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Appendix A. Supplementary methods

Appendix A.1. Constrained MNE

The GCS considered in this paper was based on an ex-
plicit model of spatial leakage geometry applicable to any
linear source reconstruction. In this appendix, we describe
an alternative derivation in the special case of MNE.

Mathematically, the inverse operator W of MNE corre-
sponds to the minimum of the function

F(W ) = 1
2 tr
[
(WL− 1N )(WL− 1N )T

+κWCεW
T
]
,

(A.1)

where 1N denotes the N ×N identity matrix (Backus and
Gilbert, 1970; Tarantola, 2004). Keeping in mind property
(v) from the Theory section, let us rather look for the min-
imum W ′ of this function under the constraint that the
PSF of the seed s0 vanishes, W ′Ls0 = 0. This amounts to
extremize the expression F(W ′)+λTW ′Ls0 , where λ rep-
resents a (N×1) Lagrange multiplier. After some algebra,
the variational equation for W ′ reads

W ′ = (LT − λLT
s0) (LLT + κCε)

−1 . (A.2)

Recognizing the basic MNE inverse operator W (recovered
by formally setting λ = 0), we obtain

W ′ = W − λWs0 . (A.3)

Finally, imposing the constraint W ′Ls0 = 0 allows to solve
for the multiplier, λ = WLs0/Ws0Ls0 , hence demonstrat-
ing that W ′ = W gcs (see the Theory section in the main
text).

The above constrained minimization is actually part of
a class of problems considered in the DeFleCT algorithm
(Hauk and Stenroos, 2014). The GCS for MNE can thus
also be viewed as a special case of DeFleCT, although that
is not true for general linear inverse operators.

Appendix A.2. Unbiased prior for MNE regularization

In this appendix, we derive the formula used in this
paper for the regularization parameter κ, i.e.,

κ =
tr
(
C−1ε LLT

)
tr
(
C−1ε Cµ

)
−M

, (A.4)

via a consistency argument with the prior model assump-
tions underlying MNE.

Physically, MNE relies on the hypothesis that sources
ψ and noise ε are uncorrelated gaussian white noises with
respective covariances κ−11N and Cε (Baillet et al., 2001;
Tarantola, 2004). The observed data µ are supposed to be
related to these stochastic processes via the forward model
µ = Lψ+ε. (The expression 2F/κminimized in Appendix
A.1 thus corresponds to the variance of the reconstruction

error Wµ−ψ = (WL−1N )ψ+W ε.) Direct computation
of the a priori data covariance Cµ then yields

Cµ = κ−1LLT + Cε . (A.5)

This equation is at the basis of the sLORETA normal-
ization (see the Theory section), which estimates sources

noise variance from its projections λ̂2s = WsCµW
T
s

(Pascual-Marqui, 2002; Sekihara et al., 2005). We use it
here to derive a self-consistent formula for κ in terms of
the SNR estimate ζ = 1

M tr (C−1ε Cµ) defined in the main
text. Indeed, the above equation (A.5) directly implies
ζ = 1

Mκ tr (C−1ε LLT) + 1. Therefore, assuming ζ known,
the regularization parameter can be expressed as

κ =
tr
(
C−1ε LLT

)
M
(
ζ − 1

) . (A.6)

Plugging the explicit definition of ζ into this result yields
the promised equation (A.4). This formula has the ad-
vantage of being both unbiased with respect to the MNE
priors and invariant under coordinate changes in sensor
space.

Another analytical expression for κ as function of the
SNR is given in Hämäläinen et al. (2010) using specific
sensor coordinates, i.e., whitened data. When correctly
written in invariant terms, this expression actually reads
κ = 1

Mζ tr (C−1ε LLT) and thus bears close resemblance

with (A.6). This formula is biased in the sense that it
neglects the contribution of noise covariance in (A.5) and
is thus inconsistent with the MNE priors, especially in the
low SNR limit ζ → 1. In practice, however, the resting-
state and auditory-motor data always led to ζ ≥ 2.

Appendix A.3. Algorithm for network simulations

In this appendix, we describe the two-step method used
to generate pairs of signals with given values of linear and
non-linear (slow envelope) correlations. Our starting point
is the Hilbert decomposition of time series x and y with
narrow-band spectrum (i.e., ∆ν � ν0 for band center ν0
and half-width ∆ν),

xt = at cos(2πν0t+ αt) , (A.7)

yt = bt cos(2πν0t+ βt) , (A.8)

with 0 < t ≤ T . For such signals, the Hilbert envelopes
(a, b) and phases (α, β) fluctuate slowly, with temporal
variation rates bounded by ∆ν. In our simulations, these
signals were generated from β-band (ν0 = 16.5 Hz, ∆ν =
4.5 Hz) filtered white noises whereas a was replaced by a
positive oscillation at = 1.5 + sin(2πνat) with very slow
frequency νa < ∆ν (νa = 0.1 Hz).

Since a and b are uncorrelated time series, envelope cor-
relation corr(a, b) can first be set to value renv in a standard
way by substituting b with the linear combination b+ ka,
where

k =
renv√

1− r2env

σb
σa

. (A.9)
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To fix the slow envelope correlation, the temporal stan-
dard deviations σa and σb must be computed after low-
pass filtering a and b below some frequency νenv with
νa < νenv < ∆ν. We used νenv = 1 Hz.

The linear correlation of the resulting signals (whose en-
velopes a, b are now correlated but independent of phases
α, β) can then be set by modulating their phase coupling.
The method relies on the following “Hilbert decomposi-
tion” formula for linear correlation (derived below):

corr(x, y) =

〈
atbt

〉√〈
a2t
〉〈
b2t
〉 〈 cos(βt − αt)

〉
, (A.10)

the brackets denoting temporal averaging. Linear corre-
lation can thus be fixed to value rlin by controlling the
signals phase coupling measure 〈cos(βt−αt)〉. In our sim-
ulations, we replaced β by α + θ with constant phase lag
0 ≤ θ < π satisfying

cos θ =
rlin

√〈
a2t
〉〈
b2t
〉〈

at bt
〉 . (A.11)

In the absence of linear correlation, we have θ = π/2, so
the simulated signals conform to the temporal assumptions
of both static and instantaneous orthogonalizations.

For completeness, let us derive the decomposition for-
mula (A.10). First, using the zero-mean property of
narrow-band signals and the independence of envelopes
and phases, the covariance of x and y reads〈
xtyt

〉
=
〈
atbt

〉 〈
cos(2πν0t+ αt) cos(2πν0t+ βt)

〉
= 1

2

〈
atbt

〉 〈
cos(βt − αt) + cos(4πν0t+ αt + βt)

〉
.

(A.12)

For long time (ν0T � 1), the term 〈cos(4πν0t+ αt + βt)〉
converges to 〈cos(4πν0t)〉 = 0 because the temporal aver-
aging is dominated by the high-frequency (2ν0) oscillation,
so 〈

xtyt
〉

= 1
2

〈
atbt

〉 〈
cos(βt − αt)

〉
. (A.13)

Furthermore, we obtain the signals variance 〈x2t 〉 = 〈a2t 〉/2
and 〈y2t 〉 = 〈b2t 〉/2 by setting x = y. Finally, plugging these
results into the definition corr(x, y) = 〈xtyt〉/(〈x2t 〉〈y2t 〉)1/2
leads to the sought formula (A.10).

Appendix B. Supplementary results

Appendix B.1. Structural effects on noisy point-spread
functions (auditory seed)

Figure S1 depicts the results of the PSF dissimilarity
analyses for the geometric correction from the left A1 seed.
Results were similar to the correction from SM1ha, de-
spite the fact that the MEG signal originating from the
SM1 cortex has higher SNR than from the A1 cortex (the
latter being located deeper within the sylvian sulcus). In
particular, the respective plots of PSF dissimilarity versus

distance to the seed (Figures 2A and S1A, middle) as well
as the effect of data SNR and lead field errors (Figures
2C and S1C) are comparable. In the examples shown in
Figure S1B, it is noteworthy that the effect of the GCS on
the PSF at the SMG (2 cm away from the A1 seed) was
mild enough, in the sense that the local PSF maximum
correction was still located in the SMG.

Furthermore, both examples illustrated some longer-
range spatial leakage effect (from the A1 cortex to the
lower bank of the temporal lobe and the cerebellum) that
was eliminated after geometric correction. This was also
seen at the level of FC estimation in Figures 4 and 5B
(bottom left).

Appendix B.2. Example of seed mislocation effect associ-
ated with the auditory seed

Figure S2 shows the effect of seed mislocation on re-
constructed FC maps for a simulated binodal network of
orthogonal signals involving the left and right A1 cortices,
with the used seed misplaced by 1.5 cm in the STG. Re-
sults parallel those of the analogous simulation shown in
Figures 3D and S3D. Briefly, seed mislocation generated a
local FC pattern that dominated after the GCS and per-
sisted after the signal orthogonalization (but with a signif-
icant decrease compared to the GCS).

Appendix B.3. Spatial leakage correction for simulated
binodal networks (uncoupled signals)

Figure S3 illustrates the results of geometric correc-
tion for simulated pairs of active but uncoupled nodes.
Strongly significant spatial leakage FC (T9-maps maxi-
mum > 130) was observed in all considered cases. With-
out seed mislocation (Figure S3A–C), the GCS completely
eliminated FC, even for very close nodes (0.5 cm, Figure
S3C). With seed mislocation, a spurious FC pattern re-
mained significant after correction (Figure S3D).

Appendix B.4. Signal orthogonalization for simulated
binodal networks (orthogonal signals)

Figure S4 shows the results of signal orthogonalization
for the network simulations considered in Figure 3. Pat-
terns of spatial leakage FC were qualitatively similar to
those obtained with the GCS, including the presence of
spurious local FC in the case of nearby nodes (distance
< 2 cm, Figure S3B, C, left) and seed mislocation (Figure
S4D, left). This convergence of results can be explained by
the nature of the simulation, where the nodes signals sat-
isfy the assumptions of static and instantaneous orthogo-
nalizations, i.e., no linear correlation (Brookes et al., 2012)
and phase lag fixed at π/2 (Hipp et al., 2012), respectively
(see Appendix A.3 for details).

Direct comparison of correction methods (Figure S4,
right) revealed no significant differences in the ideal case
of remote nodes without seed mislocation (Figure S4A,
right). In the other cases, static orthogonalization sig-
nificantly decreased local FC estimation compared to the
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Figure S1: Effect of the GCS from the left A1 cortex on noisy PSFs. A: Spatial distribution of PSF dissimilarity for the reference simulation
(SNR ζ = 4, no lead field error), represented as a cortical map (left) and plotted against distance (middle) or lead field similarity (right)
between the seed and the simulated node. Blue and red points respectively denote sources in the left and the right hemispheres. B: Example
PSFs before (top) and after (bottom) geometric correction taken from the reference simulation with simulated node (white cross) placed
either at the seed (white dot) or at the SMG (2 cm away). Maps were normalized using sLORETA for visualization. C: Effect of parameters
variation on PSF dissimilarity, as assessed by the fit error to the reference simulation. Inserts show two examples with explicit comparison to
the reference simulation (yellow points).
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Figure S2: Spatial leakage correction for a simulated binodal network (orthogonal signals) with left A1 seed mislocation. The statistical
maps assess spatial leakage FC for uncorrected and corrected slow envelope FC estimations as well as the differential effect of corrections.
Network nodes are indicated by white crosses, whereas the white dot shows the seed location used for FC mapping and spatial leakage
correction. Statistical thresholding was applied at FWE-corrected significance level 0.05. Positive upper scales were set to the maximum of
the GCS − truth (A, middle) or uncorrected − GCS (A, right) map, while negative lower scales were set arbitrarily for visualization.
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Figure S3: Geometric correction for simulated binodal networks (uncoupled signals). The statistical maps assess spatial leakage FC for
uncorrected (left) and corrected (middle) slow envelope FC estimations as well as the differential effect of the GCS (right). Network nodes
are indicated by the white dot and cross (A–C) or two white crosses (D). In all cases, the white dot shows the seed location used for FC
mapping and geometric correction. Statistical thresholding was applied at FWE-corrected significance level 0.05, while upper scales were set
to the maximum of the uncorrected − truth (A–C, left and middle), GCS − truth (D, left and middle) or uncorrected − GCS (right) maps.
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GCS (Figure S4B–D, right). Accordingly, instantaneous
orthogonalization significantly decreased the spurious lo-
cal FC involved in seed mislocation (Figure S4D, right) but
significantly increased FC estimation at target node loca-
tions (Figure S4B, D, right). A mechanism for this overes-
timation effect is given in Wens (2015). Finally, compar-
ing both orthogonalization methods showed significantly
lower FC for static than for instantaneous orthogonaliza-
tions (Figure S4B, D, right).

Appendix B.5. Differential effects of spatial leakage cor-
rections for simulated multinodal networks

Figure S5 reports the statistical comparison of spa-
tial leakage corrections for the multinodal network sim-
ulations considered in Figure 4. The GCS significantly
decreased FC estimation over large regions of the brain
(Figure S5, left) and significantly increased FC estimation
of the inter-hemispheric A1 coupling (Figure S5, bottom
left). Signal orthogonalization underestimated FC com-
pared to the GCS, except for the inter-hemispheric SM1
coupling that was overestimated by instantaneous orthog-
onalization. (The latter effect was also observed for the
binodal network simulations, see Appendix B.4.) Finally,
comparison of both orthogonalization methods showed no
significant differences except for the inter-hemispheric A1
coupling, which was indeed absent using static orthogo-
nalization (Figure 4).

Appendix B.6. Differential effects of spatial leakage cor-
rections for auditory-motor network

Figure S6 shows the significant differences induced by
spatial leakage corrections. The resulting maps did not
disclose extensive regions, presumably because of substan-
tial inter-subjects variability in this coherence analysis.
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Figure S4: Signal orthogonalization and comparison of spatial leakage corrections for simulated binodal networks (orthogonal signals). The
statistical maps assess spatial leakage FC for orthogonalized slow envelope FC estimations (left) as well as the differential effect of the GCS,
static and instantaneous orthogonalizations (right). Network nodes are indicated by the white dot and cross (A–C) or two white crosses (D).
In all cases, the white dot shows the seed location used for FC mapping and spatial leakage correction. Statistical thresholding was applied
at FWE-corrected significance level 0.05. Positive upper scales were set to the maximum of the GCS − truth (left) or uncorrected − GCS
(right) maps (see Figure 3), while negative lower scales were set arbitrarily for visualization.

7



Spatial leakage geometric correction scheme (Supplementary Materials) Wens V et al., Hum Brain Mapp (2015)

T
9 s

ta
tis

tic

120

-40

4.8

-4.8

s
e

n
s
o

ri
m

o
to

r
a

u
d

it
o

ry

GCS – 
stat. orth.

uncorrected
– GCS 

GCS – 
inst. orth.

static orth. 
– inst. orth.

T
9 s

ta
tis

tic

180

-25

4.8

-4.8

orthogonal target nodeseed node non-orthogonal target node

Figure S5: Differential effects of spatial leakage corrections for simulated multinodal networks. The statistical maps compare spatial leakage
corrections (uncorrected, GCS, static and instantaneous orthogonalizations) on slow envelope FC. Network nodes are indicated by white dots
(seed node, also used for FC mapping and spatial leakage correction) and crosses (target node; +: orthogonal, ×: non-orthogonal). Statistical
thresholding was applied at FWE-corrected significance level 0.05. Positive upper scales were set to the maximum of the uncorrected − GCS
maps, while negative lower scales were set arbitrarily for visualization.

8

4.8

T
9 s

ta
tis

tic

GCS – imag.
uncorrected

– GCS

c
o

h
e

re
n

c
e

 a
t 
  
 

c
o

h
e

re
n

c
e

 a
t 
  
 10

4.8

T
9 s

ta
tis

tic

Figure S6: Differential effects of spatial leakage corrections for auditory-motor network. The statistical maps compare spatial leakage
corrections (uncorrected, GCS and imaginary coherence) on task-based cortico-cortical coherence at f0 (top) and f1 (bottom). Statistical
thresholding was applied at FWE-corrected significance level 0.05, and upper scales were set to the maximum of the uncorrected−GCS maps.
In all cases, the white dot indicates the seed used for FC mapping and spatial leakage correction. The hemispheres not shown did not disclose
significant regions.
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