated per BRCA2 trajectory using MSD on a logarithmic scale. There seem to be two populations: 

one with a higher diffusion constant and one with a lower diffusion constant. The red dotted line 

indicates the splitting point.  

  



Supplementary Note 3: Long short term memory network 

Long short term memory networks (LSTMs) are sophisticated recurrent neural networks that can 

selectively “remember” some past events and “forget” others over (iteration) time 𝑡 (Figure S3). 

Besides a hidden output state ℎ𝑡, LSTMs also maintain a cell memory state 𝐶𝑡 that allows the 

network to keep track of what is important to remember and what to forget. This idea is realized by 

gates that can selectively let information through. These gates are the forget gate 𝑓𝑡, the input gate 

𝑖𝑡 and the output gate 𝑜𝑡. By using these gates, LSTMs manage to get only relevant information to 

pass through, enabling them to learn long-term dependencies. 

 

Figure S3. Schematic representation of an LSTM network unit. Neural network layers are shown in 

orange, point-wise operations are shown in purple. Red blocks with 𝑊 indicate weight matrices that 

are trained. ℎ: hidden state, 𝑥: input, 𝑡𝑎𝑛ℎ: hyperbolic tangent, 𝜎: sigmoid, 𝐶: cell memory state, 𝑓: 

forget gate, 𝑖: input gate, �̃�: potential cell state update value and 𝑜: output gate. 

  



Supplementary Note 4: DL-MSS does not detect redundant clusters 

 

 

Figure S4. Even though the proposed version of DL-MSS is trained with three states of mobility, this 

does not mean that the method will always detect three clusters irrespective of the dataset being 

analyzed. When a certain mobility type is not present, this cluster will not appear. a, b: The 

classification result of DL-MSS on two-state simulated data (Online Methods) corresponds with the 

ground truth, no immobile cluster is detected. c, d: DL-MSS accurately finds three mobility clusters 

for three-state simulated data (Online Methods). 

  



Supplementary Note 5: DL-MSS is able to detect extra clusters 

 

 

Figure S5. DL-MSS is able to pick up extra clusters. a: A network was trained with two-state simulated 

data and applied to  three-state data (Online Methods). It is clear that there are two clusters present 

in the slow class. b: The slow cluster can be split into separate clusters in a simple way using Gaussian 

fitting. However, to get accurate results for tracklets that switch between immobile and slow (or 

even between immobile and fast), a network that was trained with three states needs to be applied. 

c: A network that was trained with three-state data yields the same type of pattern, but the clusters 

are more well-defined. 

  



Supplementary Note 6: Examples of trajectory classification 

 

Figure S6. Examples of trajectory classification by the LSTM network on simulated data (with ground 

truth available). Travelled distances of the particle are shown per time point for a hundred frames, 

along with the predicted class and the real class. Note: classification mistakes are mainly made at the 

ends of tracklets, meaning that tracklets are seldom broken up by wrongly classified states.  



Supplementary Note 7: Regions in moment scaling spectrum analysis 

 

 

Figure S7. Regions in the moment scaling spectrum. An 𝑆𝑀𝑆𝑆 = 0.5 represents pure diffusion, 0 <

𝑆𝑀𝑆𝑆 < 0.5 represents restricted motion and 0.5 < 𝑆𝑀𝑆𝑆 < 1.0 represents more directed motion. 

Some visual examples of different types of trajectories are shown on the right of the spectrum. 

  



Supplementary Note 8: Use of 𝑫 as an invariable measure (irrespective of moment order 𝒑) 

In the main text, clustering of tracklets is done in 𝑆𝑀𝑆𝑆-𝐷 space, where 𝑆𝑀𝑆𝑆 indicates the type of 

motion and 𝐷 is used to distinguish between “faster” and “slower” motion. Intuitively, it might seem 

strange to use this measure, which characterizes diffusion specifically and is traditionally calculated 

using the second order moment only. Here it is shown that the diffusion constant is invariant over 

the moment order and can be used as a measure for subdiffusive (immobile) tracklets as well. 

 

First of all, the diffusion constant can also be calculated from other moments. The moments 𝜇𝑝 can 

be calculated as 
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Rayleigh distributed, where 𝜎2 = 2𝐷𝜏 is the variance (𝐷 diffusion constant, 𝜏 time step). This integral 

can be solved analytically to obtain  
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Here, Γ(n) = (n − 1)! is the gamma function. Finally, this result can be rearranged to obtain a 

formula for 𝐷 as a function of 𝑝: 
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When 𝐷 is plotted against 𝑝 for simulated three-state data, it becomes clear that the 𝐷 is practically 

constant over 𝑝 (Figure S8). Moreover, the diffusion constant is also constant for the immobile class, 

demonstrating that in combination with 𝑆𝑀𝑆𝑆, 𝐷 can indeed be used as a measure to distinguish 

between fast diffusive, slow diffusive and immobile tracklets. 

 



 

Figure S8. Diffusion constant 𝐷 versus moment order 𝑝 for different states in simulated data.  

𝐷 is practically constant over 𝑝. 

  



Supplementary Note 9: Effect of tracklet size on clustering in 𝑺𝑴𝑺𝑺-𝑫 space 

 

 

Figure S9. Effect of tracklet size (𝐿) on the location in 𝑆𝑀𝑆𝑆-𝐷 space (in three-state simulated data). 

Smaller tracklets deviate more from the center of their corresponding cluster than larger tracklets. 

For easier and more accurate determination of mobility parameters, only tracklets of 𝐿 ≥ 10 are 

used for clustering. 

  



Supplementary Note 10: Runtimes of the DL-MSS software 

Table S1. Runtimes for different parts of the DL-MSS method on all datasets used in this paper. All 

times are given in the format hours : minutes : seconds. Run on 1.8-2.4 GHz Intel i7 CPU with 8 GB 

RAM. 

Dataset 
Initialization & 

importing model 
Data loading Classification Total 

BRCA2 -IR 

00:02:00 

00:01:42 00:00:36 00:04:18 

BRCA2 +IR 00:02:28 00:00:49 00:05:17 

H2B 00:01:21 00:00:21 00:03:42 

NLS 00:07:35 00:00:37 00:10:12 

H2B (Spot-On) 02:28:05 00:02:18 02:32:23 

CTCF (Spot-On) 00:42:21 00:01:05 00:45:26 

Sox2 (Spot-On) 00:29:09 00:00:57 00:32:06 

3 x NLS (Spot-On) 00:28:14 00:00:34 00:30:48 

Average 00:32:37 00:00:55 00:35:32 

  



Supplementary Note 11: Examples of additional property analysis and visualization 

The output of DL-MSS analysis is not limited to the type of results shown in the main text of this 

paper. This section shows some examples of additional data analysis and visualizations. 

 

Firstly, the results of classification by the deep learning network can be used to calculate transition 

probabilities between the different classes of mobility (Figure S10).  

 

 

Figure S10. Diagrams of transition probabilities for all eight datasets mentioned in this paper. F = 

fast, S = slow, and I = immobile. 

 

Secondly, depending on the research question, it may be interesting to know the mean dwell time of 

the particle in a certain state (Table S2). These dwell times can be derived only from those segments 

of the trajectories between any two successive points of switching between different motion types 

(the inner tracklets). This is because it is not known how long a particle was in the given motion state 

before entering or after leaving the field of view. Therefore, trajectories with less than two switch 

points, and the trajectory segments up to the first and after the last switch point (the outer 

tracklets), must be ignored. Even though this implies not all data can be used, the mean dwell times 

computed from the inner tracklets still provide useful information to compare different datasets. 

One thing that stands out when comparing the dwell times of the datasets used in this paper is that 

the Spot-On datasets have much shorter dwell times, probably due to the fact that the acquisition 

speed of the datasets (time step of 5 ms) is much faster than our in-house datasets (time step of 30 

ms). For higher acquisition speeds, the probability to detect switches in type of mobility is larger, as 

switches might be “missed” when a lower acquisition speed is used. 



 

Thirdly, it is possible to calculate the fraction of timepoints spent in each state (Table S2). This gives 

yet another measure that makes it easier to compare different datasets. 

 

Table S2. Mean dwell times in each state and fraction of timepoints spent in each state for all eight 

datasets mentioned in this paper.  

Dataset 
Mean dwell times [ms] Fraction of timepoints 

Fast Slow Immobile Fast Slow Immobile 

BRCA2 -IR 141.8 165.4 359.0 0.26 0.30 0.44 

BRCA2 +IR 137.4 165.0 376.4 0.21 0.26 0.53 

H2B   56.8   89.9 284.6 0.01 0.05 0.94 

NLS-Halo 326.0 155.4 255.9 0.81 0.11 0.08 

H2B (Spot-On)   13.9   12.7   17.4 0.06 0.09 0.85 

CTCF (Spot-On)     9.7   14.3   15.4 0.09 0.18 0.73 

Sox2 (Spot-On)     9.5   14.3   15.0 0.20 0.21 0.59 

3 x NLS (Spot-On)     9.5   15.2   14.6 0.57 0.16 0.27 

 

 

Finally, visualizations in single cells could be useful, especially for biological applications. For instance, 

in the example of BRCA2 it would be useful to see if there are certain regions in the cell where BRCA2 

is predominantly immobile, as this could indicate regions where there is more DNA damage to repair. 

These type of patterns can be uncovered by studying the distribution of different types of mobility 

inside the cell (Figure S11). For instance, tracklets can be colored by class (Figure S11b) or the density 

of displacements of different mobility types can be represented as a heat map (Figure S11c,d,e). 

 



 

Figure S11. Single cell visualizations of DL-MSS results for a cell where BRCA2 was tracked. a: 

Fluorescence microscopy image of a cell, where every bright spot represents a fluorescently tagged 

BRCA2 protein (note: this is a snapshot, the location of the spots changes over time). b: Visualization 

of fast, slow and immobile tracklets inside the cell for the entire duration of imaging. c, d, e: Heat 

maps of displacements in fast/slow/immobile states, where a higher color intensity indicates more 

displacements in that state in a certain area. Pixelsize is 0.1 µm. 

  



Supplementary Note 12: Uncovering tracking deficiencies using DL-MSS 

DL-MSS can reveal inconsistencies in tracking by showing clusters with a deviating type of mobility. 

The first case that made this ability clear was a dataset of H2B trajectories that were tracked using 

settings optimized for BRCA2 tracking. For H2B trajectories, it is expected that nearly all trajectories 

exclusively exhibit the immobile class. When a scatterplot in 𝑆𝑀𝑆𝑆-𝐷 space was made for whole 

trajectories instead of tracklets (Figure S12a), there appeared an extra cluster that was faster than 

the immobile cluster (higher 𝐷), and even more confined (lower 𝑆𝑀𝑆𝑆). The scatterplot for the 

segmented tracklets (Figure S12b) showed that even though most tracklets were classified as 

immobile or slow, there were some unexpected fast tracklets as well. This was a sign that the 

trajectories in the strange additional clusters mainly consisted of immobile tracklets with only a few 

steps of faster, confined motion.  

 

Revision of the H2B trajectories obtained from microscopy data indicated that some spots were 

wrongly linked from one time frame to another creating large displacements that should not be 

there, a problem that could be solved by adjusting the tracking parameters. After this adjustment, 

the strange cluster nearly disappeared (Figure S12c). The same effect can also be simulated by 

introducing a bigger displacement every few time frames ("big skips"), for example in pure diffusion 

(Figure S12d). This gives the same type of extra cluster for whole trajectories as the H2B molecules 

before adjustment of tracking parameters. Overall, this result indicated that DL-MSS analysis can 

help identifying defects in tracking. 



 

Figure S12. DL-MSS can be used to detect mistakes in tracking settings. a, b: Initial tracking with 

parameters optimized for BRCA2 resulted in an extra cluster of immobile tracklets with a few large 

displacements. a: Results for whole trajectories. b: Results for segmented tracklets.  c: Adjustments 

of parameters resulted in a reduction of the extra cluster. d: The extra cluster can also be simulated 

by inserting a “big skip” every few time frames, in this case for diffusive motion. 

  



Supplementary Note 13: Simulation examples 

 

 

Figure S13. Examples of how data can be simulated with any desired 𝑆𝑀𝑆𝑆 and 𝐷 using Hurst 

component 𝐻 and scaling factor 𝜂.  

  



Supplementary Note 14: Bidirectional versus unidirectional networks 

 

 

Figure S14. Using a bidirectional network increases the performance of both ends of the window as 

well as in the middle compared to only forward and only reverse networks. Hidden states from the 

forward and the reverse pass can be combined in several ways: by concatenation, summing, 

averaging or multiplication. These different bidirectional methods all perform similarly and are 

subject to statistical variance. For the method proposed in the main text, concatenation was chosen 

for the combination of hidden states as it is the most "unbiased" and intuitive option, where the 

network can learn how to combine the hidden states in the best possible way. 

  



Supplementary Note 15: Data representation for input network 

 

Figure S15. For every displacement fed into the network, a feature vector is provided containing the 

displacement 𝑑 (calculated as 𝑑𝑡 = √(𝑥𝑡 − 𝑥𝑡−1)2 + (𝑦𝑡 − 𝑦𝑡−1)2 ), the coordinates flanking the 

distance and some additional average displacements surrounding 𝑑, indicated as �̅�1 and �̅�2. 

  



Supplementary Note 16: Choice of number of hidden units and window size 

 

 

Figure S16. Examples of combinations of the number of hidden units and the window size that can be 

used, with corresponding accuracies on training and test sets. Color indicates the accuracy (see 

colorbar). For experiments, 200 hidden units were used in combination with a window size of 25 

(indicated with blue squares). This combination was chosen because it gave very high accuracy 

without overtraining and does not require extensive computational power. 

 


