
Rebuttals

Reviewer: 1

This  work  makes  an  important  contribution  to  our  understanding  of  the  functional 

connectivity/somatotopic representation of motor brain areas within the medial aspect of the frontal 

lobe. The paper is well written and the methodology is sound.

The authors might wish to improve their manuscript by considering the following suggestions.

General comments

Some  sentences  are  too  long  and  should  be  broken  up  for  clarity,  instead  of  using 

colons/semicolons/dashes (e.g. top of p. 10).

We shortened and reorganized sentences that were too long.

It  could be good for the reader to be provided with a  more  explicit  explanation of their  exact 

hypothesis and what/in what way the present study adds to pre-existing knowledge (bottom of p. 4).

We made our hypothesis more explicit, underlying what our work adds to previous studies.

The Discussion needs better structuring (the argument should be more streamlined) and could be 

more concise (e.g. avoiding repetitions such as on p. 13). The Discussion should also include a final 

summary of the main findings, plus a suggestion for future research directions

We re-structured the discussion so that results of the rs-fMRI, those of the BOLD and FC 

analyses of our previous data, and those of the meta-analysis are first separately commented, 

and then discussed in terms of their convergences/ divergences. We shortened the discussion 

avoiding repetitions. We ended the discussion with the main findings, limits of the study and 

directions for future research. 

Specific comments

The  title  should  more  scientifically  better  read  “Somatotopic  organization…”  instead  of 

“Discovering the somatotopic organization”.

We modified the title.

It would be appropriate to clarify whether the frequency (0.5 Hz) of alternate foot movements was 

actually measured or estimated (p. 8).

We clarified this issue both for the hand and for the foot task.



The headings under 2.3 need to be clearer and more systematic.

We clarified the headings.

In the Results section the authors state that the spatial resolution of their data did not permit them to 

consider each premotor area separately: this point should be addressed in the Discussion section as 

well.

We addressed this point in the Discussion.

There should be more detail and consistency in reporting p values in the Result section.

Added in the results the p and q value threshold of the analysis.

The authors are invited to provide more comments on the reviewed literature on the somatotopic 

representation within the cingulate motor zone (p. 12).

We added comments on the cited literature. 

In the Methodological considerations,  when addressing the influence of age, the authors should 

specify whether they refer to the resting state study, the task-related study, or both.

We specified that we referred only to the resting state study.

Reviewer: 2

The purpose of this study is to explore the somatotopic arrangement of the primary motor area 

using  functional  connectivity  MRI.  Segmenting  the  brain  using  fcMRI /  r-fMRI /  rs-fMRI  is 

gaining recent traction in the literature  (Margulies et  al  2009/ Kim JH et al  2010). (I hope the 

scientific community will finally come to an agreement on the correct acronym soon.) I applaud the 

authors for the amount of work performed here and their attention to the inherent issues with fcMRI 

(physiological noise, etc). However, I do have some concerns about the work that I hope the authors 

can address. Please respond to my questions both with answers and in revision of the document.

1.) The idea of a predefined arrangement in the motor cortex is one of great debate in the literature. 

Certainly, even Woolsey and Penfield mention that the motor homunculus was just a simplification 

scheme in  their  respective  manuscripts.  I  think  this  discussion is  missing  from the  paper.  The 

primary sensory somatotopic organization is very well studied and defined but the motor system 



seems to be less defined (see work by Donoghue and Sanes). The motor cortex is very plastic. Also 

the overall structure of the efferent peripheral nervous system wired to the muscles is different than 

the  organized  structure  of  the  afferent  sensory  nervous  system.  I  caution  the  authors  against 

oversimplification and ask them to revise the document with these concepts in mind.

We agree with the reviewer on this point; therefore so we approached this problem both in 

the introduction and in the discussion. We note, however, that the problem of the somatotopic 

organization  of   the  motor  cortex  does  no  vain  our  method  of  study  of  the  functional 

connectivity in resting state.  In fact,  as suggest by Schieber  (Schieber 2001),  although the 

motor representations of contiguous small body parts in the primary motor cortex seem to be 

distributed, however, it is confirmed that the body regions of head, upper limbs and lower 

limbs have largely separate topographic representations in the primary motor cortex.

2.) I am curious if the results are due to the spatial layout of the motor cortex. The author’s overall 

hypothesis  may be predefined.  Certainly these structures (face/arm/leg)  are arranged in a linear 

order and the center of mass experiment just reinforces that order. The results look like a gradient 

effect. I would recommend a control outside the linear arrangement or trying a different analysis 

method instead of the seed voxel / region approach. I worry that the analysis method used might 

predetermine the results. 

In  this  paper  we  performed  three  additional  experiments:  ALE  Metaanalysis,  motor 

activations and FC during motor task execution  in order to obtain a cross-validation of our 

seed-rsFC results. Only FC during motor task execution use the seed voxel / region approach 

all  the  other  two approach  do  not  suffer  from this  potential  confound.  Furthermore  the 

results of the meta-analysis are generated by a large number of papers which were performed 

during a motor tasks of hand or face.

The recent article by Martijn P. van den Heuvel and Hilleke E. Hulshoff Pol (van den Heuvel 

and Hulshoff Pol 2009) has shown that there is a strong  spatial correspondence between the 

centers of mass of corresponding areas of the two primary motor cortex mapped by rsFC. 

To  further  validate  our  results  as  asked  by  the  Referee  we performed  a  supplementary 

analysis to see if (i) submitted to a unsupervised voxelwise parcellation method the precentral 

gyrus  show  a  clustered  structure  and  (ii)  with  a  very  different  method  if,  even  while 

performing a task,  somatotopically homologous areas of M1 (retrived from the parcellation 

results) show a correspondence on the medial wall with an arrangement similar to that seen 

with rsFC. To do so we employed the fuzzy clustering of timecourses and the Metaanalytic 

Connectivity  Modeling  (MACM, (Robinson,  et  al.  2009));  MACM   focus  on  specific 



anatomical regions and address global coactivation  patterns across a diverse range of tasks 

and  experimental  designs.  The  consistency  of  coactivation  patterns  across  experiments  is 

interpreted  as  a  piece  of  evidence  for  the  functional  connection  of  groups  of  regions 

(Robinson, et al. 2009). 

In fact, two recent meta-analysis studies (Smith, et al. 2009; Toro, et al. 2008) demonstrated 

that the set of major covarying activation networks identified from large-scale meta-analyses 

overlaps almost completely with the set of networks that are visualized in the resting brain. 

These results provide strong evidence that RSNs reflect functional neural networks, and that 

these dynamic networks are engaged even at rest (Fox and Raichle 2007). Therefore, similarly 

to previous studies (Koski and Paus 2000; Lancaster, et al. 2005; Postuma and Dagher 2006; 

Toro, et al. 2008), we used MACM (Laird, et al. 2009) to characterize patterns of functional 

connectivity in the human brain and compared the emerging patterns with the results of our 

rsFC analysis to further validate each other (see Rebuttals Figure 1 and Methods for details).

Figure 1.   Voxelwise parcellation and MACM results  

Upper panel: Fuzzy clustering of the precentral gyrus of our group.

 Multi subject summarization with probabilistic maps.

Lower panels: MACM results confirm the findings of the rsFC as we have seen with other supplementary methods.



The fact that: (i) all four additional experiments, made with different techniques and different 

data,  confirm  our  hypothesis, (ii)  submitted  to  a  unsupervised  parcellation  method  the 

precentral parenchyma show a clusterization that resembles the parcellation outlined by our 

center of mass-shift results,  (iii)  in corresponding areas of the contralateral  motor cortex 

there  is  a  correspondence  between  homologous  areas  mapped  by  rsFC  as  recently 

demonstrated, (iiii) only two out of five experiments used the seed voxel / region approach, 

makes  us  think  that  it  is  very  unlikely  that  such  evidence  may  be  due  to  chance  or 

methodological mistake.

3.) In regards to question 2, could this be just a shared vascular effect? The drainage networks 

certainly move in similar directions to the somatotopic arrangement. Please comment.

The subsequent figure show a simplified view of the midline drainage venous system of the 

brain: it  is  possible to note that dorsally to the cingulate sulcus the blood flow is  moving 

dorsally  and caudally  whereas  ventrally  to  the  cingulate  sulcus  the  blood flow is  moving 

ventrally and caudally.  These directions are almost opposite to the gradient demonstrated by 

our experiments. We thus consider very unlikely that our results are due or seriously flawed 

by the venous drainage (see Rebuttals Figure 2).

Figure 2. S  implified view of the midline drainage venous system  

In blue venous system, in yellow venous flow, in red shift effect of hand-leg rsFC



4.) I am very concerned about the large voxel sizes 5mm x 5mm x 5mm. Is this small enough to 

detect subtle differences? Penfield used very large recording electrodes as opposed to later peers 

like  Merzenich,  Kaas,  etc.  who  used  microelectrodes.  The  later  peers  were  able  to  find  finer 

somatotopic differences in sensorimotor cortex. Current technology at 3T is about 1.5 mm cubic 

voxel size. Is the large voxel size confounding your results? How large in terms of cubic tissue is 

the body/leg or arm representation? Are your methods able to detect  differences without partial 

volume effects?  

The size of the areas identified in the somatotopic representation of  the only fMRI high-

resolution study  (Mayer,  et al.  2001) (to our knowledge) exploring the motor areas of the 

medial wall of the brain ranging from 0.2 up to 4.4 ml, ie largely above our voxel size that is 

0.125 ml.

In any case the main aims of our work are to confirm the use of seed-rsFC to map the motor 

somatotopy and to demonstrate of the double gradient of displacement within somatotopically 

arranged areas of the  medial wall. Say that we believe that even with a voxel size of 0.125 ml 

we can achieve our goals. 

Nevertheless we still need to take into account that, like most fMRI studies, our data suffer 

from relatively low spatial resolution and a partial volume effect due to the voxel dimension, 

the  spatial  smoothing  and  the  vein  drainage  effect.  It  is  clear  that  in  order  to  map the 

somatotopic distribution of motor areas in a topografically complete and most refined way we 

need further efforts with high-field scanners and more focused field of view (see for example 

(Sanchez-Panchuelo, et al.)), but the ambition of this study is not to give a final description of 

this problem but to explore this issue through an innovative technique and to demonstrate via 

this novel technique the somatotopical gradient previously suggested by other readers.

As mentioned above, given the complexity (already demonstrated by studies on monkey) of 

the somatotopically motor representation, to have a map as complete as possible is necessary 

that further studies are carried out with high resolution techniques and methods that can 

somehow overcome the partial volume problem as multivoxel pattern analysis.

In any case the results of our main experiment are strongly confirmed by the results of the 

four additional  experiments.  Though it  is  possible  that  the  voxel  size  and partial  volume 

effects may have affected the detail of our results we believe,  given that the size of our voxel is 

50% smaller than the size of a minor somatotopical area in play as mapped with 3T scanner 

by (Mayer, et al. 2001),   that these difficult issues may not subvert our results. This results 

are also fully confirmed by additional analysis in which datasets are also collected by other 

groups (see  ALE meta-analysis  and MACM) and by the   findings of  the recent  paper  of 



Martijn P. van den Heuvel and Hilleke E. Hulshoff Pol (van den Heuvel and Hulshoff Pol 

2009).

Minor Point

1.) The authors mention that subjects that fell asleep were excluded from the study. They later say 

no subjects were excluded. Please reconcile.

We corrected this part



Rebuttals Methods
Structure-based meta analysis

We followed the workflow indicated by Laird et al. (Laird, et al. 2009a) for the structure-based 

meta analyses, also indicated as MACM (Laird, et al. 2009b; Robinson, et al. 2009). We extracted 

from the BrainMap database (Laird, et al. 2005) all the studies involving only normal subjects that 

reported an activation in the selected ROI.  We used the three ROIs obtained from the voxelwise 

parcellation, corresponding approximately to the areas of activation of  the feet, hands and face. For 

each group of foci we calculated an ALE probability map using GingerAle 2.0. All the maps are 

thresholded at q<0.05 FDR corrected.

Voxelwise  parcellation 

We applied fuzzy clustering  on the left  unsmoothed precentral  gyrus  parenchyma to achieve  a 

voxelwise  segregation  of  the  underlying  motor networks.  Precentral  gray  matter  meshes  were 

segmented  from  each  subject  morphological  image  and  coregistered  using  a  high-resolution 

intersubject  cortex  alignment.  Voxels  belonging  to  this  region  were submitted  to  an voxelwise 

unsupervised  fuzzy  clustering  technique.  Fuzzy  clustering  partitions  a  subset  of  n  voxels  in  c 

"clusters" of activation (Smolders, et al. 2007; Zadeh 1977). The z-standardized signal time courses 

of all voxel are simultaneously considered, compared, and assigned to representative cluster time 

courses (cluster centroids). This data-driven method thus decomposes the original fMRI time series 

into a predefined number of spatiotemporal modes, which include a spatial map and an associated 

cluster centroid time course. The extent to which a voxel belongs to a cluster is defined by the 

similarity  (as  measured,  e.g.,  by  correlation)  of  its  time  course  to  the  cluster  centroid.  In  this 

method, "fuzziness" relates to the fact that a voxel is generally not uniquely assigned to one cluster, 

but instead, the similarity of the voxel time course to each cluster centroid is determined. This is 

expressed  by  the  "membership"  of  voxel  n  to  cluster  c.  Cluster  time  course  and  membership 

functions  are  updated  in  an  iterative  procedure  (Bezdek,  et  al.  1984)  that  terminates  when 

successive  iterations  do  not  further  change  memberships  and  cluster  centers  significantly  as 

determined via  classical  cluster  algorithm distance measures.  For  the current  fMRI dataset,  the 

number of clusters  was fixed to 2 and the fuzziness coefficient  was set to 0.4, as suggested in 

literature (Fadili, et al. 2000; Fadili, et al. 2001; Golay, et al. 1998; Moller, et al. 2002). We applied 

principal component analyses to the datasets to reduce dimensionality while capturing at least 90% 

of the total  variance/covariance. Group cluster maps were obtained using probability maps. The 



resulting fuzzy clustering maps were reported in the interval [30–90%] and superimposed on a 3D 

representation of a template brain (average brain).

Voxelwise clustering: optimal number of clusters

The a priori determination of the fuzziness coefficient and the number of clusters are research topics 

often encountered in the literature (Fadili, et al. 2001). Critically, the “true” number of clusters (i.e. 

optimal  number  of classes  is  usually  unknown in Fuzzy clustering.  In  this  perspective,  several 

cluster-validity  indices  have  previously  been  proposed  in  the  literature  to  appreciate,  in  an 

unsupervised manner, the optimal number of clusters (for a review see (Wang and Zhang 2007)). 

These indices combined different measures of compactness and separation of the clustering in order 

to  ensure  that  identified  clusters  are  compact  and  well-separated.  In  our  paper,  we  used  two 

different methods: (i) a  cross-validation method: the group was split in half, and Jaccard's J (which 

measures dissimilarity between sample sets is obtained by dividing the difference of the sizes of the 

union and the intersection of two sets by the size of the union:

was used to compare clustering solutions across the groups. The minimum number of clusters that 

minimize  the  Jaccard  dissimilarity  index  J  was  choosen.  It  yielded  local  maxima  of  3-cluster 

solution. (ii) Using the similarity index generated by the SogIca method (see (Esposito, et al. 2005)) 

we choose the minimum number of clusters that maximized the combined similarity index for each 

clustered group. The similarity index here employed is the absolute value of the mutual correlation 

coefficients, in space for the spatial sources of estimates or in time for the associated basis time-

courses; this measure give a combined value of similarity based on spatial and temporal correlation 

(see (Esposito, et al. 2005)).

Group components clusterization 

To  obtain  a  unsupervised   group  components  clusterization  of  all  the  single  subject  clusters 

generated by the Fuzzy clustering technique we employed the Self organizing group ICA. This 

method  (Esposito,  et  al.  2005), originally  developed  for  single  subject  ICA  results  can  be 

successfully employed also for our data, indeed  with this method  the  clusters of single-subject 

decompositions are grouped according to the combined spatio-temporal information using a self 

organizing grouping procedure that is based on hierarchical cluster analysis (Himberg, et al. 2004).
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