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We illustrate the rationale of Laplacian eigenmaps using a classical example

from (Tenenbaum et al., 2000) using the “Faces” dataset, available at:

http://waldron.stanford.edu/˜isomap/face_data.mat.Z

There areN pictures of a face taken from a constant distance, but with varying

viewing angles. If the resolution of the images is 64× 64 pixels, they can be

conceived to represent a dataset ofN observations in 4096 dimensions. Intuitively

these images should lie on a hypersurface with a much lower dimensionality and

in this case a three dimensional structure corresponding tothe degrees of freedom

of the camera moving in a 3D space at a fixed distance from the face. The task

of recovering this 3D structure from the original 4096-dimensional space is an

example of a dimensionality reduction problem. Specifically, we ought to find

three principal axes that would completely represent the original observations in

such a way that the proximity of points in this 3D space reflects the similarity in the

viewing angles. In principle, no prior knowledge of the degrees of freedom across

the given dataset, which for us is just a matrix ofN rows by 4096 columns, need

to be assumed. It is the task of the algorithm to reveal, if present, a 3D structure of

similarity/variability across all images. Laplacian eigenmaps (Belkin and Niyogi,

2002) implement one such algorithm for nonlinear dimensionality reduction. Other

algorithms to perform nonlinear dimensionality reductionare Isomaps (Tenenbaum

et al., 2000) and Locally Linear Embedding (Roweis and Saul,2000). Figure 1 is an

example of how the method of Laplacian eigenmaps recover themain trajectories

of variability (and therefore of similarity) in the Faces dataset (originally consisting

of 698 images in 64 by 64 pixels, varying the pose of the face and the lighting
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angle).

In the above example, similarities across different imagesare used to uncover

a global structure underlying all images, and as expected, discover that the main

difference across all images is the camera’s angle at a fixed distance from the face.

Analogoues to the matrixN × 4096 above, in probabilistic tractography data, we

input the connectivity maps for each seed voxel, seeking foran anatomically de-

fined trajectory of variation underlying all connectivity maps.

Animal studies on the anatomical connectivity of the insular cortex suggests a

main direction of variabilty in the connections along a certain topographically lo-

calized axis in the anatomy, in particular along the rostro-caudal axis. If the same

holds true in humans, this is the underlying structure whichshould be recovered

from the very high dimensional data derived from probabilistic tractography. In

other words, when considering the similarity/dissimilarity of the spatial location of

the (ipsilateral) brain targets reached during tractography across insular seed vox-

els we expect the presence of a trajectory of connection variability which spans the

rostro-caudal axis in the anatomy.

Before we dwell on the details and implementation of the algorithm it would

be illustrative to reiterate the geometry of the problem in hand. The connectivity

matrix has dimensionsNI × NB , whereNI is the number of voxels considered in

the insula andNB the number of voxels in the ipsilateral hemisphere. We consider

each row, with dimension1×NB, as a vector in vector-space,R
NB . Thus, voxels in

the insula occupyNI points in thisNB-dimensional space. Given our anatomical

hypothesis, theNI points (each corresponding to one seed voxel’s connectivity

map) do not occupy random positions inR
NB but in turn lie on a structure (a

manifold, in mathematical terms) whose dimension is much lower thanNB . As

an extreme example, let us consider all voxels in the insula connected to a single

voxel of the brain along approximately the same connectivity profile. In this case

the dimension of the manifold embedded inR
NB is zero, because allNI vectors

coincide.

The problem described above is a classical example to which techniques like

principal component analysis (PCA) and multidimensional scaling (MDS) are ap-

plied. We in turn chose to use Laplacian Eigenmaps (Belkin and Niyogi, 2002,

LEM). LEMs are relatively insensitive to noise and outliersin the data set and
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unlike PCA or MDS, they preserve local neighbourhood information and don’t

require that the low-dimensional structure of the dataset lies on or near a linear

subspace of the high-dimensional input space (Tenenbaum etal., 2000; Belkin and

Niyogi, 2002). The technique is similar to the spectral reordering previously used

in other connectivity-based parcellation studies (Johansen-Berg et al., 2004; Klein

et al., 2007), but additionaly takes advantage of the information about the nearest

neighbours of each connectivity feature vector. The final representation resembles

those from multidimensional scaling (see for instance (Passingham et al., 2002)),

however Laplacian eigenmaps don’t need to assume that the low-dimensional struc-

ture of the dataset lies on a linear subspace (Belkin and Niyogi, 2002; Tenenbaum

et al., 2000)).

Laplacian eigenmaps are a local information preserving non-linear dimension-

ality reduction technique where the basis vectors inR
NB are transformed to a new

set of coordinatesq0, q1 . . . qNB−1, such that the direction of maximum informa-

tion/variation isq0 and the variation decreases with increasingi in qi. The number

of these basis vectorsqi we select are therefore a measure of how well we retain the

information on the correlation and coherence (neighbourhood information) of the

voxels in the insula. Thus, if neigbouring voxels are highlycorrelated, only a small

number of basis vectors need to be retained to recover most ofthe information.

It is important to note that in our implementation of the LEM,we slighly mod-

ify the geometric picture. Instead of the connectivity matrix as the starting point

in the algorithm, we first calculate the cross correlation matrix of the NI vectors,

giving a matrix of sizeNI × NI , which is provided as input to the algorithm. The

reason for inputing the cross-correlation matrix is two fold; one it reduces the num-

ber dimensions of the space fromNB to NI and two, the errors of estimating the

connectivity path from probabilistic tractography are different for different seed

voxels and the process of cross-correlating would mitigatethe effects of this noise.

Our implementation of the LEM technique is detailed below.

Letx0,x1, . . . ,xNI−1 be theNI points represented by the rows of the correla-

tion matrix of the connectivity maps inRNI . The algorithm consists of formulating

and solving an eigenvalue problem. The eigenvectors and their associated eigen-

values then determine the optimal basis to represent the data.

1. Calculate theAdjacency matrix. The adjacency matrix of a simple graph
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is a matrix with rows and columns labeled by graph vertices, with a 1 or 0

at positions (i,j) according to whetherxi andxj are adjacent or not. Two

nodes are said to be adjacent or connected if‖xi − xj‖
2

< ǫ, whereǫ ∈ R,

is usually an arbritary parameter chosen judiciously. In our implementation,

we chooseǫ as the minimum distance which yielded a connected graph (see

Belkin and Niyogi, 2002).

2. Set up aWeight matrix as;

Wij =

{

1 if connected

0 if unconnected,

whereWij is the weight on the vertex connecting nodesi andj.

3. TheEigenvalue problem to be solved is,

Lf = λDf . (1)

Where,

Dii =
∑

j

Wij, (2)

and

L = D − W, (3)

is the Laplacian matrix.

Let the eigenvalues of eq(1) beλ0, λ1, . . . , λNI−1 and their corresponding

eigenvectorsf0, f1, . . . , fNI−1, such that,

λ0 ≤ λ1 ≤ . . . ≤ λNI−1. (4)

4. Choose the firstm non-zero eigenvalues and associated eigenvectors. The

number of componentsm is chosen depending on how well these points

in the m(< Ni)-dimensional representation of the data set reflect the po-

sitional configuration inRNI -dimensions. To quantify positional similarity

on anm-dimensional manifold, and anNI-dimensional euclidean space, we

need to construct a distance matrix for them-dimensional manifold. The

non-euclidean nature of the manifold poses a problem of setting up a metric
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in this space.

In our study we hypothesized that the insular connectivity patterns would

show a variation consistent with the evidence from tracer-injection stud-

ies in macaques, that is, a one-dimensional variation in theinsular cortex

along the rostro-caudal anatomical axis. A visual inspection of the Lapla-

cian eigenmaps using the first two smallest nonzero eigenvectors (that is, a

two-dimensional representation on a plane) revealed the presence of a lin-

ear or curvilinear main trajectory of variation across all connectivity maps.

Laplacian eigenmaps produced using 3 and 4 components did not alter the

topology of the structure, therefore we choose to use the twomain compo-

nents for further processing.

5. We remove points on the plane lying very distant from the low-dimensional

structure, which could represent potential outliers, or points at the transi-

tion between relatively segregated substructures. Specifically, this is per-

formed by calculating the distribution of the euclidean distances between

each point and each other in the Laplacian eigenmaps, and discarding all

the points whose median distance from their respective 50 nearest neigh-

bours lies above the 95% of the distribution (almost identical results were

obtained for other choices of the number of nearest neighbours in the range

10..100). This ‘cleaning’ of the Laplacian eigenmap is performed in order to

increase the precision if a subsequent curve fitting is required, in case Lapla-

cian eigenmaps recovers a curvilinear low-dimensional structure of variabil-

ity, and to evidence the presence of potential clusters, which could be masked

by few points lying at the transition between clusters.

6. Finally, we choose as a metric of the recovered one-dimensional structure of

variability the distance along the structure from one of itsextremes. To main-

tain consistency across subjects, the extreme on the structure corresponding

to the most anterior voxel in the brain was always used as a reference. In

case Laplacian eigenmaps produced a linear structure, we simply rotate it to

align it to thex axis and calculate the distance of each point on the structure

from the point with the minimum abscissa. In case Laplacian eigenmaps pro-

duced a curvilinear structure (like a horseshoe), we fit the points with a 4th
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degree polynomial curve. A goodness-of-fit threshold was set to R2 ≥ 0.95.

The measured distances were normalized in the range 0..1 andoverlayed as

a color-coded map onto the anatomical image.

References

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for

embedding and clustering.

Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak,I., Rushworth, M. F.,

Brady, J. M., Smith, S. M., Higham, D. J., and Matthews, P. M. (2004). Changes

in connectivity profiles define functionally distinct regions in human medial

frontal cortex.Proc. Natl. Acad. Sci. U.S.A., 101:13335–13340.

Klein, J. C., Behrens, T. E., Robson, M. D., Mackay, C. E., Higham, D. J., and

Johansen-Berg, H. (2007). Connectivity-based parcellation of human cortex us-

ing diffusion MRI: Establishing reproducibility, validity and observer indepen-

dence in BA 44/45 and SMA/pre-SMA.Neuroimage, 34:204–211.

Passingham, R. E., Stephan, K. E., and Kotter, R. (2002). Theanatomical basis of

functional localization in the cortex.Nat. Rev. Neurosci., 3:606–616.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally

linear embedding.Science, 290(5500):2323–6.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric

framework for nonlinear dimensionality reduction.Science, 290(5500):2319–

23.

6



Figure 1: Laplacian Eigenmaps of the faces dataset using a k =7 nearest

neighbours. The two smallest nonzero eigenvectors have been used to remap

the original 4096-dimensional dataset on a plane. A sample of the origi-

nal images are also presented in the location of their corresponding datapoint,

to show the trajectory of variability recovered by the algorithm. This im-

age was generated with the code available on the web page of Ali Ghodsi at

http://www.math.uwaterloo.ca/˜aghodsib/courses/f06stat890/Asg/
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