Supplementary Figures

Comparative genomics reveals a novel genetic organization of the *sad* cluster in the sulfonamidedegrader *'Candidatus* Leucobacter sulfamidivorax' strain GP

Ana C. Reis^{a,b}, Boris A. Kolvenbach^b, Mohamed Chami^c, Luís Gales^{d,e,f}, Conceição Egas^{g,h},

Philippe F.-X. Corvini^b, Olga C. Nunes^{a*}

^aLEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

^bInstitute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132 Muttenz, Switzerland

^cBioEM lab, Biozentrum, University of Basel, CH-4058 Basel, Switzerland

^di3S – Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal

eIBMC – Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal

^fICBAS – Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal

^hCenter for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal

* Corresponding author: Olga C. Nunes: tel.: +351 225081917; e-mail address:

Supplementary Figure 1 – Fluorescence microscopy composite images of DAPI-stained cells of the microbial consortium (blue) and (A) cells hybridized with the modified ActORD1 FISH probe (stains strain GP, 5' fluorophore: FAM, green, sequence: 5'- CACCAGGAATTCCAATCTCC-3', original probe accession number: pB-1931, reference: [1]) or with (B) cells hybridized with Alca2 FISH probe (stains strain PR1; 5' fluorophore: Cy3, orange/red; sequence: 5'- CATCTTTCTTTCCGAACCGC-3'; probe accession number: pB-2127, reference: [2]).

Fluorescence in situ hybridization (FISH) was performed as previously described [3] with a few modifications. To analyze strain GP (A) the cells of the microbial consortium were fixed with ethanol for 16 h at 4 °C. Prior to hybridization the cells were pre-treated with achromopeptidase (Sigma) at 60 U/ml for 60 seconds at 37 °C. While, to analyze *Achromobacter denitrificans* PR1 cells (B) the microbial consortium was fixed with 4 % (v/v) formaldehyde (Sigma) for 3 h at 4 °C and no pre-treatment was performed. Probe concentration was 3 or 10 ng/µl for strain PR1 and GP, respectively. Formamide (Sigma) concentration was 25 or 50% (v/v) for PR1 and GP, respectively.

Supplementary Figure 2 –Electron micrographs of negatively stained *Achromobacter denitrificans* PR1 showing the presence of peritrichous flagella (FG).

Supplementary Figure 3 – Cladogram of the 16S rRNA gene inferred from maximum likelihood estimation with MEGA6 with the best-fitting model: TN93+G+I [4]. *Leucobacter* spp. strains sequenced in this study are marked with an asterisk, and sulfonamide degraders are shown in bold. The tree was rooted at the outgroup and visualized with FigTree [5]. The scale bar represents the number of expected substitutions per site. Bootstrap values were inferred from 1000 replicates, values above 70% are shown at the corresponding nodes.

Supplementary Figure 4 – Presence/absence heatmap representation and dendrograms of the 12,998 orthologs gene clusters found in the pangenome of *Leucobacter* spp. and strain GP obtained with the GET_HOMOLOGUES package [6]. Each column represents a different gene cluster which can be absent (white) or present (blue) in each strain. As paralogs were included in the analysis, some clusters have more than one homolog per genome, and these are shown in darker blue.

Supplementary Figure 5 – Visualization of the reads of the strain GP's MAG on the Interactive Genomics Viewer (IGV) [7] mapping to the reference genome and annotations of *Leucobacter chironomi* strain DSM 19883^T (assembly accession number GCA_000421845.1). This region from strain DSM19883^T (ATXU0100005.1:1..268438) contains the genes from the purine *de novo* biosynthetic pathway and the porphyrin and chlorophyll metabolism pathway (left to right): phosphoribosylformylglycinamidine synthase subunit PurQ (accession no. WP_017883592.1, locus tag H629_RS0106495); porphobilinogen synthase HemB (accession no. WP_024356487.1, locus tag H629_RS0106505); porphobilinogen deaminase HemC (accession no. WP_084705356.1, locus tag H629_RS14980); uroporphyrinogen decarboxylase HemE (accession no. WP_024356489.1, locus tag H629_RS0106525); glutamyl-tRNA reductase HemA (accession no. WP_024356490.1, locus tag H629_RS0106530).

Supplementary Figure 6 – Visualization of the reads of the strain GP's MAG on the IGV [7] mapping to the reference genome and annotations of *Leucobacter chironomi* strain DSM 19883^T (assembly accession number GCA_000421845.1). This region from strain DSM19883^T (ATXU01000008.1:1..186096) contains the genes related to amino acid metabolism and from the glutathione and *L*-cysteine ABC transporter pathway (left to right): leucine--tRNA ligase (accession no. WP_017793981.1, locus tag H629_RS0110150); alpha/beta hydrolase (accession no. WP_010837840.1, locus tag H629_RS011055); thiol reductant ABC exporter subunit CydC (accession no. WP_024357158.1, locus tag H629_RS0110165); thiol reductant ABC exporter subunit CydD (accession no. WP_024357159.1, locus tag H629_RS0110170).

Supplementary Figure 7 – Heatmaps representing amino acid identity (BLASTp) of the SadABC (a, b and c) complex and YceI transporter (d) among isolates from the *Microbacterium* genus (strains BR1, C488, SDZm4 and CJ77), *Arthrobacter* genus (strains D2 and D4) and strain GP.

(a) Acyl-CoA dehydrogenase, N-terminal (Pfam Acyl-CoA_dh_N)

(a) Ach con ach a ober	50,11	
SadA [Strain GP]	50	HEHAPDSDRDRRVSEVVIDALEELDLEOVCTPRRYGGEOSNERTLEELTA 99
SadA [Microbacterium sp BR1]	50	HEHAPDSDRDRRVSEVVIDGLEELDLEOVCTPRRYGGEOSNERTLEELTA 99
SadA [Arthrobacter sp. D2]	41	REHALDSDRDRRVSOVVIDKMEELDLEOVCTPRRVGGEOANERTLEDLTA 90
SadA [Arthrobacter sp. D4]	11	
SadA [ArtifioDucter sp. D4]	20	
SadB1 [Strain GP]	20	
Saubz [Strain GP]	3	EANGARGEAD KRVAGES I DALEA I GAFRYTO DALVO CYFCI SDAUDYD YAR 32
Sadb [Iviicrobacterium sp. BR1]	25	E K NA A Q G E A E K K V S Q E S I D'A L E A I G'A F K V I Q P'A K I G G I E G D'S K A Q V D'G A 74
SadB [Arthrobacter sp. D2]	25	EKNAAQGEAERRVSQESTDALEATGAFRVTQPAKYGGYEGDSRAQVDVGA 74
SadB [Arthrobacter sp. D4]	21	RANGEQGEQNERVAQESTEALEAVGAFEVIQPSEFGGFQGDSEAQVDVSE 70
SadA [Strain CD]	100	
SadA [Strain GP]	100	
SadA [Withobacterium sp. BR1]	100	
SadA [Arthrobacter sp. D2]	91	ETARGDGGTAWAFGLLNSNAWDVGTYSRQAQ 121
SadA [Arthrobacter sp. D4]	91	E LARGDGG LAWAFGLLNSNAWDVG LYSRQAQ 121
SadB1 [Strain GP]	70	A V G R G D G G T G W I T A L I NMA G W L T A L L P D Q A Q 100
SadB2 [Strain GP]	53	A V G R G D G G T G W I T A L I NMA G W L T A L L P E Q A Q 83
SadB [Microbacterium sp. BR1]	75	A V G K G D G G T AWV V A L T N I A NWL T A L Y P E K A Q 105
SadB [Arthrobacter sp. D2]	75	A V G K G D G G T A W V V A L T N I A N W L T A L Y P E K A Q 105
SadB [Arthrobacter sp. D4]	71	A I G K A D G G T A W V V A L I N I S N W L T S L Y P R Q A Q 101
(h) A aul Co A debudre gene		iddle demain (Dfem And CoA dh M)
(b) Acyl-coA denydrogenase, middle domain (Plan Acyl-coA_din_M)		
SadA [Strain GB]	140	A A G S T A S A P K V D G G Y V I S G PWD Y A S G S I H A OWYNI G E D. V E I D G A D V PMM 107
SadA [Microbastarium on PP1]	140	A G T A S A R V D G G V I S G RWP Y A S G S L H A GWAEL G F V VEL D G A D V RMM 107
SadA [Arthsohastes on D2]	149	A C C T A C A B B V D C C V I J C R W F T A S C S L H A C WAEL C F D V V E D C A F V R M 19
SadA [Arthrobacter sp. D2]	140	A A G P T A S A K K V D G G T L T S G K W P T A S G S L H A Q W A E L G F D . V E T D G E T V WMM 188
SadA [Arthrobacter sp. D4]	140	A AGPTA SAR K VDGGYLT SG KWPYA SG SLHA QWAELG FD. VETDGET VWMM 188
SadB1 [Strain GP]	116	A T N G K T R R V P G G Y I V S G E W G Y A S G S W H A E W S F L G A E L V D E N G D F D D A A 163
SadB2 [Strain GP]	99	A T N G K T K R V P G G Y I V S G E W G Y A S G S W H A E W S F L G A E L V D E D G N F D D A A 146
SadB [Microbacterium sp. BR1]	121	A T N G K T Q R V D G G Y L V S G E W S Y N S A S W H T Q WA I L G A E L V D E N G D F V D T A 168
SadB [Arthrobacter sp. D2]	121	A T N G K T Q R V D G G Y L V S G E W S Y N S A S W H T Q WA I L G A E L V D E N G D F V D T A 168
SadB [Arthrobacter sp. D4]	117	A T S G T T R R V D G G Y V V S G E W P Y A S G S L H S D W A I V G A N L V D E D G N F D D A A 164
SadA [Strain GP]	198	S. LVPMDEVTLEDTWYVAGMRGSGSNTVVGT 227
SadA [Microbacterium sp. BR1]	198	T.LVPMDEVTLEDTWYVAGMRGSGSNTVVGT 227
SadA [Arthrobacter sp. D2]	189	T. L L P I N E V T V E D T W Y V A G M R G S G S N T I V G R 218
SadA [Arthrobacter sp. D4]	189	T.LLPINEVTVEDTWYVAGMRGSGSNTIVGR 218
SadB1 [Strain GP]	164	QLLIPKSDLGYQDTWYVAGMRSSGSNTWTAD 194
SadB2 [Strain GP]	147	QLLIPKTDLGYKDTWYVAGMRSSGSNTWVAE 177
SadB [Microbacterium sp. BR1]	169	QLLIPRSDLGFKDIWH VAGMRSSGSNALSAT 199
SadB [Arthrobacter sp. D2]	169	QLLIPRSDLGFKDIWH VAGMRSSGSNALSAT 199
SadB [Arthrobacter sp. D4]	165	QLLIPRSEFAYKDTWYVAGMRSSGSNTLIAN 195
	~	
(c) Acyi-CoA denyarogenase, c-terminal (Pram Acyi-CoA_an_2)		
SadA [Strain GD]	268	VIVGAOIGIAOAAIDVALEKIDTPGVTVTKVAKGSDADTNOIAVAEAANA 317
SadA [Microhacterium on BP1]	268	
SadA [Arthrobacter on D2]	200	L V A A OL CLADA AL DIAL ELLE PROVINTINTA KOS DAPINOLAVA EA ANA 30
SadA [Arthrobucter sp. D2]	259	
Sada [Arthrobucter sp. D4]	259	TL VAAQTGLAQAALDFALETLPQKGVTKTKTKGSEAPSNQTAVAEAANA 308
SadB1 [Strain GP]	237	ILAGAQLGIGRAVLDKATAGA. SKPTATISIAHKSDSVAFQLDIAKAALI 283
SadB2 [Strain GP]	220	ILAGAQLGTGRAVLDRVTAGA.AKPTAYTSTAHKSDSVAFQLDVAKAALT 26/
SadB [Microbacterium sp. BR1]	242	ILVGPQLGMGRAVLERVISKADSKATAYISFERQSDSTAFQLDTAKAALL 291
SadB [Arthrobacter sp. D2]	242	I L V G P Q L G M G R A V L E R V I S K A D S K A I A Y I S F E R Q S D S I A F Q L D I A K A A L L 291
SadB [Arthrobacter sp. D4]	238	I L T G A Q L G I G R G V L E L V A E K A N K K S I A Y T S F E R Q S D S V A F Q L D I A K A A L L 287
SadA [Strain CD]	210	
SadA [Strain GP]	318	I D TA RML G RRACT D I D AA VVIN R GQI D WATRARIRMD LATTA VL CRESTD 367
SadA [Iviicrobacterium sp. BR1]	318	1 D TA KML G K K A S Y D T D A A A V T N K G U T D WA T K A K T K M D A A T T A V L C K E S T D 367
SadA [Arthrobacter sp. D2]	309	I D VA RMLAK RACYDI D AAAV FNGGAI D L PI KARI RMDI ASI AVQC REATE 358
SadA [Arthrobacter sp. D4]	309	I D V A RML A K R A C Y D I D A A A V F N G G A I D L P I R A R I RMD I A S I A V Q C R E A I E 358
SadB1 [Strain GP]	286	LDSADLMIARACREIDEPA. AAGVYPDYLTRARNRAYVGWAAETVSKAIE 334
SadB2 [Strain GP]	268	L D S A D L M I E R A C R E I D E P A . A A G E Y P D Y L T R A R N R A Y V G WA A E T V S R A I E 316
SadB [Microbacterium sp. BR1]	292	LEAAEGFAHRATDEIDIPA. AQGVYPDYLTRARNRAYVGWIVEHTARAIE 340
SadB [Arthrobacter sp. D2]	292	LEAAEGFAHRATDEIDIPA. AQGVYPDYLTRARNRAYVGWIVEHTARAIE 340
SadB [Arthrobacter sp. D4]	288	L D A A D M F V E R A C K E I D L P A . E A G E Y P G Y L V R A R N R A Y V G W S V E H I S R A I E 336
· · · · · · · · · · · · · · · · · · ·	200	
SadA [Strain GP]	368	KMLTATGSAAFASVNPLQQVWRDSETASRHAMVN 401
SadA [Microbacterium sp. BR1]	368	KMLTATUSAAFASVNPLQQTWRDSETASRHALVN 401
SadA [Arthrobacter sp. D2]	359	KLLIAVGSAAFASISPLQQIWRDAGIASRHAMVN 392
SadA [Arthrobacter sp. D4]	359	KLLIAVGSAAFASTSPLQQIWRDAGTASRHAMVN 392
SadB1 [Strain GP]	335	MLLTAHGSGGFAEVNAIQRFWRDQAVAARHAFIL 368
SadB2 [Strain GP]	317	T L L T A H G S G G F A E V N A I Q R F W R D Q A V A A R H A F I L 351
SadB [Microbacterium sp. BR1]	341	M L L T A H G S G A F A E V N P L Q R L W R D Q A V A S R H A F V L 374
SadB [Arthrobacter sp. D2]	341	M L L T A H G S G A F A E V N P L Q R L W R D Q A V A S R H A F V L 374
SadB [Arthrobacter sp. D4]	337	M L L T S A G S G A F A E V N V L Q R MWR D Q A V V A R H A F V L 370

Supplementary Figure 8 –Amino acid alignment with MUSCLE [8] of Acyl-CoA domains: Nterminal (a), middle (b) and C-terminal (c); between SadA and SadB homologs in *Microbacterium* sp. BR1, *Arthrobacter* sp. D2 and D4 and strain GP (SadB1: D3X82_00235; SadB2: D3X82_03160). Conserved regions within SadA and SadB and highlighted in green and conserved regions shared between all proteins are marked with an asterisk.

Supplementary Figure 9 – Close-up of the substrate-binding pocket of XiaF (PDB: 5LVW) bound to FADH₂ and indole obtained by Kugel et al. [9]. FADH₂ is the co-factor, indole the substrate and S121 and I237 are the residues that are modified in SadA of *Microbacterium* sp. BR1 and strain GP. The ribbon (a) and electrostatic surface potential (b) diagrams have been prepared with PyMol [10]. In b negative potential is shown in red and positive potential in blue.

References

1. Kyselková M, Kopecký J, Felföldi T, Čermák L, Omelka M, Grundmann GL, et al. Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2008;94:439–53.

2. Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, et al. Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on *Agrobacterium* spp. and bacterial communities. Appl Environ Microbiol. 2006;72:4302–12.

3. Pernthaler J, Glöckner F-O, Schönhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol. 2001;30:207–26. doi:10.1016/s0580-9517(01)30046-6.

4. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30:2725–9. doi:10.1093/molbev/mst197.

5. Rambaut A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 24 Jan 2019.

6. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701. doi:10.1128/aem.02411-13.

7. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): Highperformance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

8. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi:10.1186/1471-2105-5-113.

9. Kugel S, Baunach M, Baer P, Ishida-Ito M, Sundaram S, Xu Z, et al. Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification. Nat Commun. 2017;8:15804. doi:10.1038/ncomms15804.

10. Schrödinger L. The PyMOL molecular graphics system. 2002;Version 1.8.