Table S1. Training dataset composition

	Toggle	Neutral	Rheostat	SNP-Possible	unknown	filtered	detailed
raw	-	-	-	-	822	-	
X-residues					820	2	undetermined amino acid X
SNP-possible	-	-	-	593	227	-	
variant effect-labeling	66	153	-	374	227	-	k-means clustering of experimental scores
manual refinement	60	147	-	374	227	12	removed: T (6), N (6)
ntModel labels	94	181	151	62	113	-	removed: T (74), N (109), R (47)
manual refinement	20	72	104	-	-	230	
funtrpTraining	80	219	104	62	113	244	Final <i>funtrpTraining</i> = 403

Detailed overview of the of training dataset composition for training of both random forest-based models in the *funtrp* pipeline. Show are the total numbers of instances remaining after the variant effect-labeling, filtering and prediction steps.

Table S2. Set of sequence-based features used to train *funtrp* random forest-based models

id	Feature	Source	Description	Parameters	Notes
1 2 3 4 5 6 7 8 9	Solvent Accessibility Secondary Structure Residue Flexibility Protein Disorder Amino Acid Residue Size Residue Charge SNP possible Conservation	PROF (*) PROF (*) PROFbval (*) MD (*) - - - - ConSurf (*)	predicted solvent accessibility (PACC) predicted helix (pH), strand (pE) or loop (pL) predicted residue flexibility (PROFbval) predicted protein disorder (MDraw) amino acids encoded as a vector of length 20 basic amino acid property (small or large) basic amino acid property (uncharged / + / -) number of possible nsSNPs (all codons) predicted conservation	default default default default NA NA NA NA default	MSAs: Big80 + PSI-Blast + MUSCLE
10	MSA Ratio	-	tractions of residue amino acid per MSA column	NA	MSAs: Big80 + PSI-Blast + MAFFT

(*) tools are applied via the PredictProtein pipeline (Yachdav et al., 2014) using a redundancy reduced sequence database. (Big80) which combines UniProt (SwissProt+TrEMBL) and PDB. Features were ranked by importance towards *funtrp* position type labels in Swiss-Prot using ReliefF; weights were rounded off (Kononenko, RobnikSikonja, & Pompe, 1996). If applicable, parameters used in feature computation are specified.

Table S3. Protein subsets for model training

Identifier	Source	Proteins <> funtrp	w/ E.C. annotation	w/o E.C. annotation
Swiss-Prot	UniProtKB/SwissProt	20,410 <> 19,501	4,273 <> 4,241	16,137 <> 15,260
TrEMBL	UniProtKB/TrEBML		9,668 <> 9,554	144,277 <> 5,254
EXPV	UniProtKB/SwissProt	1,250 <> 1,239	1,250 <> 1,239	x
PMD	PMD & (Bromberg, Kahn, & Rost, 2013)	1.224 <> 1,220	x	x

Extracted datasets used in analysis. EXPV is a subset of experimentally verified enzymes in Swiss-Prot (Mahlich, Steinegger, Rost, & Bromberg, 2018). Literature based annotations of effect (PMD database) were taken from (Bromberg et al., 2013).

Table S4. Confusion matrices of position type predictions for (A) ntModel und (B) funtrpModel

(A)			

Neutral	Toggle	Observed ↓	Neutral	Toggle	Rheostat	Observed \downarrow
140	7	Neutral	199	4	16	Neutral
9	51	Toggle	2	64	14	Toggle
			19	5	80	Rheostat

(B)

Predictions for both models are based on LOO-CV results.

Table S5. Performance of predicting position types for a Random Forest (RF) based classifier model using evolutionary conservation alone

Position Type	Sensitivity	Specificity	PPV NPV	Precision	Recall	F1	Prevalence	Detection Rate	Detection Prevalence	Balanced Accuracy
Neutral	0.66	0.87	0.75 0.81	0.75	0.66	0.70	0.38	0.25	0.33	0.76
Rheostat	0.46	0.70	0.29 0.83	0.29	0.46	0.35	0.21	0.10	0.33	0.58
Toggle	0.66	0.89	0.81 0.79	0.81	0.66	0.72	0.41	0.27	0.33	0.77

Shown are the averaged performances per class over 100 resample runs. For each run, 3000 residue positions from Swiss-Prot were resampled randomly (without replacement), selecting 1000 instances of each position type respectively. The same was repeated for the test set and a total of 300 residue positions. Position type labels were based on *funtrp* predictions. PPV = positive predictive value; NPV = negative predictive value.

		neutral	non-neutral			
Position Type	VarCards prediction	(neutral)	(mild/moderate	severe)	total per effect	total per position type
Neutral	effect no-effect	273 535	445 465	652 414	1,370 1,414	2,784
Rheostat	effect no-effect	245 191	624 198	1,412 166	2,281 555	2,836
Toggle	effect no-effect	217 63	941 94	1,813 52	2,971 209	3,180
	total Neutral	808	910	1,066		
	total Rheostat	436	822	1,578		
	total <i>Toggel</i>	280	1,035	1,865		
	total per PMD effect	1,524	2,767	4,509		

Figure S1. Distribution of experimental (DMS) variant effect scores for training datasets. Measured experimental scores extracted from DMS datasets were normalized to [0,1]. Residue positions on the x-Axis are grouped by (i) position types, (ii) way of labeling and (iii) within these groupings ordered based on increasing distribution medians. The labeling types are: variant effect-labeled, predicted with more than six experimental scores available and predicted with less than six experimental scores available.

Figure S2. Distribution of ConSurf conservation scores for *funtrp* **training dataset.** Density distributions of evolutionary conservation (ConSurf) compared between position types for the *funtro* model training dataset. ConSurf predictions scores are by default normalized such as 0 depicts the average score over the entire protein and standard devia-tion is |1|). Colors are according to position type (green =*Neutral*, blue =*Rheostat*, red =*Toggle*).

Figure S3. Average fraction of position types on per-protein basis for main E.C. classes in the entire Swiss-Prot dataset. Colors are according to position type (green =*Neutral*, blue =*Rheostat*, red =*Toggle*). Mean fractions of position types differ significantly among enzyme classes based on the standard error of the mean: 1 (N= 6.0E-04, R=6.4E-04, T=5.8E-04), 2 (N=3.7E-04, R=4.1E-04, T=2.4E-04), 3 (N=5.2E-04, R=4.2E-04, T=3.6E-04), 4 (N=9.2E-04, R=1.0E-03, T=7.6E-04), 5 (N=1.5E-03, R=1.1E-03, T=1.2E-03), 6 (N=8.9E-04, R=9.5E-04, T=9.1E-04).

Figure S4. Fractions of position types per amino acid compared by site characteristic. Comparison of fractions at catalytic sites and binding sites against the remaining residues of the respective Swiss-Prot enzymes. Colors are according to position type (green =Neutral, blue =Rheostat, red =Toggle).

Figure S5. Fractions of position types per amino acid for metal binding sites and spheres. Comparison of SaHLe spheres and residues annotated as metal binding sites within spheres vs remaining residues of the respective Swiss-Prot enzymes. Colors are according to position type (green =Neutral, blue =Rheostat, red =Toggle).

Figure S6. *funtrp* prediction scores for disordered Proteins compared within position types. Proteins in Swiss-Prot were labeled as either ordered or disordered based on MetaDisorder predictions (Methods). Residues located in disordered proteins are highlighted in yellow, those found in ordered proteins are shown in blue.

Figure S7. Distribution of position types for PMD effect annotations. PMD mild and moderate effects annotations were grouped into mild/moderate. Percentages are rounded; colors are according to position type (green =Neutral, blue =Rheostat, red =Toggle).