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Supplementary Notes 1 

 2 

Supplementary Note 1. Examples of Use of KBase Infrastructure and 3 

Tools 4 

 5 

The KBase platform has been utilized by a variety of scientific groups, with citations in over 30 6 

peer-reviewed publications. These publications cover a range of topics and demonstrate the 7 

novel ways scientists are applying tools within KBase to their research. Several of these studies 8 

have publicly shared KBase Narratives associated with them. These serve as a mechanism to 9 

show how the KBase platform was applied to perform the described work as well as a means of 10 

releasing the data produced in the published analysis. The KBase website maintains a curated 11 

list of published Narratives at http://www.kbase.us/narrative-library/. Here we will review a 12 

selection of these research Narratives that demonstrate many (but not all) of the workflows and 13 

capabilities available in the KBase platform (see Figure 2 in the main manuscript). 14 

1A. Reconstruction of 8000 Models of Core Metabolism Across the 15 

Microbial Tree of Life 16 

Link: https://narrative.kbase.us/narrative/ws.20186.obj.18 17 

 18 

In a recent publication in BMC Genomics1 researchers developed a framework in KBase to 19 

reconstruct and analyze core metabolic models (CMMs). Core metabolic models representing 20 

48 major phylogenetic microbial groups were constructed based on a core model template 21 

consisting of a highly curated set of biochemical reactions derived from a diverse set of model 22 

organisms, and about 200 unique reactions were selected from this set, comprising 12 key 23 

energy biosynthesis pathways linked to central metabolism and variations of bacterial electron 24 

transport chains. This framework was applied in KBase to build core models for over 8000 25 

prokaryotic genomes that span the prokaryotic tree of life. The authors used CMMs to 26 

determine: (i) accurate ATP yields based on different growth/environmental conditions; (ii) ETC 27 

variations and respiration types; (iii) ability to produce fermentation products; (iv) presence and 28 

absence of classical biochemical pathways in central metabolism; and (v) ability to produce key 29 

metabolic pathway intermediates in central metabolism which are precursors of essential 30 

biomass components of the cell. 31 

 32 

The Narrative associated with this work utilizes the core model reconstruction, gapfilling, and 33 

flux balance analysis (FBA) workflows in KBase. It also demonstrates the capacity of KBase to 34 

perform large-scale analyses. The authors used a code cell to programmatically run the model 35 

reconstruction, gapfilling, and FBA workflow on over 8000 genomes (Figure 1). Code cells make 36 

it possible to run any KBase App programmatically from within a Narrative. One can write a 37 

code cell in the Python programming language within a Narrative to run a single app or an entire 38 

pipeline of apps. While code cells require knowledge of Python programming to write, Narratives 39 

with useful code cells can be shared with any user, who can re-run the code cells with ease. 40 

This work also inspired the addition of a new batch app for model reconstruction called Build 41 
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Multiple Metabolic Models. With this new app, it is no longer necessary to use a code cell to 42 

build thousands of models. Such batch apps demonstrate a further mechanism beyond code 43 

cells through which the KBase platform can be used to conduct large studies. To download the 44 

8000+ models from KBase in SBML form, the authors used the Bulk Download Modeling 45 

Objects app, which permits bulk download of any supported type modeling object. 46 

1B. Identifying Violacein Synthesis Genes in a New Isolate Genome  47 

Link: https://narrative.kbase.us/narrative/ws.21546.obj.1 48 

 49 
With its many apps for microbial genome assembly and annotation, KBase is an ideal platform 50 

for the analysis of new isolate genomes. This is demonstrated in a recent Genome 51 

Announcement publication by Romy Chakraborty and colleagues2. In this study, groundwater 52 

samples from the ORNL FRC site were collected from multiple wells, where researchers 53 

identified a Janthinobacterium isolate that produces violacein. Violacein is a naturally-occurring 54 

bis-indole pigment with antibiotic (antibacterial, anti-fungal and anti-tumor) properties. The 55 

Chakraborty team loaded their isolate reads into KBase, performing QC and assembly. They 56 

next applied both the Prokka3 and RAST4 annotation tools to the assembled genome, with 57 

Prokka calling 5531 genes, while RAST called 5998. They also ran OrthoMCL5 to compare the 58 

two alternative annotations side by side. From this analysis, the researchers determined that 59 

both RAST and Prokka properly annotated 4 out of 5 genes in the violacein biosynthesis 60 

pathway. However, these algorithms differed in the specific violacein gene they missed. RAST 61 

missed VioC, while Prokka missed VioE. By combining both sets of annotations, the 62 

researchers were able to identify and confirm the presence of all violacein genes in their isolate 63 

of interest. The Chakraborty team’s analysis is captured in the linked Narrative, including their 64 

thought process at each step. This study demonstrates the value of having multiple apps for 65 

some of the key steps of the isolate analysis pipeline. During genome assembly and genome 66 

annotation, the researchers were able to apply multiple algorithms, evaluating and comparing 67 

the results, and selecting the best-performing algorithm for each step. 68 

1C. Predicting Trophic Interactions Within a Microbial Community 69 

Narrative 1: https://narrative.kbase.us/narrative/ws.13807.obj.1 70 

Narrative 2: https://narrative.kbase.us/narrative/ws.13806.obj.1 71 

Narrative 3: https://narrative.kbase.us/narrative/ws.13838.obj.1 72 

 73 

KBase enables researchers to study interactions between multiple species in a microbial 74 

community. In three interconnected Narratives associated with a recent cover article in the 75 

Journal of Cellular Physiology6, the authors applied KBase to construct new metabolic models 76 

for a photoautotroph, Thermosynechococcus elongatus BP1, and a heterotroph, Meiothermus 77 

ruber strain A. They used these models to predict trophic interactions between species, 78 

exploring a wide range of potential methods for predicting these interactions. The authors 79 

utilized metatranscriptomic data to validate predictions and identify which prediction method 80 

performed the best (see Figure 2). 81 
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 82 

These Narratives collectively demonstrate a large fraction of the capabilities presently available 83 

in KBase, including: (i) proteome comparison; (ii) building species trees; (iii) annotating a 84 

genome; (iv) building and gapfilling a modeling; (v) propagating a model; (vi) loading expression 85 

data; (v) building a community metabolic model; (vi) running flux balance analysis; (vii) 86 

comparing flux with expression data (Figure 2); and (viii) using code cells to sift data from 87 

objects in the KBase workspace. In this case, the code cell is used to print out the trophic 88 

interactions among species in a community model based on the flux profile generated by the 89 

FBA app. 90 

  91 

1D. Modeling Metabolic Interactions Between Cyanobacteria-92 

Sphagnum  93 

Link: https://narrative.kbase.us/narrative/ws.9667.obj.2 94 

 95 

KBase has tools and datasets that are useful for analyzing plant metabolism and plant/microbe 96 

interactions. In a study published in Plant, Cell & Environment7, researchers explored a mutually 97 

beneficial metabolic partnership between a moss and a bacterium, using KBase data and tools 98 

to build a merged community metabolic model in which a nitrogen-fixing diazotrophic microbe 99 

(Anabena) fixes nitrogen to allow a plant (Sphagnum) to grow. Sphagnum (peat moss), a genus 100 

of plants (Bryophyta) that associate with nitrogen-fixing diazotrophs is a quintessential 101 

ecosystem engineer. All the analysis steps were performed in KBase, culminating with merging 102 

the two models into a community model which exhibits nitrogen fixation and exchange, showing 103 

that the plant portion of the model consumes the nitrogen fixed by the microbial portion of the 104 

model, and predicting that the Sphagnum will grow more when utilizing nitrogen fixed by the 105 

microbe than when fixing nitrates on its own. 106 

 107 

This Narrative demonstrates the plant reference genomes in KBase, as well as the plant model 108 

reconstruction pipeline. It also shows how models of any type (for example, microbial and plant 109 

models) can be merged together to form a community model. 110 

1E. Sharing Workflows Easily with Collaborators and the General 111 

Public  112 

Link 1: https://narrative.kbase.us/narrative/ws.18152.obj.1  113 

Link 2: https://narrative.kbase.us/narrative/ws.18153.obj.1  114 

Link 3: https://narrative.kbase.us/narrative/ws.18155.obj.1  115 

Link 4: https://narrative.kbase.us/narrative/ws.18156.obj.1  116 

Link 5: https://narrative.kbase.us/narrative/ws.18157.obj.1  117 

 118 

These Narratives were specifically crafted to demonstrate how the KBase platform can facilitate 119 

interaction, data sharing, and collaboration between two scientists working on a common 120 

problem. The ability to share data, results, and workflows is extremely important and more or 121 

less a requirement in collaborative studies8. KBase facilitates copying and sharing of 122 
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collaborative data, workflows and related commentary. A user can share any Narrative that they 123 

own with other KBase users or make it publically available. Importantly, when a user shares a 124 

Narrative, they also are sharing all the data objects loaded, used, or generated within the 125 

Narrative, complete with versioning and provenance. Copying and sharing are performed in a 126 

controlled manner where users with read privileges for a Narrative can create their own copy, 127 

which they own and can edit. Users are able to quickly replicate and expand on any KBase 128 

Narrative shared with them. This approach facilitates reproducible interdisciplinary science by 129 

allowing researchers with different expertise to quickly and easily exchange data, results, 130 

methodologies, and workflows to address complex biological problems. 131 

  132 

We demonstrate collaborative sharing of data, commentary (notes) and workflows in KBase 133 

using a series of example Narratives (Figure 3) featuring two hypothetical scientists: Alice, an 134 

experimental biologist with expertise in assembly, annotation, and comparative genomics, and 135 

Bob, a computational biologist with expertise in metabolic modeling.  136 

   137 

Alice the experimentalist uploads raw reads that she has sequenced from a strain of 138 

Shewanella on which she wants to perform comparative genomic analysis in order to 139 

understand the similarities and unique features compared to phylogenetically closely related 140 

genomes.  She uploads sequencing reads to KBase and then assembles and annotates the 141 

reads generating an annotated genome (Alice assembly and annotation Narrative: 142 

https://narrative.kbase.us/narrative/ws.18152.obj.1). In a separate Narrative (Alice Comparative 143 

Genomics Narrative: https://narrative.kbase.us/narrative/ws.18153.obj.1), Alice identifies 144 

genomes that are phylogenetically close to her Shewanella strain. She also finds growth 145 

phenotype data for Shewanella oneidensis MR-1, which is phylogenetically close to her strain. 146 

This inspires Alice to perform a growth phenotype array on her own strain. Alice then compares 147 

phenotype arrays of her own strain vs S.oneidensis MR-1 and notices many differences that she 148 

cannot explain. 149 

  150 

In order to understand more about Biolog phenotype data, Alice contacts Bob the modeler who 151 

is able to analyze the metabolic differences between the two strains, which in turn helps Alice to 152 

interpret the Biolog phenotype data. Alice shares her Narratives with Bob, which allows Bob to 153 

copy her genomes into a new Narrative. In this Narrative (Bob build metabolic models Narrative: 154 

https://narrative.kbase.us/narrative/ws.18155.obj.1) Bob loads a published model of S. 155 

oneidensis MR-1, which he then propagates to Alice’s genome, producing a high quality 156 

metabolic model using the published model as a template. Bob compares the two models, 157 

identifying some interesting metabolic differences. Then Bob creates a separate Narrative (Bob 158 

and Alice shared Narrative of Phenotype Data Analysis: 159 

https://narrative.kbase.us/narrative/ws.18156.obj.1) in which he imports Alice’s Biolog data and 160 

simulates the data with his Shewanella models. He optimizes his models to fit the Biolog data 161 

and shares the results with Alice. Finally, the two scientists build another shared Narrative (Bob 162 

and Alice shared Narrative of Phenotype Data Reconciliation: 163 

https://narrative.kbase.us/narrative/ws.18157.obj.1) in which Alice improves the quality of Bob’s 164 

models by curating the models further by replacing some of the gapfilled reactions with more 165 
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biologically meaningful selections, gaining a complete understanding of the differences between 166 

her strain and MR-1. 167 

  168 

This example demonstrates how KBase can facilitate a collaborative study between 169 

scientists/groups with different but complementary expertise who are able to accomplish more 170 

together than they could individually. By saving their data, workflows along with commentary as 171 

Narratives, scientists who use KBase also enable other researchers to quickly reproduce their 172 

work with a minimum effort and also aid in further extending similar scientific research. 173 

Supplementary Note 2. Comparison of KBase with Other Online 174 

Systems Biology Resources 175 

KBase has over 160 apps offering diverse scientific functionality for (meta)genome assembly, 176 

contig binning9, genome annotation10, sequence homology analysis5, tree building11, 177 

comparative genomics, metabolic modeling12, community modeling13, gap-filling14, 15, RNA-seq 178 

processing16, and expression analysis17. Apps in KBase interoperate seamlessly to enable a 179 

range of scientific workflows. Numerous tools exist today that are similar to KBase in that they 180 

offer web-based access to a variety of systems biology workflows. Five of the most similar and 181 

widely used tools are Galaxy18, CyVerse19, Pathway Tools20, BaseSpace 182 

(http://basespace.illumina.com) and GenePattern21. In order to highlight the ways in which 183 

KBase is different from each of these frameworks, we conducted a detailed comparison 184 

between KBase and these tools, focusing on the areas of functionality where KBase is most 185 

distinctive. Here we report on the results of our comparison, organizing our analysis into six 186 

fundamental areas: (a) user experience; (b) data model and provenance; (c) built in reference 187 

data; (d) sharing of data and workflows; (e) third-party development and custom code support; 188 

and (f) available scientific functionality. 189 

2A. Overview of All Compared Platforms 190 

We begin by providing some background on each of the resources selected for our comparison. 191 

The first framework we selected was Galaxy, which is a scientific workflow, data integration, and 192 

analysis platform that aims to make bioinformatics and computational biology workflows 193 

accessible to researchers without computer programming or systems administration experience. 194 

Like KBase, Galaxy is an open-source project. The project began in 2005, and it currently exists 195 

as a collaborative effort involving primarily Pennsylvania State University, Johns Hopkins 196 

University, and Oregon Health & Science University. Although Galaxy is available in many forms 197 

(described in detail at https://galaxyproject.org/citing-galaxy/), we focus our comparison on the 198 

version of Galaxy that most resembles KBase, which is the main public usegalaxy.org site. 199 

 200 

The second framework we selected for comparison was CyVerse. CyVerse was launched by 201 

NSF in 2008 initially as the iPlant Collaborative, but in 2013,  its scope was extended to all non-202 

human life sciences, with a renaming to CyVerse in 2016. The primary mission of CyVerse is to 203 

transform broader science through data discovery. While CyVerse offers customizable and 204 

programmatic interfaces, its two primary interfaces are a point and click web interface called the 205 
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Discovery Environment, and a cloud-hosted VM app based interface called Atmosphere. As with 206 

Galaxy, we will focus most of our comparison on the web-based Discovery Environment. The 207 

CyVerse Discovery Environment provides functionality to manage data, add new algorithms and 208 

tools, and run analyses on appropriate computational resources. It also provides access to 209 

storage (user’s own, shared, and public data). 210 

 211 

The third framework we selected for comparison was the BaseSpace Sequence Hub. 212 

BaseSpace is a cloud-based, closed-source platform that provides tools to manage and analyze 213 

Illumina sequence data.  Signing up for a free trial account allows users to store up to 1TB of 214 

sequence data for an indefinite period of time, as well as giving them a limited number of 215 

“compute credits”. Many apps require “compute credits” to run, but free apps are also available. 216 

Like CyVerse and Galaxy, BaseSpace offers a web interface for storing and analyzing biological 217 

data, although this framework focuses primarily on sequencing data. 218 

 219 

The fourth framework we selected for comparison was GenePattern. GenePattern provides 220 

hundreds of analytical tools for gene expression (RNA-seq and microarray), sequence variation, 221 

proteomic data, flow cytometry, and network analysis. These tools are all made available 222 

through the online Gene Pattern Notebook environment with no programming experience 223 

required. Like KBase, this notebook environment extends the Jupyter Notebook22, 23 system, 224 

allowing researchers to create documents that interleave formatted text, graphics and other 225 

multimedia, executable code, and GenePattern analyses. GenePattern was developed at the 226 

Broad Institute starting in 2006, and it is primarily funded by the National Cancer Institute. 227 

 228 

Given the extensive metabolic modeling tools available in KBase, we wanted to include a 229 

metabolic modeling framework in our comparison. For this, we chose Pathway Tools. Pathway 230 

Tools was developed as a means of curating and visualizing biochemical pathways and 231 

associated data for various organisms, dating all the way back to 1993. It is one of the longest 232 

lived software/database/web-server suites available. Pathway Tools supports the use of all 233 

known metabolism, in a wide taxonomical range, allowing users to create databases for 234 

bacteria, fungi, and plants. Pathway Tools integrates a web server, enabling laboratories to host 235 

their own instance of the database and publish their own data. Pathway Tools is somewhat 236 

different from the other frameworks selected for comparison in that most functionalities are only 237 

available offline through its installable software suite. Still, it is useful to include it in our 238 

comparison as it embodies many distinctive design patterns. 239 

2B. Comparison of User Experience 240 

KBase and all five of the platforms we selected for comparison offer a similar overall user 241 

experience. All platforms have a graphical user interface, which enables users to view data and 242 

run apps in point-and-click fashion. All platforms offer a centralized website from which users 243 

can access a canonical version of the platform. Galaxy, GenePattern, and Pathway Tools also 244 

offer a downloadable version, which can be installed and run on a user’s own hardware. The 245 

KBase SDK also allows for this, but in a much less user-friendly and more limited manner. 246 

 247 
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KBase’s Narrative Interface is distinct from any other analysis platforms available today, 248 

although it shares some common features with GenePattern21. KBase and GenePattern are 249 

both built on the Jupyter platform, allowing users to fashion multi-step analyses within online 250 

notebooks which they can then share. Both KBase and GenePattern extend Jupyter by offering 251 

users a point-and-click menu of apps that can be run within the Jupyter notebook. However, 252 

KBase is unique in also wrapping a data-layer around Jupyter, enabling users to browse and 253 

view data objects imported or generated by apps within the notebook. Pathway Tools, CyVerse, 254 

and BaseSpace are all app-centric interfaces with limited workflow support. Users select a 255 

single app, then select data to run the app on. Then the user views and shares the output of the 256 

analysis. Other point-and-click computational platforms do exist that enable users to 257 

dynamically construct workflows, including Taverna24, XSEDE25, myExperiment26, Kepler27, 258 

Pegasus28, and Globus29, but many of these platforms lack KBase’s tight integration of tools and 259 

data, and none of these platforms offers the “story-telling” capacity of a Jupyter notebook-based 260 

interface. 261 

 262 

Thus in the area of user experience, Galaxy and GenePattern are the most similar to KBase. 263 

2C. Comparison of Data Model 264 

Data model is one area where the platforms we selected for comparison vary the most. In our 265 

comparison, we found three distinct design patterns: (i) a file-based design (Galaxy, CyVerse, 266 

BaseSpace, GenePattern); (ii) a structured object-based design (KBase); and (iii) an entirely 267 

relational design (Pathway Tools).  268 

 269 

Galaxy, CyVerse, GenePattern and BaseSpace all share very similar data frameworks in which 270 

all data is stored in the native file format uploaded by the user (e.g., FASTA, FASTQ, BAM). In 271 

these frameworks, the files are always augmented with associated metadata. This data model 272 

has several advantages: (i) upload and download are easy because there is no need to 273 

transform files into another form; (ii) sharing, provenance, and versioning are all easy because 274 

individual objects are self-contained and these features can operate on the level of each 275 

individual object; (iii) integration of files with tools is simple because tools typically operate on 276 

native file formats directly. However, this approach also has disadvantages: (i) files are only as 277 

consistent as their standards force them to be, and many files types (e.g., SBML, FASTA, GFF, 278 

GenBank) actually involve extensive variability in how they represent data; (ii) there are often 279 

many different file formats representing a single entity (e.g., FASTQ, FASTA, SRA for reads), 280 

meaning many file format conversion utilities are required and the user spends significant time 281 

transforming file formats; (iii) complex files (e.g., GenBank, FASTQ, SRA) are often treated as 282 

black boxes, meaning they lack introspection and the files are not indexed in detail; and (iv) the 283 

data that can be stored in a data type is limited by what is accommodated by its associated file 284 

formats (e.g., in COBRA, extensive data is stashed in the typed object used to represent a 285 

model, but when that typed object is converted to SBML, some of that data is lost due to 286 

limitations in the SBML file format). 287 

 288 
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The KBase data model is similar to the file-based data model in that it is also object-based. This 289 

means the KBase data model shares the largest benefit of the file-based system, which is that 290 

individual objects are self-contained and can be independently shared, versioned, and 291 

provenanced. However, instead of representing objects in their original file formats, KBase 292 

represents objects in a single standardized, typed, rigorously specified, versioned, and validated 293 

JSON-based format. The downside of this approach is that all uploaded and downloaded files 294 

must be converted to and from their associated KBase object type, which makes supporting 295 

upload and download a challenge for tool developers (the conversion process is transparent 296 

and thus has very limited impact on end-users). This conversion can be lossy if the input file and 297 

output data-type are not completely synchronized. This also makes tool integration more of a 298 

challenge, as the tool developers must add some additional code to handle the conversion to 299 

and from any KBase data type that their tool operates against. A developer may also need to 300 

add a new data type if the output of the tool must be persistent (and reused) and the type 301 

doesn’t already exist. However, this approach eliminates nearly all the downsides of a file-based 302 

system: (i) types are totally standardized and consistent even if their associated files are not; (ii) 303 

there is only one representation for each fundamental type (e.g., “reads” vs SRA, FASTQ, 304 

FASTA); (iii) types can be summarized, viewed, introspected and interconnected, although this 305 

still isn’t as easy and performant as a fully relational data model; and (iv) data types can be 306 

rapidly expanded as required to meet the demands of new analyses being added to the 307 

framework (e.g., adding atom mappings to metabolic models).  308 

 309 

The data model in Pathway Tools is completely distinct from the other platforms, maintaining 310 

data internally within a relational database, while using primarily custom flat-file-formats that are 311 

specific to Pathway Tools for data exchange. This has the advantage of maintaining data in a 312 

highly interconnected and queryable format within the Pathway Tools framework. Introspection, 313 

search, standardization, and internal consistency are all great strengths of this approach. 314 

However, this comes at the cost of granularity in support for versioning, sharing, and 315 

provenance in Pathway Tools.  316 

2D. Comparison of Provenance, Data Sharing, and Data Versioning 317 

Our data model comparison reveals how the provenance, data sharing, and data versioning 318 

features of our selected frameworks depend significantly on the data model of the framework. 319 

Galaxy, CyVerse, BaseSpace, GenePattern and KBase, all of which have file-based or object-320 

based data models, have similar support for provenance and sharing. All of these frameworks 321 

maintain information about the input parameters and apps used to produce each object stored 322 

in the system (limited in the case of GenePattern). All of these frameworks also support sharing 323 

at the level of individual objects. However, this always involves copying objects into “libraries” 324 

(Galaxy), “folders” (CyVerse), “projects” (BaseSpace), “notebooks” (GenePattern), or 325 

“Narratives” (KBase) and sharing those containers with other users. Galaxy, CyVerse, 326 

BaseSpace, GenePattern, and KBase do vary in how they handle versioning. Only KBase 327 

maintains an explicit version number of every overwritten object, and only KBase allows an 328 

overwritten object to be reverted to a previous version. BaseSpace and GenePattern do not 329 

support data versioning, instead relying on users not to overwrite data that they want to keep 330 
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(although this can result in loss of the data needed to repeat a particular downstream result). 331 

CyVerse and Galaxy follow a very different approach in that objects are namespaced and 332 

timestamped according to the workflow and the previous objects from which they were derived. 333 

Thus, it is essentially impossible to overwrite an object, and all versions of all data are 334 

preserved unless explicitly deleted by the user.  335 

 336 

In this area, Pathway Tools is quite different from the other frameworks, which is not surprising 337 

given its very different data model. Versioning in Pathway Tools only occurs at the level of an 338 

entire PathwayDB, and sharing is only supported by exporting data into files, which can then be 339 

shared offline and imported elsewhere. Pathway Tools only preserves provenance in the 340 

annotations and curations made to its underlying relational database, although in this case, 341 

provenance can be maintained with a granularity and detail that exceeds the other systems 342 

discussed. 343 

2E. Comparison of Built-in Reference Data 344 

Reference data is another area where KBase stands out among the platforms we selected for 345 

comparison. Reference data is vital in that it serves to place user data and analysis results into 346 

the broader context of all other known data of the same type. It is often more useful to 347 

understand how a genome is different from its phylogenetically close neighbors than to 348 

understand every single detail of the genome itself. 349 

 350 

Among all our platforms selected for comparison, only KBase and Pathway Tools offer their own 351 

internally managed, organized, and curated reference data collections. KBase offers a reference 352 

database of over 90K microbial and eukaryotic genomes maintained and periodically 353 

synchronized with RefSeq and Phytozome. To facilitate comparison, all of the microbial 354 

genomes have been annotated using the RAST genome annotation app in KBase. KBase also 355 

offers a reference database of biochemistry, including 27K compounds, 34K reactions, and 522 356 

media formulations. The reference genomes in KBase are readily available for copying into any 357 

KBase Narrative for analysis and comparison, but they also form the basis for some apps that 358 

analyze user data in the context of this reference data (e.g., the Insert Genomes into Species 359 

Tree app). The reference biochemistry in KBase forms the basis for the metabolic model 360 

reconstruction, standardization, and gapfilling tools in KBase. 361 

 362 

Pathway Tools offers ready access to a database of 9318 Pathway Genome Databases, each 363 

of which represents a single genome, a metabolic reconstruction, and a basic model. Pathway 364 

Tools also deeply integrates a reference biochemistry database comprised of 14K reactions and 365 

13K compounds. Even more than KBase, this reference data in Pathway Tools is at the core of 366 

every analysis a user does in the platform. 367 

 368 

While Galaxy, GenePattern, CyVerse, and BaseSpace do not presently have their own 369 

internally managed and organized reference data, it is important to note that: (i) all four of these 370 

platforms include apps that facilitate the download of reference data from other existing 371 

databases (e.g., NCBI); (ii) all four have public data available for download and access to 372 

Nature Biotechnology: doi:10.1038/nbt.4163



 
 

 10 / 18 
 

 

varying degree (e.g., CyVerse has a large and diverse data commons while BaseSpace has 373 

example datasets); and (iii) many apps integrated into these platforms maintain their own 374 

sizable reference databases. This last point is critical, and in fact, provides one reason why 375 

maintaining an internal reference database is useful. Users will run many different apps on their 376 

data, which internally may utilize their own wide range of internal reference data. Problems may 377 

arise when mixing and matching apps that rely on different and inconsistent reference data. 378 

 379 

Overall, KBase stands out in this category for its breadth of genomic and biochemical reference 380 

data. 381 

2F. Comparison of Third-party Development and Custom Code 382 

Support 383 

In terms of support for third-party development, KBase, BaseSpace, GenePattern, CyVerse, 384 

and Galaxy all offer a similar experience, while Pathway Tools is quite different. In large part, 385 

this is due to the fact that KBase, BaseSpace, GenePattern, CyVerse, and Galaxy were all 386 

designed in part to serve as platforms for the deployment of third-party apps. All of these 387 

platforms have their own equivalent of an app catalog (called the Discovery Environment in 388 

CyVerse and the ToolShed in Galaxy). These app catalogs enable users to discover apps, read 389 

documentation related to the apps, rate the apps, and view apps created and shared by other 390 

users. All of these platforms offer an SDK of some form, and use virtualization technology to 391 

simplify deployment (Galaxy, CyVerse, and BaseSpace use Docker just like KBase does). 392 

Galaxy, KBase, CyVerse, GenePattern, and BaseSpace enable users to create their own 393 

custom UIs for their apps using general spec files encoded in either XML (Galaxy) or JSON 394 

(KBase, CyVerse, BaseSpace). The complexity associated with the addition of an app is roughly 395 

equivalent in all five platforms. The object-based data model in KBase does create added 396 

complexity for developers as they need to convert between objects and files when wrapping a 397 

tool, but conversely, these developers also often benefit from the greater standardization of 398 

objects fed into their tool on KBase. Galaxy has a lower learning curve and simpler app 399 

development process, but app registration system-wide is more difficult. CyVerse, GenePattern, 400 

BaseSpace and KBase have steeper learning curves to create a new app, but KBase has the 401 

simplest interface for registering, sharing, and maintaining an app in the App Catalog.  402 

 403 

One unique aspect of the KBase SDK is the ease with which a developer can programmatically 404 

call any KBase app from within another app (e.g., the metabolic model reconstruction app can 405 

invoke the species tree building app internally to place a genome in a specific phylogenetic 406 

neighborhood). This capability will grow in power and importance as the number of apps 407 

available in the KBase app catalog increases.  408 

 409 

A second unique aspect of the KBase SDK is the support for binding in a wide range of 410 

programming languages, as well as the ability to construct a new module from a standard 411 

template in any of the same programming languages. CyVerse, GenePattern, BaseSpace, and 412 

Galaxy all offer only REST web services for interacting with the broader platforms (e.g., 413 

accessing data).  414 
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 415 

Pathway Tools also supports third party development, but in a much less formal, flexible, or 416 

automated fashion. Pathway Tools offers a LISP command interface, which exposes an API to 417 

access Pathway Tools data and run Pathway Tools applications interactively. Users can use 418 

this API to create new tools, and they can work with the Pathway Tools developers to get their 419 

tool integrated into the platform, but there is no way for a user to do this independently without 420 

interacting with core developers. Additionally, the tools must be written, at least in part, in LISP 421 

in order to interact with the rest of the Pathway Tools platform. KBase, CyVerse, BaseSpace, 422 

and Galaxy all offer language-agnostic REST or JSON RPC interfaces for platform interaction. 423 

2G. Comparison of Custom Code Support within Platform Workflows 424 

One key differentiator of KBase is that it’s built on the Jupyter framework, so it enables users to 425 

seamlessly integrate IPython code cells into their workflows, either to run KBase apps in bulk, or 426 

to implement custom analysis steps that are not yet implemented within an app. Both of these 427 

capabilities are used to good effect in the exemplar Narratives described above. We explored in 428 

our comparison whether any other selected platforms offer a similar capability. 429 

 430 

GenePattern is the most similar platform to KBase in terms of this capability since it is also built 431 

on top of the Jupyter framework. GenePattern also allows seamless integration of custom code 432 

and Markdown cells into users’ workflows, and GenePattern offers a programmatic interface for 433 

running apps in the platform. 434 

 435 

Neither CyVerse nor BaseSpace exhibit this capacity. The only way to integrate custom code 436 

into a workflow in these environments is to create a new app using the SDK. However, CyVerse 437 

does allow users to run local scripts in Shell, Perl, Python or R and run basic utilities based on 438 

these languages in the Discovery Environment for data/file processing. Users can write custom 439 

workflows using the LISP command interface in Pathway Tools, but rapidly sharing these 440 

custom workflows with others is difficult, as generally sharing workflows in Pathway Tools is not 441 

supported. 442 

 443 

Galaxy does not natively support the integration of custom code either. However, there are 444 

deploys of Galaxy available within Jupyter, where Python code can be used to run Galaxy apps 445 

within Jupyter code cells. This functionality is not nearly as integrated as the code cells in 446 

KBase, but it does offer a similar capability. 447 

 448 

Overall, a strong argument can be made that this important feature, at least in a fully integrated 449 

form, is unique to the KBase and GenePattern platforms. One of the challenges in using any 450 

online workflow system for scientific analysis is that virtually every scientific workflow is distinct 451 

(given the importance of novel discovery in science). Thus, it is very easy to run into a step in 452 

one’s workflow for which no app conveniently exists in the platform one is using. When this 453 

happens, the user is forced to pull their data out of the platform they are using and load it into 454 

another environment where the needed analysis is available. This disrupts the continuity, 455 

provenance, and containment of the analysis. The analysis can no longer be shared as a single 456 
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self-contained entity for others to run. Thus, support for custom code is a truly important function 457 

for this type of platform, and it is distinct to KBase and GenePattern. 458 

2H. Comparison of Available Scientific Functionality 459 

Scientific functionality is one of the areas with the greatest variability among the platforms 460 

included in our comparison. Although there are plenty of examples of specific apps that are 461 

available in multiple platforms, no two platforms offered the same range of functionality, and all 462 

platforms had distinct areas of strength. Table 1 shows approximate support for different types 463 

of functionality in each platform. Note that this comparison focuses on functionality relating to 464 

the analysis of microbial and plant genomes, as this reflects the mission-space of KBase as a 465 

DOE resource. 466 

The app functionality in KBase differs from existing systems in several ways. The seamless 467 

integration of code cells that KBase offers is distinctive, but not entirely unique--GenePattern21 468 

and Synapse offer a similar capability. Galaxy18, Taverna24, CyVerse19, XSEDE25, 469 

myExperiment26, and GenePattern21 overlap with many of the bioinformatics workflows in KBase 470 

but lack the metabolic modeling capabilities. COBRA Toolbox30, Pathway Tools31, and RAVEN 471 

Toolbox32 support metabolic modeling but offer only minimal support for genome sequence 472 

analysis. In terms of science functionality, each platform has its own set of strengths and 473 

weaknesses. There are many categories where nearly all platforms have at least something to 474 

offer (although some have more than others). These include genome assembly, genome 475 

annotation, RNA-seq, comparative genomics, expression analysis, and assembly. However, 476 

among these categories, some platforms are clear gold standards in certain areas: CyVerse, 477 

GenePattern, and Galaxy for RNA-seq, variation, and comparative genomics; and KBase for 478 

assembly and annotation. 479 

 480 

Finally, there are areas of functionality that really distinguish between platforms because very 481 

few platforms offer any functionality at all. In metabolic modeling, only Pathway Tools and 482 

KBase offer functionality; in metagenome annotation, only CyVerse and Galaxy offer 483 

functionality; and in metabolomics and chemistry, only Galaxy offers functionality. Currently, 484 

KBase’s capabilities for community model reconstruction, plant model reconstruction, 485 

community model gapfilling, and expression data model integration are completely unique to the 486 

KBase platform. Unsurprisingly, an examination of the app run counts in KBase reveals that the 487 

most runs are applied to the apps where KBase is strongest: annotation, modeling, and 488 

assembly  489 

2I. Summary of Platform Comparison 490 

Overall, from this comparison we see that KBase is extremely distinct from other bioinformatics 491 

and computational biology platforms that exist today. The data model is a key area of 492 

distinction: KBase uses biological types as objects, while most other platforms use files. While 493 

this makes file conversion more challenging for developers, it brings the benefit of generally 494 

making all tools much more interoperable and integrated, and requiring far fewer apps simply to 495 

convert data from one format to another. The KBase data model also permits introspection, 496 
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enabling viewers, summary statistics, dropdowns and search utilities that offer views of 497 

subobjects within an entity (reactions in a model, genes in a genome).  498 

User experience is another key differentiator in KBase. With its integration on top of the Jupyter 499 

framework, KBase offers users the ability to run their analysis workflows within a notebook 500 

environment that also supports the seamless integration of custom text, graphics, and even 501 

executable code. Users can organize their apps, text, and graphics into rich, reproducible, 502 

scientific stories that may be shared and extended by others. Only GenePattern shares this 503 

capability with KBase, and GenePattern lacks the tight integration of data into this notebook 504 

environment that KBase offers. 505 

Custom code support is another strength for KBase. KBase and GenePattern are the only 506 

platforms that offer this capacity natively within their primary interface. This capability is 507 

essential, as it enables a user to fill gaps in a workflow by writing custom code directly within the 508 

Narrative notebook. This enables a user to maintain the continuity of a Narrative as much as 509 

possible by avoiding the need to export data and analyze offline or in another platform in order 510 

to complete custom analyses. There is an enormous benefit to reproducibility if all work for a 511 

single complex study is performed in a single environment. 512 

Reference data is also a key distinguishing component of the KBase platform. Only Pathway 513 

Tools and KBase maintain their own internal curated reference data. This data is crucial for 514 

placing user data into context. While other platforms do support reference data used by 515 

individual tools, there is great benefit in consolidating reference data for tools at much as 516 

possible to ensure that all tools are using a common reference data. The reference data in 517 

KBase is also instrumental to planned functionality like the Knowledge Engine. 518 

Finally, scientific functionality is another key area of distinction for KBase. KBase offers diverse 519 

functionality that is nearly as broad as Galaxy (in terms of the number of categories of apps 520 

available) if not always as deep as Galaxy (in terms of the number of apps in each category). 521 

Additionally, there are some areas of functionality where KBase is a gold standard compared 522 

with the other platforms in our comparison, including genome assembly, annotation, and 523 

metabolic modeling.  524 

This comparison focused on the most distinguishing features of the KBase platform, exploring 525 

how these features contrast with other platforms. As a result, this comparison ignores many 526 

important features that differentiate these other platforms from KBase. For example, 527 

BaseSpace, Galaxy, and CyVerse all excel at the annotation and analysis of human and other 528 

eukaryotic genome data. In contrast, the KBase user agreement explicitly prohibits the upload 529 

and analysis of human data in KBase. As a further example, Galaxy and Pathway Tools both 530 

excel at portability, meaning users can easily install and run their own instance of these 531 

systems. In contrast, platforms like KBase, GenePattern, and BaseSpace are fully centralized. 532 

 533 
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Supplementary Note 3. Code and Data Availability 534 

3A. Code Availability 535 

The KBase code, available at github.com/kbase, is open source and freely distributed under the 536 

MIT License. The web-accessible KBase system (narrative.kbase.us) is run on DOE computing 537 

infrastructure and is freely available for anyone to use. KBase adheres to the FAIR (Findable, 538 

Accessible, Interoperable, Re-usable) data principles endorsed by many funding agencies and 539 

scientific organizations33 540 
 541 

3B. Data Availability 542 

All data generated or analyzed during this study are included in this published article and 543 
Supplementary Note 1 as links to the original work, or in the associated KBase Narratives linked 544 
here. An earlier version of this paper was published as a preprint34. 545 
 546 

Supplementary Figures 547 

Supplementary Figure 1.  Code cell for batch processing. A custom code cell created within the 548 

Narrative Interface that constructs CMMs for thousands of genomes. 549 

 550 

 551 
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Supplementary Figure 2.  “Compare Flux with Expression” output. Bar chart produced by the “Compare 552 

Flux with Expression” app in KBase, which evaluates the reconciliation of metabolic model predictions 553 

against expression data. All of the data points are categorized into biochemical pathways. 554 

 555 
 556 

Supplementary Figure 3. Sharing of data, commentary and workflows using KBase Narratives. Two 557 

researchers (Alice and Bob) create analysis workflows that complement each other’s research resulting in 558 

more intuitive and complete scientific conclusions. 559 

 560 
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 562 

Supplementary Tables 563 

 564 

Supplementary Table 1. Comparison of functionality available across evaluated platforms 565 

Category KBase CyVerse BaseSpace Galaxy GenePattern Pathway 
Tools 

Genome 
assembly 

High Medium Low Medium None None 

Microbial 
genome 
annotation 

High Medium Low Low Low Low 

Metagenome 
assembly and 
contig 
binning 

Medium Medium None Low None None 

Metagenome 
annotation 

None Medium None Medium None None 

Variation and 
GWAS 

None High  Medium  High High None 
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RNA-seq Medium High Low High High None 

Metabolic 
modeling and 
chemistry 

High  None None None Low High 

Metabolomics 
and chemistry 

Low None None Medium None Low 

Comparative 
genomics 

Low High Low High Low Low 

Expression 
analysis 

Low Low Low High High Low 

 566 
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