1	The Landscape of Multiscale Transcriptomic Networks and
2	Key Regulators in Parkinson's Disease
3	Wang <i>et al</i> .
4	

5 Supplementary Note 1

We evaluated the conservation between the MEGENA modules and those from the traditional 6 Weighted Gene Co-expression Network Analysis (WGCNA). A total of 24 WGCNA modules 7 with at least 20 genes were identified (Supplementary Fig. 3a and 3b). We found that 75 of the 8 9 90 MEGENA modules were significantly enriched in the WGCNA modules while all the 24 WGCNA modules were significantly enriched in the MEGENA modules at cFET p < 0.0510 (Supplementary Fig. 3c and Supplementary Data 7). Therefore, 15 modules were unique to the 11 MEGENA network. For examples, M576, which was significantly associated with regulation of 12 action potential, was only identified by MEGENA. More importantly, MEGENA provides more 13 attractive features far beyond the simple clustering analysis offered by WGCNA such as 14 identification of the hierarchical structures of modules, sparsification of dense correlations and 15 determination of key regulators. Such features enable generation of explicit network models and 16 17 thus provide more biological insights than simple presentation of gene clusters. As shown in Supplementary Fig. 3c, many WGCNA modules were dissected into high resolution MEGENA 18 modules with clear network topology. For example, the turquoise and blue modules in WGCNA 19 20 were significantly enriched in multiple branches of MEGENA modules, which were associated with distinct biological functions (Supplementary Fig. 3c and Supplementary Data 5). 21 Additionally, the cell type specificity analysis showed that the oligodendrocyte-enriched M12 22 23 branch in MEGENA (Supplementary Fig. 3e) was not identified by WGCNA (Supplementary Fig. 3d). Taken together, MEGENA provided more coherent and functionally relevant modules 24 with high resolution topological network structures and clearly defined key regulators for 25 downstream analyses. 26

35 covariates such as gender and then merged into a combined dataset including both PD cases and controls. The combined data from the PD cases were used for the co-expression network 36 construction and causal network inference. The modules identified in the co-expression network 37 of PD were intersected with the DEG signatures of PD and other PD related gene signatures such 38 as PD GWAS genes and the known PD pathway genes for prioritization. The cell-type specific 39 marker signatures were also used for characterizing cell type specificity of the modules. We also 40 constructed a Bayesian causal network for each module. Key regulators for each module were 41 identified by both the respective MEGENA subnetwork and Bayesian network. Finally, the key 42 43 regulators of the module most associated were prioritized for experimental validation. (b) Principle component analysis (PCA) plot before and after z-score transformation for the PD 44 datasets. Colors indicate samples from different studies. 45

48 Supplementary Figure 2. Comparison of the DEGs and the BCGs in the SN of the PD

49 **patients.** (a) Gene expression of the BCGs in the dataset GSE49036 with Braak stage

represented on the top of the heatmap and the DEGs in the meta-analysis of the rest 7 datasets on

51 the side. (**b**) Venn diagram of the BCGs and the DEGs mentioned in (**a**).

52

54 Supplementary Figure 3. Comparison of the modules from MEGENA and those from

55 WGCNA. (a) Parameters chosen to fit the scale free topology in WGCNA. (b) The heatmap of

57	those by MEGENA. The sunburst plot showed the hierarchical organization of the MEGENA
58	modules and their enrichment for the WCGNA modules which were represented by different
59	color names. A MEGENA module (Mxx) in a color (Y) other than white indicates a significant
60	conservation between Mxx and the WGCNA module represented by the color Y. (d) Projection
61	of WGCNA module enrichment with cell type markers onto MEGENA sunburst plot. Cell type
62	specificity of each WGCNA module was first determined by FET test with cell type markers and
63	then matched to its overlapping MEGENA modules identified in (c) , e.g, the microglia-enriched
64	yellow module in WGCNA was significantly overlapped with the M9 and M19 branches in
65	MEGENA. Therefore, these two branches were colored in lightgreen for microglia. (e)
66	MEGENA module enrichment for cell type specific marker signatures. Red box highlighted the
67	additional information MEGENA provided compared to WGCNA.

70 Supplementary Figure 4. The meta-analysis of the top 5 key regulators in M4. Standardized

- postmortem PD and control brains in 8 human PD studies were shown here. A fixed effect model
- vas applied to *RALYL*, *BASP1*, *STMN2* and *SYNGR3* based on heterogeneity test while a random
- refrect model was applied to ANKRD34C. All data are present as Mean SMD [95% CI].

Supplementary Figure 5. Prioritization of top candidates for experimental validation. (a) Stmn2 expression was found enriched in TH+ neurons (www.dropviz.org). Data are present as Mean±95% CI. (b) STMN2 expression was found enriched in TH+ neurons in the brain slices in 3-month-old wildtype C57BL/6J mice. (c) Locomotor activity measured in open bench assay is impaired in *Syngr*3^{-/-} mice. N=554 for control, N=14 for *Syngr*3^{-/-}; two-sided Student's *t*-test for two group comparison, t=4.7332, df=15.259, p=2.5E-04. (d) Immunostaining of VMAT2-

- 82 pHluorin, RFP tag of *Stmn2*-shRNA plasmid and TH of recorded non-TH neurons treated with
- 83 scrambled or *Stmn2*-shRNA. (e) Quantification of bouton sizes in scrambled and *Stmn2*-shRNA
- treated non-TH neurons. Two-sided Student's *t*-test for two group comparison. t=1.8464, df=8,
- p-value=0.11. Data in (c) and (e) are present as Mean±SEM.
- 86

Supplementary Figure 6. Knockdown efficiency of Stmn2-shRNA construct and AAV. (a)

89 The efficiency of two *Stmn2*-shRNA constructs was tested by western blot in N2A cells. Two

90	biological replicates in each experiment and three independent experiments were performed. (b)
91	The densitometry quantification of Stmn2 shRNA knockdown efficiency. One-way ANOVA and
92	TukeyHSD test were used to compare the differences between groups. F=43.27, df=2, p=5.9E-
93	07; Stmn2KDA-Scrambled, p=1E-06; Stmn2KDB-Scrambled, p=6E-06. (c) Immunostaining of
94	STMN2 in the scrambled-treated and Stmn2 knockdown midbrain cultures. Construct B was
95	used in all following experiments and the knockdown efficiency was consistent with what was
96	observed in N2A cells. (d) The densitometry quantification of Stmn2 shRNA knockdown
97	efficiency in cultured midbrain neurons. Two-sided Student's <i>t</i> -test, t= 3.4909, df = 19, p-value =
98	0.0024. (e) The knockdown efficiency of <i>Stmn2</i> -shRNA AAV at 72 hours post-infection in N2A
99	cells. (f) Western blot of the midbrain tissues isolated from mice received either scrambled AAV
100	or Stmn2 knockdown AAV. (g) Densitometry quantification of STMN2/actin in the control and
101	<i>Stmn2</i> knockdown group. N=6 in each group, two-sided Student's <i>t</i> -test. t =3.1763, df = 10, p-
102	value = 0.009881 . (h) Viral spreading after AAV injection in SN. All data are present as
103	Mean±SEM.

106 Supplementary Tables

107 Supplementary Table 1. Human postmortem brain studies of PD in public domain

					Pre-	
GEO ID	Brain Region	Control	PD	Platform	Processed	Note
				Affymetrix Human Genome		
GSE8397	lateral substantia nigra	7	9	U133A Array	RMA	
				Affymetrix Human Genome		
GSE7621	substantia nigra	9	16	U133 Plus 2.0 Array	MAS5	
				Affymetrix Human X3P		
GSE24378	substantia nigra	9	8	Array	MAS5	
				Affymetrix Human Genome		3 control samples were removed as
GSE20292	substantia nigra	15	11	U133A Array	MAS5	outliers
				Affymetrix Human Genome		
GSE20141	substantia nigra	8	10	U133 Plus 2.0 Array	MAS5	
				Affymetrix Human Genome		
GSE20163	substantia nigra	9	8	U133A Array	MAS5	
				Affymetrix Human Genome		
GSE20164	substantia nigra	5	6	U133A Array	MAS5	
				Affymetrix Human Genome		5 iLBD samples were excluded for
GSE49036	substantia nigra	8	15	U133 Plus 2.0 Array	GC-RMA	DEG and network analysis
	total	70	83			

108

110 Supplementary Table 2. Module ranking

module	Score.rank	CellType	CellType.adj.p	ALL	DN	UP	GWAS.Catalog	hsa05012
M4	25.1023531	neu	6.17E-28	7.90E-26	2.69E-29	1	1	1
M116	22.66096449	neu	3.00E-18	2.18E-23	7.35E-23	1	1	1
M2	18.66254901	neu	2.93E-06	1.97E-15	1.16E-24	1	1	0.00011
M30	18.58976303	neu	1.15E-22	2.57E-19	1.08E-22	1	1	1
M562	16.14588077	neu	3.79E-11	7.15E-17	2.72E-15	0.036445	1	1
M1001	13.94404107	NA	1	1.14E-14	2.10E-15	1	1	1
M475	13.57204579	neu	7.86E-18	2.68E-14	3.52E-17	1	1	1
M114	12.43914742	neu	2.44E-11	3.64E-13	1.25E-12	1	1	1
M557	12.43790895	neu	4.32E-10	3.65E-13	1.45E-13	1	1	1
M160	12.36364902	NA	1	4.33E-13	6.38E-15	1	1	1
M615	11.26171502	NA	1	5.47E-12	2.70E-13	1	1	1
M117	11.17682777	neu	0.026989276	6.66E-12	9.88E-15	1	1	1
M32	10.82206669	NA	1	3.26E-08	6.77E-10	1	1	0.000462
M628	8.540822829	NA	- 1	1.02E-05	1.95E-07	1	- 1	0.000281
M165	5.955588198	NA	1	6.48E-05	4.48E-07	1	1	0.017099
M1010	5.052757604	NA	1	0.000518	8.61E-05	1	1	0.017099
M37	3.632234436	NA	1	0.000233	3.39E-06	1	1	1
M1146	3 285726316	NA	1	0.000233	1.67E-05	1	1	1
M733	2 650169463	NA	1	0.000310	0.001671	1	1	1
M/86	2.030107403	NA	1	0.002258	0.001071	1	1	1
M688	2.373232649	NA	1	0.002072	0.000233	1	1	1
M072	2.240880700	NA	1	0.005664	0.000945	1	1	1
M972	2.240880700	NA	1	0.003004	0.00020	1	1	1
M402	2.10/128500	NA	1	0.000000	0.000528	1	1	1
M492	2.093689411	NA	1	0.00800	0.000528	1	1	1
M35	2.085031205	NA	1	0.00821	0.000305	1	1	1
M35	2.0/1964352	NA	1	0.008475	0.001242	1	1	I 0.017147
M161	1.765810921	NA	1	1	1	1	1	0.017147
M34	1.765810921	NA		1	1	1	1	0.01/14/
MI6	1.353818955	Ol1	4.12E-19	0.044277	1	2.98E-10	1	1
M9	0	mic	2.31E-69	1	1	1	1	1
M213	0	mic	3.59E-41	1	1	1	l	1
M5	0	ast	4.27E-37	1	1	1	1	1
M701	0	mic	1.11E-31	1	1	1	1	1
M20	0	end	1.31E-28	1	1	1	1	1
M140	0	ast	2.05E-24	1	1	1	1	1
M13	0	oli	5.10E-22	1	1	0.000518	1	1
M214	0	mic	7.79E-15	1	1	1	1	1
M19	0	mic	9.62E-13	1	1	1	1	1
M355	0	mic	3.16E-09	1	1	1	1	1
M12	0	oli	2.05E-07	1	1	1	1	1
M259	0	oli	1.07E-06	1	1	1	1	1
M797	0	oli	1.25E-06	1	1	1	1	1
M1089	0	oli	1.60E-06	1	1	1	1	1
M260	0	oli	0.00951514	1	1	1	1	1
M118	0	neu	0.019373572	1	1	1	1	1
M10	0	NA	1	1	1	1	1	1
M11	0	NA	1	1	1	0.006507	1	1

M128	0	NA	1	1	1	1	1	1
M14	0	NA	1	1	1	1	1	1
M15	0	NA	1	1	1	1	1	1
M168	0	NA	1	1	1	1	1	1
M169	0	NA	1	1	1	1	1	1
M173	0	NA	1	1	1	1	1	1
M186	0	NA	1	1	1	1	1	1
M193	0	NA	1	1	1	1	1	1
M21	0	NA	1	1	1	1	1	1
M210	0	NA	1	1	0.019243	1	1	1
M217	0	NA	1	1	1	1	1	1
M22	0	NA	1	1	1	1	1	1
M228	0	NA	1	1	0.017528	1	1	1
M229	0	NA	1	1	1	1	1	1
M231	0	NA	1	1	1	1	1	1
M234	0	NA	1	1	1	1	1	1
M239	0	NA	1	1	1	1	1	1
M24	0	NA	1	1	1	1	1	1
M25	0	NA	1	1	1	1	1	1
M250	0	NA	1	1	1	0.002644	1	1
M26	0	NA	1	1	1	1	1	1
M27	0	NA	1	1	1	1	1	1
M277	0	NA	1	1	1	1	1	1
M28	0	NA	1	1	1	1	1	1
M29	0	NA	1	1	1	1	1	1
M305	0	NA	1	1	1	1	1	1
M424	0	NA	1	1	1	1	1	1
M425	0	NA	1	1	1	1	1	1
M428	0	NA	1	1	1	1	1	1
M460	0	NA	1	1	1	1	1	1
M461	0	NA	1	1	1	1	1	1
M463	0	NA	1	1	1	1	1	1
M50	0	NA	1	1	1	1	1	1
M572	0	NA	1	1	1	1	1	1
M576	0	NA	1	1	1	1	1	1
M6	0	NA	1	1	0.001303	1	1	1
M639	0	NA	1	1	1	1	1	1
M7	0	NA	1	1	1	1	1	1
M747	0	NA	1	1	1	1	1	1
M786	0	NA	1	1	1	4.24E-05	1	1
M917	0	NA	1	1	1	1	1	1
M945	0	NA	1	. 1	1	1	1	1

id	MEGENA	BN	comb.rank.score	DEG
RALYL	3	1	0.002403	DN
BASP1	2	5	0.00226	DN
ANKRD34C	4	3	0.002222	DN
STMN2	5	6	0.001998	DN
SYNGR3	1	11	0.001989	DN
FGF13	8	7	0.001746	DN
DDC	11	2	0.001743	DN
NELL2	6	16	0.001447	DN
NUDT11	7	18	0.001302	DN
SLC6A3	17	9	0.001083	DN
SYN1	14	24	0.000758	NA
FBXW4	12	27	0.00072	UP
RUSC1	19	19	0.000698	NA
CNTNAP1	18	30	0.000441	NA
MAST2	20	31	0.000362	NA
PIP5K1C	29	45	8.61E-06	NA
NUDT11 SLC6A3 SYN1 FBXW4 RUSC1 CNTNAP1 MAST2 PIP5K1C	7 17 14 12 19 18 20 29	18 9 24 27 19 30 31 45	0.001302 0.001083 0.000758 0.00072 0.000698 0.000441 0.000362 8.61E-06	DN DN NA UP NA NA NA

113 Supplementary Table 3. M4 hub ranking

Region	Class	Cluster	Ralyl Expr	Ralyl P-Val	Basp1 Expr	Basp1 P-Val	Ankrd34c Expr	Ankrd34c P-Val	Stmn2 Expr	Stmn2 P-Val	Syngr3 Expr	Syngr3 P-Val
Substantia							_					
Nigra	Neuron	Neuron_CA3_C1ql3 [#1]	2.56	1.2E-08	4.95	4.6E-111	0	1	3.61	0.15	2.64	0.11
Substantia												
Nigra	Neuron	Neuron_Gad2 [#3]	2.48	0	4.62	0	0.69	1.9E-85	4.56	0	2.89	0
Substantia												
Nigra	Neuron	Neuron_Th [#4]	2.20	6.3E-41	4.62	0	0.69	0.007	4.80	0	3.47	0
Substantia												
Nigra	Neuron	Neuron_Rora [#2]	1.39	0.37	4.45	1.1E-83	1.79	2.0E-19	4.16	7.1E-29	2.48	7.1E-07
Substantia												
Nigra	Polydendrocyte	Polydendrocyte_Cacng4 [#6]	1.39	0.43	4.50	1.2E-48	0	0.64	2.08	7.3E-18	1.79	0.35
Substantia	Microglia_	Microglia_Macrophage_C1qb										
Nigra	Macrophage	[#9]	0.69	0.04	3.93	0.001	0	0.63	2.08	2.9E-14	0.69	0.001
Substantia												
Nigra	Oligodendrocyte	Oligodendrocyte_Tfr [#10]	0	0	1.61	0	0	2.6E-73	1.61	0	0.69	0
Substantia												
Nigra	Oligodendrocyte	Oligodendrocyte_Mbp [#11]	0	1.1E-05	2.20	4.3E-20	0	0.43	2.08	1.5E-23	0.69	2.6E-06
Substantia												
Nigra	Endothelial	Endothelial_Flt1 [#12]	0	6.0E-75	1.39	0	0	1.9E-11	3.00	4.2E-65	0	6.0E-141
Substantia												
Nigra	Mural	Mural_Rgs5Acta2 [#13]	0	1.2E-22	1.39	2.0E-127	0	0.006	1.61	3.0E-136	0	1.1E-43
Substantia												
Nigra	Fibroblast-Like	Fibroblast-Like_Dcn [#14]	0	4.9E-07	1.95	2.6E-26	0	1	1.79	1.5E-28	1.10	4.3E-06
Substantia												
Nigra	Polydendrocyte	Polydendrocyte_Tnr [#5]	0	4.0E-18	2.64	5.1E-68	0	0.004	1.39	1.8E-112	0.69	1.5E-29
Substantia												
Nigra	Astrocyte	Astrocyte_Gja1 [#7]	0	5.4E-38	2.89	2.9E-60	0	0.002	1.39	1.6E-231	0.69	5.3E-66
Substantia												
Nigra	Ependyma	Ependyma [#8]	0	0.73	2.20	0.001	0	1	1.10	4.7E-06	0	0.041

115 Supplementary Table 4. Cell type specific expression of top regulators in adult mouse brain (<u>www.dropviz.org</u>)