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Section S1. Experimental methods 

 

Section S1.1. Sample preparation 

The W(CO)6 (Sigma-Aldrich) /cavity system is prepared in an IR spectral cell (Harrick) containing two 

dielectric CaF2 mirrors separated by a 5, 12 or 25-μm Teflon spacer and filled with W(CO)6/hexane 

solution (concentration varies from 5 mM to 50 mM). The dielectric mirror has a ~96% reflectivity. 

Because the Rabi splitting (20 to 37 cm-1) is larger than the full-width-at-half-max of both cavity (~11 cm-

1) and W(CO)6 vibrational (~3 cm-1) modes, the strong coupling criteria are satisfied.  

 

Section S1.2. 2D IR spectrometer  

 

 

Fig. S1. Scheme of 2D IR experimental setup, where the inset shows the incidence of pump and probe 

IR beams. 



Two-dimensional infrared (2D IR) spectroscopy(14) is applied to investigate the light-matter interaction 

of a W(CO)6/microcavity system. The setup scheme is shown in fig. S1. 800-nm laser pulses (~35 fs, ~5 

W, 1 kHz) generated by an ultrafast Ti:Sapphire regenerative amplifier (Astrella, Coherent) are sent into 

an optical parametric amplifier (OPA) (TOPAS, LightConversion) which outputs tunable near-IR pulses. 

The near-IR pulses are converted to mid-IR pulses through a difference frequency generation (DFG) 

process by a type II AgGaS2 crystal (Eksma). After DFG, a CaF2 wedge splits the mid-IR pulse into two 

parts: the 95% transmitted part is sent into a Ge-Acoustic Optical Modulator based mid IR pulse shaper 

(QuickShape, PhaseTech)(42) and is shaped to double pulses, which forms the pump beam arm; the 5% 

reflected is the probe beam. Both pump (~ 1.1 μJ) and probe (~ 0.2 μJ) are focused by a parabolic mirror 

(f = 10 cm) and overlap spatially at the sample. The output signal is collimated by another parabolic 

mirror (f = 10 cm) at a symmetric position and is upconverted to an 800-nm beam at a 5%Mg: LiNbO3 

crystal. The 800-nm beam that comes out of the OPA passes through an 800-nm pulse shaper which 

narrows its spectrum in the frequency domain (center wavelength of 791 nm and a FWHM of 0.5 nm or 

9.5 cm-1).  

 

The pulse sequence is shown in fig. S1. Two pump pulses and a probe pulse (pulse duration of 100~150 

fs) interact with samples at delayed times (t1, t2 and t3). After the first IR pulse, a vibrational coherence is 

generated, which is converted into a subsequent state by the second IR pulse and is characterized by 

scanning t1 (0 to 6000 fs with 20 fs steps) using the mid IR pulse shaper. A rotating frame at f0 = 1583 cm-

1 is applied to shift the oscillation period to 80 fs and to make the scanning step meet the Nyquist 

frequency requirement. After waiting for t2, the third IR pulse (probe) is impinged on the sample, and the 

resulting macroscopic polarization emits an IR signal. This IR signal is upconverted by a narrow-band 

800 nm beam. The upconversion process covers the t3 time delay and the 800-nm pulse duration (full 

width at half maximum = 0.5 nm) determines the scanning length of t3. The monochromator and CCD 

(Andor) experimentally Fourier transform the upconverted signal, thus generating a spectrum along the ω3 

axis. Numerical Fourier transform of the signal along the t1 axis is required to obtain the spectrum along 

ω1. The resulting 2D IR spectra are plotted against ω1 and ω3. The t2 time delay is scanned by a 

computerized delay stage which is controlled by home-written LabVIEW programs to characterize the 

dynamic features of the system. A rotational stage is mounted on the sample stage to choose the tilt angle 

and, therefore, the wavevector of the driven polaritons. One special requirement for this experiment is that 

the rotation axis of the stage needs to be parallel to the incidence plane formed by the pump and probe 

beams. In this way, we ensure that the in-plane wavevectors, k||, of pump and probe pulses are the same. 

The particular k|| value the of pump and probe beams are determined by checking the 1D transmission 

polariton spectra of the pump and probe pulses before and after 2D IR acquisitions. 

 

Section S1.3. 3D Fourier transformation 
 

2D IR spectra at early times (t2 = 0 ~ 6 ps) show unambiguous oscillating features at the UP (see Fig. 4a) 

and LP frequencies (see fig. S7a) and their period (0.8 ps) suggests these are Rabi oscillations (~38 cm-1). 

This information provides key evidence of the coherence between the LP and the UP. To obtain the 

oscillatory part of the total 2D signal, we applied the 3D Fourier transform to the combined 2D matrices 

at different time delays. An additional frequency axis (ω2) is generated from applying FFT to the t2 axis. 

Figures S2a and S2b contains the projections of the 3D FFT of the nonlinear signal into the ω1-ω2 and ω3-

ω2, respectively. These figures clearly show features at |ω2| = 38 cm-1 (referred to as AC part), in addition 

to the non-oscillating part at ω2 ~ 0 cm-1 (referred to as DC part). The DC and AC parts can be 



disentangled by applying a frequency filter to the 3D matrix followed by an inverse Fourier transform of 

the DC and AC parts. A representative result is given in Fig. 4b of the main text. 

 

To further analyze the coherent dynamics, amplitudes of the AC part at ω1 = ωUP/ω3 = ωUP and ω1 = 

ωLP/ω3 = ωUP were extracted and plotted versus t2 (figs. S2c and S2d). The UP-UP oscillating trace 

exhibits nearly perfect dephasing dynamics and can be fitted with a single exponential giving a lifetime of 

~2 ps. Conversely, the LP-UP trace deviates from pure dephasing dynamics, possibly because the 

overtone transitions of dark reservoir modes (υ12 ~ 1968 cm-1 and υ23 ~ 1950 cm-1) perturb the LP state.  

 

 

Fig. S2. 3D FFT frequency domain (ω1-ω2-ω3) spectra. (a) View from the ω1-ω2 plane; (b) View from the 

ω3-ω2 plane; Dephasing traces of (c) cut at ω1 = ωUP and ω3 = ωUP, and (d) cut at ω1 = ωLP and ω3 = ωUP. 



Section S1.4. Nonlinear signal pump and probe power dependence 

 

 

Fig. S3. IR power dependence. (a) Pump-probe spectra at t2 = 0 ps for 12-μm polariton system; (b) LP peak 

integrated signal; (c) UP peak integrated signal. Probe power-dependence: (d) Pump-probe spectra at t2 = 0 ps 

for 12-μm polariton system; (e) LP peak integrated signal; (f) UP peak integrated signal. Both LP and UP peak 

integrated signals are proportional to pump/probe power, supported by the fitting equation shown as the insets. 

 

To figure out the scaling of the ‘polariton bleach’ signal with respect to the pump intensity, we performed 

a series of power-dependent pump-probe experiments. The self-heterodyned third order signal (ΔT) can 

be expressed as the equations as follow 



∆𝑇 = |𝑆𝑖𝑔(3) + 𝑆𝑖𝑔(1)|
2

− |𝑆𝑖𝑔(1)|
2

=  2𝑅𝑒 [𝑆𝑖𝑔(3) ∗ (𝑆𝑖𝑔(1))] + |𝑆𝑖𝑔(3)|
2

, 

𝑤ℎ𝑒𝑟𝑒 𝑆𝑖𝑔(3)~𝐸𝑝𝑢𝑚𝑝
2 ∙ 𝐸𝑝𝑟𝑜𝑏𝑒 𝑎𝑛𝑑 𝑆𝑖𝑔(1)~𝐸𝑝𝑟𝑜𝑏𝑒 . 

 

⟹ ∆𝑇 ∝ 𝐸𝑝𝑢𝑚𝑝
2 𝐸𝑝𝑟𝑜𝑏𝑒

2  + 𝑂(𝐸𝑝𝑢𝑚𝑝
4 𝐸𝑝𝑟𝑜𝑏𝑒

2 ) 

 

Since (Epump)
2 and (Eprobe)

2 are proportional to the pump and probe power, respectively, the signal (ΔT) is 

proportional to the power of both IR beams whenever higher-order response can be neglected. From the 

pump-power-dependent results (fig. S3), it is clear that both LP and UP peak integrated signal intensities 

decrease as pump or probe power reduces. The integrated LP and UP peak intensities are roughly 

proportional to the pump or probe power (fig. S6b, S6c, S6e and S6f). The linear relations between LP 

and UP peak-integrals and IR power have been shown as the insets of the corresponding sub-figures. 

 

Section S2. Supporting results 

 

Section S2.1. Transmission and transient pump-probe spectra of uncoupled systems 

 

 

Fig. S4. Linear transmission and pump-probe spectra of uncoupled W(CO)6/hexane systems with 12- 

and 25-μm cavity longitudinal lengths. Results of control experiments for uncoupled W(CO)6/hexane 

systems with both 12 and 25-micron cell longitudinal lengths at similar concentration: (a) Linear transmission 

spectra; (b) Pump-probe spectra. 

 

We performed the control experiments with uncoupled W(CO)6/hexane systems with 12 and 25 μm 

spacers under similar conditions (concentration, IR power, etc). The transmission in fig. S4a shows 

agreement with Beer’s law, the absorption is doubled when the cavity longitudinal length is switched 

from 12-μm to 25-μm and the ratio between the absorption of 12-μm and 25-μm uncoupled systems is 



2.03. In fig. S4b, the pump-probe signal of 25-μm is roughly twice as large as the 12-μm pump-probe 

signal. Based on the fundamental peak (the only which is negative, around 1983 cm-1), the ratio between 

25-micron and 12-μm peak intensity is about 2.16, while the 1→2 overtone peak (at roughly probe 

wavenumber of 1968 cm-1) intensity ratio is 1.82. Both ratios are close to 2. Therefore, this result suggests 

that the 3rd order signal (pump probe) is not enhanced relative to the linear signal (absorption) when the 

sample length is reduced by a factor of 2. 



Section S2.2. 2D IR and transient pump-probe spectra and 2D-IR spectral cuts 

 

Fig. S5. Pump-probe and 2D IR spectra and their spectral cuts at LP/UP pump frequencies. 2D IR 

spectra of the (a)12 m and (b) 25 m systems; Integrated pump-probe spectra of the 12 m (c) and (d) the 25 

m systems. Note that the color bars of (a) and (b) indicate that 12-micron system has significantly stronger 

nonlinearities than 25-micron system. 2D IR Spectral cuts of the 12 and 25 μm systems for comparison at (a) 

ωpump =ωLP; (b) ωpump=ωUP. t2 = 0 ps 



Section S2.3. 2D IR spectra for various molecular concentrations 

 

 

Fig. S6. 2D IR spectra of the 25-μm system at t2 = 0 ps with various concentrations. (a) 40 mM; (b) 24 

mM;  



Section S2.4. Early-time dynamics of 2D IR spectral cuts 

 

 

Fig. S7. Early-time dynamics of 2D IR spectral cuts at ω1 = ωLP/ωDark and AC/DC components of LP/UP 

cuts between 0 and 6 ps. Early-time dynamics of 2D IR spectral cuts at (a) ω1=ωLP and (c) ω1=ωDark between -

2 to 7 ps. AC and DC differential transmission spectral cuts at (b) ω1=ωLP, and (d) ω1=ωDark at t2=0.8 ps. 

Dynamics of (e) DC-component at ω1=ωUP, (f) AC-component at ω1=ωUP, (g) DC-component at ω1=ωLP, and 

(h) AC-component at ω1=ωLP. 

 



Figures S7a and S7c show the waiting-time (t2) dynamics of spectral cuts at ω1=ωLP and ω1=ωDark, 

respectively. We also employed the 3D-FFT (Sec. S1.3) to extract the AC and DC components of each of 

the mentioned spectral cuts. In figs. S7b and S7d, we show the AC and DC signal contributions to 

nonlinear signal obtained with ω1=ωLP and ω1=ωDark at t2 = 0.8 ps, respectively. 

 

Compared to the dynamics of the UP-cut (Fig. 4a), the waiting-time dependent signal measured at the LP-

cut (fig. S7a) has significantly stronger integrated DC component, although the oscillatory bleach feature 

is still obvious (fig. S7b). The relative phase difference between the LP-AC (fig. S7a) and the UP-AC 

(Fig. 4b) signals is due to the heterodyne detection system which allows us to extract the relative phase 

between the signals obtained with LP and UP pumping. The enhanced integrated DC signal for an LP-

resonant pump is likely a result of the perturbation of the LP by overtone transitions of W(CO)6 dark 

modes, especially that with ω12 ~ 1968 cm-1, which is nearly resonant with the LP (ωLP = 1964 cm-1), and 

thus perturbs the polariton response even at early-times. When the pump frequency equals that of the bare 

molecule (dark mode), the oscillatory part of the nonlinear signal is almost negligible (fig. S7c). After 

Fourier filtering, it does show a very weak AC component (fig. S7d), which may be a result of spectral 

overlap with the oscillating polariton spectral features. As discussed in the main text and Sec. S3.2, 

|UP⟩⟨LP| and |LP⟩⟨UP| coherence states are required for the observation of Rabi oscillations (AC part). 

Due to spectral congestion and overlaps, the tail of the AC component of LP and UP peaks can also 

induce dark mode spectral features to “oscillate” weakly. Nevertheless, as clearly shown in the 3D IR plot 

(figs. S2a and S2b), the Rabi oscillation peaks near ω2=38 cm-1 only show up at LP and UP transitions, 

but not at dark mode resonances. This provides strong evidence that dark modes are not involved in Rabi 

oscillation. In summary, the weakly oscillatory features in the dark mode dynamics, and the stronger 

contamination of the LP response by dark mode transitions indicate the UP spectral cuts are the most 

suitable for the analysis of pure vibrational polaritonic response, as performed in the main text.  

 

The early-time dynamics of AC and DC parts of both LP and UP spectral cuts are shown in fig. S7e, f, g 

and h. The DC parts (fig. S7e and g) of both LP and UP cuts show the expected peak-shifts which evolve 

continuously. The AC parts (fig. S7f and h), on the other hand, are mostly composed of a convolution of 

oscillations with dephasing traces (see SI section 1.3 Three-dimensional Fourier Transform for more 

details). By comparing the DC and AC dynamics, it is clear that the oscillating part which contributes 

significantly to the ‘polariton bleach’ signal would dephase within approximately 3 ps, matching with the 

cavity lifetime. Conversely, the DC parts continue to evolve even after 3 ps. Those dynamic traces further 

support our statements. 

 

Section S2.5. Two-component spectral fitting of absorptive pump-probe spectra 
 

In this section, we show that the measured nonlinear signals obtained from the LP and UP (25 μm system) 

2D IR spectral cuts at zero waiting-time cannot be reproduced with a simple spectral fitting based on 

previous studies(6, 13, 14).  



 

Fig. S8. Spectral fitting of 25-μm systems with t2 = 0 ps at ω1 = ωLP and ω1 = ωUP. Spectral fitting of 25-

μm systems with t2 = 0 ps at (a) ω1=ωLP and (b) ω1=ωUP. The fitting model is composed of an absorptive 

feature on the LP (due to the interference of the LP with dark overtone transitions) and the derivative lineshape 

at the LP/UP frequencies (due to Rabi splitting contraction). The results indicate that the combined effect of 

dark mode overtone absorption and Rabi splitting contraction is insufficient to accurately model the 

experimental features at early times.  

 

A two-component spectral fitting was applied to the LP/UP spectral cuts of 2D-IR spectrum of 25-μm 

system at t2 = 0 ps, using the following equation 

 

𝑆𝑝𝑒𝑐𝑓𝑖𝑡(𝑥) =  {𝛼1 [𝑎0𝑒
−(

𝑥−𝑏0
𝑐0

)
2

]}
(1)

+ {𝛼2 ∑ [𝑎𝑖𝑒
−(

𝑥−𝑏𝑖
𝑐𝑖

)
2

− 𝑎𝑖𝑒
−(

𝑥−𝑏𝑖+Δ𝑥
𝑐𝑖

)
2

]

2

𝑖=1

}

(2)

       (1) 

 

In this equation, terms (1) and (2) represent spectral components corresponding to dark mode overtone 

response and the Rabi splitting contraction, respectively. The probed frequency is given by x, and a, b and 

c are the amplitude, resonance frequency and width of a Gaussian peak; Δx is the amount of peak-shift 

and α1 and α2 are the coefficients which modulate the compositions of the two components.  



Table S1. Parameters of two-component fitting. 

States of 

Spectral 

Cuts 

Parameters for Gaussian Peaks 

Compositions 

Polariton 

Peak-shift 

(cm
-1

) 
Amplitudes 

Resonance       

Frequencies 

(cm
-1

) 

Widths 

(cm
-1

) 

a1 a2 b1 b2 c1 c2 α1 α2 Δx 

UP 17550 20000 1960.5 2001 8.1 7.7 0.1 0.5 10 

LP 17550 20000 1960.5 1998 8.1 7.7 0.1 1 10 

 

From figs. S8a and S8b, it is clear the spectral cuts from the experimental data cannot be fitted with only 

the two components mentioned in equation (6). Hence, an additional component that represents the 

polariton-bleach behavior would be needed.  

 

Section S3. Theory 

 

Section S3.1. Scaling of polariton nonlinearities 
 

In this section, we show that when the effects of dark modes can be disregarded, the dominant coherent 

polariton nonlinear interactions induced by quartic couplings (the most relevant interactions at low 

energies for homogeneous and isotropic systems like the molecular solution studied here) leads to inverse 

scaling with respect to the cavity longitudinal length due to polariton delocalization. We first demonstrate 

explicitly the inverse dependence with cavity longitudinal length and molecular concentration of 

vibrational polariton nonlinearities induced by local mechanical and electrical molecular anharmonicity. 

The discussion is subsequently generalized to include more general types of molecular nonlinearities, 

including the nonlinear dephasing mechanism which we propose as the source of the polariton bleach 

effect. The discussion in this section is limited to polariton-polariton interactions relevant at short times 

relative to their lifetime 

 

Let a planar infrared cavity consisting of two ideal parallel metal mirrors with surface area S separated by 

longitudinal length L host N molecules homogeneously distributed across the volume V = SL. The TE and 

TM modes of the cavity are obtained by using periodic boundary conditions for the electromagnetic field 

along the x and y directions and metal-dielectric interface boundary conditions from Maxwell equations. 

For the sake of simplicity, we retain in what follows only a single TE cavity photon band with modes 

parametrized by k = (kx,ky) having resonance frequency ω(k)(43). The vibrational frequency and position 

of the molecule i in the set {1,...,N} are given by ωi and ri = (xi,yi,zi), respectively. The light-matter 

interaction is treated within the dipole approximation in the rotating-wave-approximation (only 

interactions which conserve the excitation-number are included)(43). In the absence of anharmonicity, the 

Hamiltonian of the hybrid system is given by 

 

                                                        (2) 



where ai and b(k) are the molecular and photonic annihilation operators, 𝑔𝑖𝒌 is the coupling constant for 

the interaction between molecule i and cavity mode k and 𝑔𝑖𝒌 is its complex conjugate. The detailed form 

of 𝑔𝑖𝒌 can be found elsewhere(44). For our purposes, all that is relevant is that 

 

                                                                                                                                      (3) 

 

where k · ri = (kx,ky) · (xi,yi). Disregarding the inhomogeneous broadening of the molecular vibrations (i.e., 

supposing all molecular frequencies are equal to ω0), the polariton modes of this Hamiltonian can be 

obtained straightforwardly performing a canonical transformation of the local molecular operators into a 

collective basis adapted to the form of the light-matter interaction given above(8). Specifically, the 

following bright molecular operators are defined 

 

                                                                                                    (4) 

 

In this model, there exists also Nd = N −Nk dark modes (where Nk ∝ S is the total number of cavity photon 

modes included in the effective description of the electromagnetic modes) which form the complement to 

the bright operators a(k) in the space of annihilation operators(8). In the collective basis, the quadratic 

part of the Hamiltonian is written as 

 

  (5)  

 

where the operators αd are the annihilation operators of dark modes. The bright normal modes of the 

above Hamiltonian are given by the lower (LP) and upper polaritons (UP) with annihilation operators 

written as(8) 

 

αUP(k) = cos(θk/2)a(k) + sin (θk/2)b(k)                                                 (6) 

 

αUP(k) = −sin(θk/2)a(k) + cos(θk/2)b(k)                                                (7) 

 

where the specific form of the mixing angles θk and polariton frequencies ωLP(k) and ωUP(k) are 

inessential for our discussion. 



In order to describe polariton nonlinearities we introduce molecular anharmonicity to the hybrid cavity 

Hamiltonian. At low energies (i.e., when only the first few excited-states are probed) only cubic and 

quartic nonlinearities are relevant(22) Retaining only those interactions that preserve the excitation 

number operator (consisting of the sum of the photonic and phononic number operators) and disregarding 

nonlocal interactions or interactions with the environment, the nonlinear part of the Hamiltonian can be 

written generically as7 

 

                                                        (8) 

 

where ∆ parametrizes the mechanical anharmonicity (deviation from harmonic energy spectrum of a 

single vibration), η quantifies deviations of the ith molecule vibrational transition dipole function from 

linearity with respect to displacement of the molecular mode from its equilibrium position. In the hybrid 

cavity normal-mode basis, HI can be written as a sum of polariton-polariton, polariton-dark mode, and 

dark-dark interactions. The polariton-polariton interactions take the following form 

 

                                (9) 

 

where the pi’s correspond to either LP or UP and 𝑉𝑝1𝑝2𝑝3𝑝4
𝐿 (𝒌1, 𝒌2, 𝒌3,𝒌4) are the coupling constants for 

the corresponding polariton-polariton interactions. The nonlinear coupling arising from mechanical 

anharmonicity satisfies the following relations 

 

 

                                                          

                                                                                                    (10) 

 

where δq is the discrete delta function and c∆ is a constant independent of particle number (in the 

thermodynamic limit). To obtain the last expression we used that the number of molecules is macroscopic, 

and these are distributed randomly inside the cavity so that the dominant c ontribution to the 

polariton-polariton interaction preserves the in-plane wave-vector (a similar result would have been 

obtained if we had assumed the wave-vector is not conserved, but only excitations with k close to zero are 

driven by the pump). For the electrical anharmonicity term we find a similar result 

 

                                                                                    (11) 

 

where η(k1 +k2 −k3) is a density-dependent coupling constant of the order of the Rabi splitting. 



 

Further simplification arises from noting that the experimental nonlinear response is measured at k ≈ 0, 

and therefore the dominant contributions will have all ki close to zero. Taking for simplicity only the 

(dominant) couplings between polaritons with the same wave-vector, the total nonlinear coupling can be 

written as as ∑ 𝐹(𝒌)/𝑁𝒌 , where 𝐹(𝒌) is independent of particle number. In the continuum limit of the 

photonic system, it follows that ∑ 𝐹(𝒌)/𝑁 =𝒌 (2𝜋)−2𝑆 ∫ 𝑑𝒌 𝐹(𝒌)/𝑁. Given that N = ρSL where ρ is the 

molecular density, we find that under the discussed assumptions the nonlinear polariton-polariton 

coupling constant is inversely proportional to ρLz. It follows that, for a fixed molecular density, increasing 

the cavity length, leads to an inversely proportional reduction in the dominant nonlinear polariton-

polariton interactions. Similarly, for a fixed cavity longitudinal length, an increase in the molecular 

density reduces the magnitude of nonlinearities of the hybrid microcavity system.  

 

While the results given above derive from the assumed nonlinearities in Eq. (8), they also apply to 

nonlinear interactions of the vibrational modes with other molecular degrees of freedom (bath modes). In 

the case of the W(CO)6 solution, the bath contains, in addition to low-frequency intra and intermolecular 

modes, the carbonyl asymmetric stretch doublet corresponding to the vibrational modes orthogonal to that 

which interacts with the TE cavity photon. These modes are nearly-degenerate with the dark transitions, 

and significantly enhance the phase space for the decay of the two-body states |𝐿𝑃(𝒌), 𝑈𝑃(𝒌)⟩. This 

process is favored by the fact that the energy of this state is close to twice the energy of the bare 

fundamental transition when k is such that the cavity photon is resonant with the molecular system. Thus, 

|𝐿𝑃(𝒌), 𝑈𝑃(𝒌)⟩ is particularly sensitive to nonlinear dephasing mechanisms. The rate of decay of 

|𝐿𝑃(𝒌), 𝑈𝑃(𝒌)⟩ into bath modes via resonant incoherent scattering is also proportional to 1/N as can be 

seen from the following argument. The perturbative rate of decay is proportional to 

∑ 𝜌(𝐹) |⟨𝐹(𝑖)|𝑉𝑆𝐵
(𝑖)

|𝐿𝑃, 𝑈𝑃⟩|
2

 𝑁
𝑖=1 , where the wave-vector dependence of the polariton states is implicit, i 

labels each molecule, 𝑉𝑆𝐵
(𝑖)

 denotes the interaction between the ith molecular vibration and the bath modes, 

and 𝐹(𝑖) labels arbitrary bath states with density 𝜌(𝐹) which interact only with the ith molecule and that 

have approximately the same energy as the sum of the LP and UP energies. In the molecular basis, this 

term is proportional to ∑
𝜌(𝐹)

𝑁2
|⟨𝐹(𝑖)|𝑉𝑆𝐵

(𝑖)
|2(𝑖)⟩|

2
 𝑁
𝑖=1 =

𝜌(𝐹)

𝑁
|⟨𝐹(𝑚)|𝑉𝑆𝐵

(𝑚)
|2(𝑚)⟩|

2

, where m refers to an 

arbitrary molecule, and the last equality was obtained by assuming all molecules have equal matrix 

elements for their nonlinear interaction with the bath (mean-field approximation). It follows that nonlinear 

homogeneous dephasing induced by system-bath couplings also lead to the inverse scaling of 

nonlinearities with respect to the number of molecules, thus verifying the generic character of this 

polaritonic feature.  

 

We conclude by highlighting that these considerations show that the inverse scaling with 1/N of the 

vibrational polariton nonlinear response is fundamentally a consequence of the delocalization of the 

polariton across the molecular ensemble. Therefore, while polariton nonlinearities are intrinsically due to 

molecular anharmonicity, the electromagnetic coherence fundamentally affects the character of these 

nonlinearities by allowing them to become extended across the size of the optical cavity, and give the 

striking size-dependent effects observed by our experiments. 



Section S3.2. Feynman diagrams for the AC signal 
 

In fig. S9, we show the dominant Feynman pathways(22) (diagrams) that generate the polariton four-

wave-mixing (AC) signals (as measured by our experiments) oscillating with the Rabi frequency as a 

function of delay time t2 (see Sec. S2.4). Each row on the l.h.s of fig. S9 is labeled by a diagonal or cross-

peak in the 2D IR spectrum schematically represented on the r.h.s. To each peak in the AC part of the 2D 

spectrum, there exists two main diagrams associated to probe-induced stimulated emission (SE) and 

excited-state absorption (ESA). In the SE pathways, the probe pulse stimulates polariton emission, and 

the final state is the ground |𝑔⟩. On the other hand, ESA induces transitions from polariton states |𝐿𝑃⟩ or 

|𝑈𝑃⟩ into two-body excitations |𝐿𝑃, 𝑈𝑃⟩. The amplitudes of the ESA and SE pathways have opposite sign. 

In harmonic systems, these amplitudes also have the same intensity, and therefore, there is no nonlinear 

signal. The nonlinear AC response measured in our experiment is an indication of the lack of cancellation 

between the ESA and SE pathways represented in fig. S9. Physically, as discussed in the main text, a 

nonlinear dephasing mechanism operates on the |𝐿𝑃, 𝑈𝑃⟩ state which prevents destructive interference 

between the amplitudes of the SE and ESA pathways, ultimately giving rise to finite nonlinear AC signals 

which last for 4 − 5 ps. 



 

Fig. S9. Feynman diagrams representing the oscillating nonlinear responses (AC components) in each 

region. Feynman diagrams(22) representing the oscillating nonlinear responses (AC components) in each 

region: A) ω1 = ωUP and ω3 = ωLP; B) ω1 = ωLP and ω3 = ωLP; C) ω1 = ωUP and ω3 = ωUP; D) ω1 = ωLP and ω3 = 

ωUP. 

 

Section S3.3. Phenomenological simulation of polariton bleach 

The classical expression for the steady-state transmission intensity of a Fabry-Perot (FP) cavity 

containing an isotropic, homogeneous, linear absorptive medium characterized by a frequency-dependent 

linear susceptibility is given by(1, 32, 45) 

 

                                𝑇𝑐(𝜈) =
𝑇2𝑒−𝛼(𝜈)𝐿/𝑐𝑜𝑠(𝜃)

1+𝑅2𝑒−2𝛼(𝜈)𝐿/𝑐𝑜𝑠(𝜃)−2𝑅𝑒−𝛼(𝜈)𝐿/𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠[4𝜋𝑛(𝜈) 𝑐𝑜𝑠(𝜃)𝜈]
                           (12) 



where ν is the probed frequency, θ = 0.1 rad is the incidence angle, R = 0.94 and T = 0.06 are the 

reflectance and transmittance of the employed FP cavity mirrors around the fundamental resonance 

frequency of the absorptive medium ν1 =1983 cm-1, L is the cavity longitudinal length (in the performed 

simulations, L = 0.00025 cm or 0.000125 cm), n(ν) is the real part of the cavity mirror complex refractive 

index and α(ν)  = 4𝜋 𝑗(𝜈)𝜈, where j(𝜈) is the imaginary part of the complex refractive index. As 

mentioned in the main text, by changing the homogeneous linewidth of fundamental mode of W(CO)6, 

(Γ1), the real and imaginary parts of the refractive index (n, j) are modulated accordingly (Eqns. (12)  −

(14)(1)). This effect causes variation of the transmission intensity (Tc). Specifically, a larger molecular 

homogeneous linewidth implies enhanced polariton broadening. The oscillator strength of the molecular 

vibrations is denoted A1. This quantity is proportional to the density of molecular absorbers. Adjusting A1 

does not lead to the purely absorptive polariton bleach feature, instead, it causes polariton resonance shifts 

in frequency, i.e. Rabi splitting contraction. Thus, the semiclassical simulation results indicate that 

changes of Γ1, but not A1, cause polariton bleach features. The following are the quantities which are 

required for the computation of the transmission with Eq. (12) 

 

   𝑛(𝜈) = √𝜀1+√𝜀1
2+𝜀2

2

2
 ,   𝑗(𝜈) = √−𝜀1+√𝜀1

2+𝜀2
2

2
                                        (13) 

 

where ε1 and ε2 are the real and imaginary parts of dielectric constant, expressed as 

 

        𝜀1 = 𝜀𝑖𝑛𝑓 + ∑ [
𝐴𝑖(𝜈𝑖

2−𝜈2)

(𝜈𝑖
2−𝜈2)

2
+(Γ𝑖𝜈)2

]2
𝑖=1 ,     𝜀2 = ∑ [

𝐴𝑖Γ𝑖𝜈

(𝜈𝑖
2−𝜈2)

2
+(Γ𝑖𝜈)2

]2
𝑖=1              (14) 

 

where we set the background dielectric constant at infinite frequency to be 𝜀𝑖𝑛𝑓 = 2.0135, νi are the 

frequencies of the 0 → 1 and 1 → 2 asymmetric stretch transitions of W(CO)6 given by ν1 = 1983 cm-1, 

and ν2 = 1968 cm-1, and the Γi are the linewidths of the corresponding vibrational modes (Γ1 and Γ2 are 3.0 

and 4.5 cm-1, respectively). The oscillator strength A1 = 3200 cm-1
 is chosen so the linear transmission 

resonance frequencies match the experimentally observed with incidence angle θ = 0.0873 rad, while A2 

is neglected, since the fundamental mode has the largest population and is in resonance with the cavity 

photon. 

 

Section S3.4. Cavity coherence volume 
 

We estimate the coherence volume of the optical cavity by using the following equation(46) 

 

  𝑉eff = 𝑆eff ∙ 𝑙 =
𝜋𝑙2𝜆𝑣

1−𝑅
                                                           (15) 



where  𝑉eff and 𝑆eff are the effective volume and area of a specific cavity mode, 𝑙 is the cavity 

longitudinal length (12 and 25 μm), 𝜆𝑣  is the wavelength of vibrational transition (5042.86 nm in our case, 

corresponding to 1983 cm-1) and R is the reflectivity of the DBRs which is 96% in the experiments.  

 

Using Eq. (7), we find the coherence volumes of the 12 and 25 μm systems are 0.57×105 and 2.5×105μm3, 

respectively, i.e., the cavity with longest length has a coherence volume that is approximately four times 

greater than that with the shortest. 
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