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We illustrate the rationale of Laplacian eigenmaps usin¢aastcal example
from (Tenenbaum et al., 2000) using the “Faces” dataseilabla at:
http://waldron.stanford.edu/"isomap/face_data.mat.Z

There areV pictures of a face taken from a constant distance, but wityirvg
viewing angles. If the resolution of the images is 8464 pixels, they can be
conceived to represent a datasef\obbservations in 4096 dimensions. Intuitively
these images should lie on a hypersurface with a much loweemtionality and
in this case a three dimensional structure corresponditigetdegrees of freedom
of the camera moving in a 3D space at a fixed distance from ttee fahe task
of recovering this 3D structure from the original 4096-ditei®nal space is an
example of a dimensionality reduction problem. Specificalte ought to find
three principal axes that would completely represent thigiral observations in
such a way that the proximity of points in this 3D space refléot similarity in the
viewing angles. In principle, no prior knowledge of the d=gg of freedom across
the given dataset, which for us is just a matrix/éfrows by 4096 columns, need
to be assumed. It is the task of the algorithm to reveal, i@né& a 3D structure of
similarity/variability across all images. Laplacian aigeaps (Belkin and Niyogi,
2002) implement one such algorithm for nonlinear dimeraionreduction. Other
algorithms to perform nonlinear dimensionality reductéwe Isomaps (Tenenbaum
etal., 2000) and Locally Linear Embedding (Roweis and S400). Figure 1is an
example of how the method of Laplacian eigenmaps recovemtia trajectories
of variability (and therefore of similarity) in the Facegalset (originally consisting
of 698 images in 64 by 64 pixels, varying the pose of the fagkthe lighting



angle).

In the above example, similarities across different imagesused to uncover
a global structure underlying all images, and as expectedpder that the main
difference across all images is the camera’s angle at a fistahde from the face.
Analogoues to the matri®y x 4096 above, in probabilistic tractography data, we
input the connectivity maps for each seed voxel, seekingfoanatomically de-
fined trajectory of variation underlying all connectivityaps.

Animal studies on the anatomical connectivity of the insglartex suggests a
main direction of variabilty in the connections along a agrttopographically lo-
calized axis in the anatomy, in particular along the rostiadal axis. If the same
holds true in humans, this is the underlying structure wisicbuld be recovered
from the very high dimensional data derived from probatdisractography. In
other words, when considering the similarity/dissimifaof the spatial location of
the (ipsilateral) brain targets reached during tractdgyagrcross insular seed vox-
els we expect the presence of a trajectory of connectioabiitiy which spans the
rostro-caudal axis in the anatomy.

Before we dwell on the details and implementation of the i@tlgm it would
be illustrative to reiterate the geometry of the problemamdh The connectivity
matrix has dimension®/; x Ng, whereN; is the number of voxels considered in
the insula andVg the number of voxels in the ipsilateral hemisphere. We clamsi
each row, with dimensiohx Ng, as a vector in vector—spadE{VB. Thus, voxels in
the insula occupyV; points in thisNz-dimensional space. Given our anatomical
hypothesis, theV; points (each corresponding to one seed voxel’'s connectivit
map) do not occupy random positions k12 but in turn lie on a structure (a
manifold, in mathematical terms) whose dimension is mueletathanNg. As
an extreme example, let us consider all voxels in the insoitenected to a single
voxel of the brain along approximately the same connegtprtfile. In this case
the dimension of the manifold embeddedRA’E is zero, because alV; vectors
coincide.

The problem described above is a classical example to whidintques like
principal component analysis (PCA) and multidimensiomraliag (MDS) are ap-
plied. We in turn chose to use Laplacian Eigenmaps (Belkih Miyogi, 2002,
LEM). LEMs are relatively insensitive to noise and outliénsthe data set and



unlike PCA or MDS, they preserve local neighbourhood infation and don’t
require that the low-dimensional structure of the dataigstdn or near a linear
subspace of the high-dimensional input space (Tenenbaamm 2000; Belkin and
Niyogi, 2002). The technique is similar to the spectral deoing previously used
in other connectivity-based parcellation studies (Jobatiderg et al., 2004; Klein
et al., 2007), but additionaly takes advantage of the infdion about the nearest
neighbours of each connectivity feature vector. The finatgsentation resembles
those from multidimensional scaling (see for instance gipgham et al., 2002)),
however Laplacian eigenmaps don't need to assume thatthditoensional struc-
ture of the dataset lies on a linear subspace (Belkin andgiig802; Tenenbaum
et al., 2000)).

Laplacian eigenmaps are a local information preservinglimaar dimension-
ality reduction technique where the basis vectorR ¥ are transformed to a new
set of coordinategy, q; ... ¢n,—1, such that the direction of maximum informa-
tion/variation isqy and the variation decreases with increasingg;. The number
of these basis vectors we select are therefore a measure of how well we retain the
information on the correlation and coherence (neighbaathiaformation) of the
voxels in the insula. Thus, if neigbouring voxels are higtdyrelated, only a small
number of basis vectors need to be retained to recover mase afformation.

It is important to note that in our implementation of the LEM slighly mod-
ify the geometric picture. Instead of the connectivity ma#s the starting point
in the algorithm, we first calculate the cross correlatiorirmmaf the Ny vectors,
giving a matrix of sizeN; x Ny, which is provided as input to the algorithm. The
reason for inputing the cross-correlation matrix is twalfane it reduces the num-
ber dimensions of the space fralviz to N; and two, the errors of estimating the
connectivity path from probabilistic tractography arefeliént for different seed
voxels and the process of cross-correlating would mitigageeffects of this noise.

Our implementation of the LEM technique is detailed below.

Letxp,x1,...,xN;—1 be theN; points represented by the rows of the correla-
tion matrix of the connectivity maps R". The algorithm consists of formulating
and solving an eigenvalue problem. The eigenvectors andaksociated eigen-
values then determine the optimal basis to represent tiae dat

1. Calculate théAdjacency matrix. The adjacency matrix of a simple graph



is a matrix with rows and columns labeled by graph verticagh &1 or O

at positions (i,j) according to whethes andx; are adjacent or not. Two
nodes are said to be adjacent or connecteiek;f— xj||2 < ¢, Wheree € R,

is usually an arbritary parameter chosen judiciously. Inigplementation,

we choose as the minimum distance which yielded a connected graph (see
Belkin and Niyogi, 2002).

. Set up aVeight matrix as;

_ ] 1 ifconnected
N 0 if unconnected

wherelV;; is the weight on the vertex connecting nodesd .

. TheEigenvalue problem to be solved is,

Lf = \Df. Q)
Where,
Dii =Y Wi, &)
J
and
L=D-W, €)
is the Laplacian matrix.
Let the eigenvalues of eq(1) b&, A1, ..., An,—1 and their corresponding
eigenvectordp, f1, . . ., fn;—1, such that,
SN S Ay 4)

. Choose the firsin non-zero eigenvalues and associated eigenvectors. The
number of componenta is chosen depending on how well these points
in the m(< N;)-dimensional representation of the data set reflect the po-
sitional configuration iR’ -dimensions. To quantify positional similarity

on anm-dimensional manifold, and aNy-dimensional euclidean space, we
need to construct a distance matrix for tredimensional manifold. The
non-euclidean nature of the manifold poses a problem ahgatip a metric
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in this space.

In our study we hypothesized that the insular connectivaitggns would
show a variation consistent with the evidence from traogetion stud-
ies in macaques, that is, a one-dimensional variation inirtbelar cortex
along the rostro-caudal anatomical axis. A visual inspectf the Lapla-
cian eigenmaps using the first two smallest nonzero eigemgefthat is, a
two-dimensional representation on a plane) revealed tesepce of a lin-
ear or curvilinear main trajectory of variation across alhectivity maps.
Laplacian eigenmaps produced using 3 and 4 components tiataothe
topology of the structure, therefore we choose to use thentaim compo-
nents for further processing.

. We remove points on the plane lying very distant from the-¢iimensional
structure, which could represent potential outliers, dnisoat the transi-
tion between relatively segregated substructures. Seaityfi this is per-
formed by calculating the distribution of the euclideantaliees between
each point and each other in the Laplacian eigenmaps, andrdisg all
the points whose median distance from their respective Bese neigh-
bours lies above the 95% of the distribution (almost idemtiesults were
obtained for other choices of the number of nearest neigishatthe range
10..100). This ‘cleaning’ of the Laplacian eigenmap is parfed in order to
increase the precision if a subsequent curve fitting is requin case Lapla-
cian eigenmaps recovers a curvilinear low-dimensionakttire of variabil-
ity, and to evidence the presence of potential clusterssimwtould be masked
by few points lying at the transition between clusters.

. Finally, we choose as a metric of the recovered one-dimealsstructure of
variability the distance along the structure from one oékXsemes. To main-
tain consistency across subjects, the extreme on thewteuobrresponding

to the most anterior voxel in the brain was always used asememete. In
case Laplacian eigenmaps produced a linear structure mysysiotate it to
align it to thex axis and calculate the distance of each point on the steictur
from the point with the minimum abscissa. In case Laplacigerenaps pro-
duced a curvilinear structure (like a horseshoe), we fit tiatp with a 4th
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degree polynomial curve. A goodness-of-fit threshold wasosB? > 0.95.
The measured distances were normalized in the range 0..dvanidyed as
a color-coded map onto the anatomical image.
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Laplacian eigenmaps on faces data

Figure 1: Laplacian Eigenmaps of the faces dataset using a7k rearest
neighbours. The two smallest nonzero eigenvectors have bsed to remap
the original 4096-dimensional dataset on a plane. A sampl¢h® origi-

nal images are also presented in the location of their qooreting datapoint,
to show the trajectory of variability recovered by the altfon. This im-

age was generated with the code available on the web pagei @&&hddsi at
http://www.math.uwaterloo.ca/"aghodsib/coursesf@90/Asg/



