Diversity Oriented Metal Decoration on UiO-Type Metal-Organic Frameworks: an Efficient Approach to Increase CO₂ Uptake and Catalytic Conversion to Cyclic Carbonates

Fataneh Norouzi and Hamid Reza Khavasi,*

Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran

E-mail: h-khavasi@sbu.ac.ir, khavasihr@gmail.com

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

CORRESPONDING AUTHOR FOOTNOTE: Hamid Reza Khavasi, Tel No: +98 21 29903105, Fax No: +98 21 22431661.

Contents	Page
Experimental Details	S1
Figure S1. PXRD patterns of metal-grafted Bipy-UiO-67 MOFs.	S6
Figure S2-S23NMR spectrum for data reported in Table 1.	S7-S28
Figure S24-S32NMR spectrum for data reported in Table 2.	S29-S37
Figure S33-S42NMR spectrum for data reported in Table 4.	S38-S47
Figure S43-S47NMR spectra of recyclability tests.	S78-S52

Experimental Details, Representative Procedure for the Cyclic Carbonate Formation:

4-(chloromethyl)-1,3-dioxolan-2-one

In a 20 mL glass reactor, epichlorohydrin (4.3 mmol, 0.397 mL), Hf-Bipy-UiO-67(Mn(OAc)₂) (0.001 mmol, 0.012 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at room temperature for 12h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: 99%).

¹H NMR (300 MHz, CDCl₃): 3.73-3.85 (2H, m, CH₂—Cl), 4.43 (1H, dd, ²*J*_{HH} = 15 Hz, ³*J*_{HH} = 6 Hz, O—CH₂), 4.65 (1H, dd, ²*J*_{HH} = 15 Hz, ³*J*_{HH} = 9 Hz, O—CH₂) and 5.04 (1H, m, O—CH). ¹³C NMR (75 MHz, CDCl₃): 44.1 (CH₂—Cl), 67.2 (O—CH₂), 74.0 (O—CH) and 153.8 (C=O).

4-phenyl-1,3-dioxolan-2-one

In a 20 mL glass reactor, styrene oxide (4.3 mmol, 0.516 mL), Hf-Bipy-UiO-67(Mn(OAc)₂) (0.001 mmol, 0.012 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at 50 °C for 4h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: >99%).

¹H NMR (300 MHz, CDCl₃): 4.34 (1H, dd, ² J_{HH} = 9 Hz, ³ J_{HH} = 6 Hz, O—CH₂), 4.83 (1H, dd, ² J_{HH} = 6 Hz, ³ J_{HH} = 3 Hz, O—CH₂), 5.68-5.64 (1H, m, O—CH) and 7.35-7.43 (5H, m, Ph). ¹³C NMR (75 MHz, CDCl₃): 71.1 (O—CH₂), 74.2 (O—CH), 122.6, 128.6, 129.9 (CH of Ph), 135.6 (C_{ipso}) and 158.6 (C=O).

4-((allyloxy)methyl)-1,3-dioxolan-2-one

In a 20 mL glass reactor, allyl glycidyl ether (4.3 mmol, 0.490 mL), Hf-Bipy-UiO-67(Mn(OAc)₂) (0.001 mmol, 0.012 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at 50 °C for 4h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: >99%).

¹H NMR (300 MHz, CDCl₃): 3.71-3.72 (2H, m, O—CH₂), 3.99-4.40 (2H, m, O—CH₂), 4.37-4.65 (2H, m, O—CH₂), 4.82-4.88 (1H, m, CH of allyl), 5.19-5.30 (2H, m, CH of allyl) and 5.79-5.92 (1H, m, O—CH). ¹³C NMR (75 MHz, CDCl₃): 155.2, 133.9, 117.3, 75.4, 72.3, 68.9, 66.2.

hexahydrobenzo[d][1,3]dioxol-2-one

In a 20 mL glass reactor, 7-oxabicyclo[4.1.0]heptane (4.3 mmol, 0.422 mL), Hf-Bipy-UiO- $67(Mn(OAc)_2)$ (0.012 mmol, 0.006 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at 50 °C for 4h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: >99%).

¹H NMR (300 MHz, CDCl₃): 1.61-1.72 (4H, m, 2CH₂), 1.82-1.96 (4H, m, 2CH₂) and 4.67-4.69 (2H, m, 2CH). ¹³C NMR (75 MHz, CDCl₃): 19.2 (2CH₂), 26.3 (2CH₂), 75.4 (2CH) and 158.6 (C=O).

4-butyl-1,3-dioxolan-2-one

In a 20 mL glass reactor, (S)-2-butyloxirane (4.3 mmol, 0.430 mL), Hf-Bipy-UiO-67(Mn(OAc)₂) (0.001 mmol, 0.012 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at 50 °C for 4h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: 95%).

¹H NMR (300 MHz, CDCl₃): 0.89-99 (3H, m, CH₃), 1.32-1.45 (4H, m, 2CH₂), 1.61-1.64 (2H, m, CH₂), 4.05 (1H, t, ${}^{3}J_{HH}$ = 9 Hz, O—CH), 4.53 (1H, dd, ${}^{2}J_{HH}$ = 9 Hz, ${}^{3}J_{HH}$ = 6 Hz, O—CH₂) and 4.65-4.68 (1H, m, O—CH₂). ¹³C NMR (75 MHz, CDCl₃): 13.3 (CH₃), 21.4, 27.9, 37.5 (3CH₂), 66.1 (O—CH₂), 75.3 (O—CH) and 155.6 (C=O).

4-(phenoxymethyl)-1,3-dioxolan-2-one

In a 20 mL glass reactor, 1,2-Epoxy-3-phenoxy propane (4.3 mmol, 0.645 mL), Hf-Bipy-UiO- $67(Mn(OAc)_2)$ (0.001 mmol, 0.012 g), nBu_4Br (8% mmol, 0.11 g) were added with a magnetic stirring bar. Then, the reactor was flushed under 1 bar pressure of CO₂ at 50 °C for 4h. After completion, the reaction mixture was analyzed by ¹H NMR (yield: 95%).

¹H NMR (300 MHz, CDCl₃): 4.08-4.29 (2H, m, O—CH₂), 4.54-4.68 (2H, m, O—CH₂), 5.07 (2H, m, O—CH), 6.93 (2H, d, ${}^{3}J_{HH} = 6$ Hz, 2CH_{ortho} of Ph), 7.04 (1H, t, ${}^{3}J_{HH} = 9$ Hz, CH_{para} of Ph) and 7.33 (2H, t, ${}^{3}J_{HH} = 9$ Hz, 2CH_{meta} of Ph). ¹³C NMR (75 MHz, CDCl₃): 66.3 (O—CH₂), 67.4 (O—CH), 74.5 (O—CH₂), 114,5, 121.7, 129.3 (3CH of Ph), 154.4 (C_{ipso}) and 157.8 (C=O).

Figure S1. PXRD patterns of metal-grafted Bipy-UiO-67 MOFs.

Figure S2. ¹H-NMR spectrum for data reported in Table 1, Entry 1.

Figure S3. ¹H-NMR spectrum for data reported in Table 1, Entry 2.

Figure S4. ¹H-NMR spectrum for data reported in Table 1, Entry 3.

Figure S5. ¹H-NMR spectrum for data reported in Table 1, Entry 4.

Figure S6. ¹H-NMR spectrum for data reported in Table 1, Entry 5.

Figure S7. ¹H-NMR spectrum for data reported in Table 1, Entry 6.

Figure S8. ¹H-NMR spectrum for data reported in Table 1, Entry 7.

Figure S9. ¹H-NMR spectrum for data reported in Table 1, Entry 8.

Figure S10. ¹H-NMR spectrum for data reported in Table 1, Entry 9.

Figure S11. ¹H-NMR spectrum for data reported in Table 1, Entry 10.

Figure S12. ¹H-NMR spectrum for data reported in Table 1, Entry 11.

Figure S13. ¹H-NMR spectrum for data reported in Table 1, Entry 12.

Figure S14. ¹H-NMR spectrum for data reported in Table 1, Entry 13.

S19

Figure S15. ¹H-NMR spectrum for data reported in Table 1, Entry 14.

Figure S16. ¹H-NMR spectrum for data reported in Table 1, Entry 15.

Figure S17. ¹H-NMR spectrum for data reported in Table 1, Entry 16.

Figure S18. ¹H-NMR spectrum for data reported in Table 1, Entry 17.

Figure S19. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 1, Entry 18.

Figure S20. ¹H-NMR spectrum for data reported in Table 1, Entry 19.

Figure S21. ¹H-NMR spectrum for data reported in Table 1, Entry 20.

Figure S22. NMR spectrum for data reported in Table 1, Entry 21.

Figure S23. ¹H-NMR spectrum for data reported in Table 1, Entry 22.

Figure S24. ¹H-NMR spectrum for data reported in Table 2, Entry 1.

Table 2, Entry 2

Figure S25. ¹H-NMR spectrum for data reported in Table 2, Entry 2.

Figure S26. ¹H-NMR spectrum for data reported in Table 2, Entry 3.

Figure S27. ¹H-NMR spectrum for data reported in Table 2, Entry 4.

Figure S28. ¹H-NMR spectrum for data reported in Table 2, Entry 5.

Figure S29. ¹H-NMR spectrum for data reported in Table 2, Entry 6.

Figure S30. ¹H-NMR spectrum for data reported in Table 2, Entry 7.

Figure S31. ¹H-NMR spectrum for data reported in Table 2, Entry 8.

Figure S32. ¹H-NMR spectrum for data reported in Table 2, Entry 9.

Figure S33. ¹H-NMR spectrum for data reported in Table 4, Entry 3.

Figure S34. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 4, Entry 4.

Figure S35. ¹H-NMR spectrum for data reported in Table 4, Entry 5.

Figure S36. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 4, Entry 6.

Figure S37. ¹H-NMR spectrum for data reported in Table 4, Entry 7.

Figure S38. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 4, Entry 8.

Figure S39. ¹H-NMR spectrum for data reported in Table 4, Entry 9.

Table 4, Entry 10

Figure S40. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 4, Entry 10.

Figure S41. ¹H-NMR spectrum for data reported in Table 4, Entry 11.

Figure S42. ¹H-NMR and ¹³C-NMR spectrum for data reported in Table 4, Entry 12.

Figure S43. ¹H-NMR spectrum recyclability tests, Run 1.

Figure S44. ¹H-NMR spectrum recyclability tests, Run 2.

Figure S45. ¹H-NMR spectrum recyclability tests, Run 3.

Figure S46. ¹H-NMR spectrum recyclability tests, Run 4.

Figure S47. ¹H-NMR spectrum recyclability tests, Run 5.