SUPPLEMENTARY INFORMATION

Altered lignocellulose chemical structure and molecular assembly in *CINNAMYL ALCOHOL DEHYDROGENASE*-deficient rice

Andri Fadillah Martin^{1,2,*}, Yuki Tobimatsu^{1,*,†}, Ryosuke Kusumi³, Naoyuki Matsumoto¹, Takuji Miyamoto¹, Pui Ying Lam¹, Masaomi Yamamura¹, Taichi Koshiba¹, Masahiro Sakamoto³, Toshiaki Umezawa^{1,4,†}

¹Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan; ²Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Bogor KM 46 Cibinong Bogor 16911, Indonesia; ³Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; ⁴Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto 611-0011, Japan;

[†]Correspondence: Yuki Tobimatsu (<u>ytobimatsu@rish.kyoto-u.ac.jp</u>) and Toshiaki Umezawa (tumezawa@rish.kyoto-u.ac.jp)

List of Materials

Table S1. Growth phenotypes of wild-type and cad2 rice plants.

Table S2. Saccharification performance of wild-type and cad2 rice plants.

 Table S3. Aromatic peak assignments for HSQC NMR spectra

Table S4. Aliphatic and aldehyde peak assignments for HSQC NMR spectra

Figure S1. Morphological phenotype of wild-type and *cad2* rice plants.

Figure S2. HSQC NMR spectra of lignin-enriched cell wall samples.

Figure S3. WAXD profiles of wild-type and *cad2* rice cell wall powders.

Table 51. Growth phenotypes of wild-type (WT) and <i>cad2</i> mutant pla

Trait	WT	cad2
Plant Height ^a (cm)	107.1 ± 9.8	123.6 ±5 .2
Culm length ^b (cm)	75.8 ± 5.4	79.9 ± 1.7
Ear length (cm)	19.5 ± 1.8	19.5 ± 1.2
Tiller number	8.0 ± 1.1	9.5 ± 1.0
Ear number	7.8 ± 1.2	10.3 ± 2.2
Dry mass of culm (g)	5.2 ± 1.5	4.9 ± 0.9
Dry mass of leaf sheath (g)	5.4 ± 1.1	5.4 ± 0.8
Dry mass of leaf blade (g)	5.5 ± 0.9	4.8 ± 0.8
CWR yield of culm (%) ^c	48.5 ± 3.2	48.3 ± 3.2

Values are means \pm SD (n = 3) ^a Length from cotyledonary node to the tip of the top leaf. ^b Length from cotyledonary node to panicle base. ^c CWR, cell wall residue.

Table S2. Saccharification performance of wild-type (WT) and cad2 mutant plants

Glucose yield	WT	cad2
Per cell walls (mg/g CWR)	180.4 ± 35.4	238.4 ± 20.2*
Per glucan (mg/g glucan)	346.4 ± 72.3	471.2 ± 50.5*

Values are glucose yields after 24 h saccharification and means \pm standard deviation (SD) from individually analyzed plants (n = 3). Asterisks indicate significant differences between WT and *cad2* mutant plants (Student's *t*-test, *: p < 0.05). CWR, cell wall residue.

Labels	δ _c /δ _H (ppm)	Assignment	Note
H 2/6	127.9/7.17	C2–H2 and C6–H6 in <i>p</i> -hydroxyphenyl units	Potentially overlap with residual proteins [1]
H 3/5	ca. 116/6.8	C3–H3 and C5–H5 in <i>p</i> -hydroxyphenyl units	Overlap with G 5/6, <i>p</i>CA 3/5 and G′ 5/6
G ₂	111.2/7.05	C2–H2 in guaiacyl units	
G 5/6	ca.116/6.8,119.3/6.88	C5–H5 and C6–H6 in guaiacyl units	Overlap with H _{3/5} , G _{5/6} and G' _{5/6}
S _{2/6}	104.2/6.77	C2–H2 and C6–H6 in syringyl units	
pCA _{2/6}	130.3/7.48	C2–H2 and C6–H6 in <i>p</i> -coumarate units	
рСА _{3/5}	115.6/6.85	C3–H3 and C5–H5 in <i>p</i> -coumarate units	Overlap with H _{3/5} , pCA _{3/5} and G' _{5/6}
ρCA ₇	145.1/7.63	C7–H7 in <i>p</i> -coumarate units	Potentially overlap with residual ferulates
pCAଃ	113.8/6.36	C8–H8 in p -coumarate units	Potentially overlap with residual ferulates
, T₃	104.9/7.05	C3–H3 in tricin units	, , , , , , , , , , , , , , , , , , ,
T ₆	99.1/6.32	C6–H6 in tricin units	
T ₈	94.2/6.60	C8–H8 in tricin units	
T2'/6'	104.3/7.36	C2'–H2' and C6'–H6' in tricin units	
G' 2	111.3/7.33	C2–H2 in cinnamaldehyde-derived guaiacyl units	Potentially overlap with residual ferulates
G' 5/6	ca.116/6.8,123.3/7.12	C5–H5 and C6–H6 in cinnamaldehyde-derived guaiacyl units	Overlap with $H_{3/5}$, $G_{5/6}$, and $pCA_{3/5}$
S'2/6	107.1/7.26. 108.1/7.18	C2–H2 and C6–H6 in cinnamaldehvde-derived svringyl units	
1'7	138.3/7.41	C7–H7 in cinnamaldehvde-derived 8–O–4 units	
IV"7	152 9/7 55	C7–H7 in cinnamaldehyde end-units	
IV"s	127 1/6 81	C8–H8 in cinnamaldehyde end-units	
	.2		

Table S3. Aromatic peak assignments for solution-state 2D HSQC NMR spectra of rice cell wall and lignin samples

Measured in DMSO-*d*₆/Py-*d*₅ (4:1, v/v). Assignment was based on comparison with literature data: [1] Kim, H. et al. Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy. *Biomacromolecules*, **18**, 4184-4195 (2017). [2] Kim, H. & Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-*d*₆/pyridine-*d*₅. *Org. Biomol. Chem.* **8**, 576-591 (2010). [3] Mansfield, S.D. et al. Whole plant cell wall characterization using solution-state 2D NMR. *Nat. Protoc.* **7**, 1579-1589 (2012). [4] Zhao, Q. et al. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in *Medicago truncatula*. *Proc. Natl. Acad. Sci. USA* **110**, 13660–13665 (2013). [5] Lan, W. et al. Tricin, a flavonoid monomer in monocot lignification. *Plant Physiol.* **167**, 1284-1295 (2015). [6] Van Acker, R. et al. Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. *Plant Physiol.* **175**, 1018-1039 (2017). [7] Tarmadi, D. et al. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite *Coptotermes formosanus* Shiraki. *Sci. Rep.* **8**, 1290 (2018).

Labels	δc/δн (ppm)	Assignment	Note
methoxyl	3.72/55.7	C–H in aromatic methoxyl groups	
lα	71.9/4.99	$C\alpha$ –H α in β –O–4 units	
lβ	86.2/4.22	Cβ–Hβ in β–O–4 units	Connected to S aromatic units
	83.5/4.47	Cβ–Hβ in β–O–4 units	Connected to G aromatic units
lγ	ca. 60.2/3.72	Cγ–Hγ in β –O–4 units	γ-free
	ca. 63.9/4.32	Cγ–Hγ in β –O–4 units	γ-esterifed
llα	87.2/5.50	$C\alpha$ –H α in β –5 units	
IIβ	53.6/3.49	$C\beta$ – $H\beta$ in β –5 units	
IIIα	85.0/4.71	Cα–Hα in resinol-type $β$ – $β$ substructures	
IIIβ	53.7/3.01	C β –H β in resinol-type β – β substructures	
III'α	82.9/4.99	$C\alpha$ –H α in tetrahydrofuran-type β – β substructures	
III′β	47.5/2.69	C β –H β in tetrahydrofuran-type β – β substructures	
IVy	61.8/4.14	Cy–Hy in cinnamyl alcohol end-groups	
IV' _Y	64.3/4.79	Cγ–Hγ in cinnamyl alcohol ester end-groups	
l' 9	186.2/9.26 (I' s/9) 187.7/9.59 (I' s/9)	C9–H9 in cinnamaldehyde-derived 8–O–4 units C9–H9 in cinnamaldehyde-derived 8–O–4 units	Connected to S aromatic units Connected to G aromatic units
IV"9	193.8/9.65	C9–H9 in cinnamaldehvde end-units	
IV‴7	190.6/9.74	C7-H7 in benzaldehyde end-units	

Table S4. Aliphatic and aldehyde peak assignments for solution-state 2D HSQC NMR spectra of rice cell wall and lignin samples

Measured in DMSO-*d*₆/Py-*d*₅ (4:1, v/v). Assignment was based on comparison with literature data: [1] Kim, H. et al. Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy. *Biomacromolecules*, **18**, 4184-4195 (2017). [2] Kim, H. & Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-*d*₆/pyridine-*d*₅. *Org. Biomol. Chem.* **8**, 576-591 (2010). [3] Mansfield, S.D. et al. Whole plant cell wall characterization using solution-state 2D NMR. *Nat. Protoc.* **7**, 1579-1589 (2012). [4] Zhao, Q. et al. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in *Medicago truncatula*. *Proc. Natl. Acad. Sci. USA* **110**, 13660–13665 (2013). [5] Lan, W. et al. Tricin, a flavonoid monomer in monocot lignification. *Plant Physiol.* **167**, 1284-1295 (2015). [6] Van Acker, R. et al. Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. *Plant Physiol.* **175**, 1018-1039 (2017). [7] Tarmadi, D. et al. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite *Coptotermes formosanus* Shiraki. *Sci. Rep.* **8**, 1290 (2018).

Figure S1. Morphological phenotype of wild-type (WT) and *cad2* mutant rice plants. Plants at the ripening stage (**a**), flag leaves (**b**) and culm straw (**c**) at the heading stage, and harvested panicles (**d**) are shown. Scale bars in **a** denote 10 cm.

Figure S2. Solution-state two-dimensional short range ¹H–¹³C correlation (HSQC) NMR analysis of lignin-enriched cell wall samples from wild-type (WT) and *cad2* mutant rice plants. (**a**) Aromatic sub-regions showing signals from major lignin aromatic units. (**b**) Oxygenated-aliphatic sub-regions showing signals from major lignin side-chain units. (**c**) Aldehyde sub-regions showing signals from aldehyde units. Contours are color-coded to match with the structures displayed. Boxes labeled ×2 and ×4 represent regions with scale vertically enlarged by 2- and 4-folds, respectively.

Figure S3. WAXD profiles of wild-type (WT) and *cad2* mutant rice cell wall powder samples.