
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

In this paper the authors investigate social decision-making using a iterated Public Goods Game 

(PPG), in which players had to give up their initial endowment toward a public good that would benefit 

all 5 players. However, the public good (or common reward) would only be realized if at least 2 or 4 

players would contribute, whereas the other players could free-ride, thus keeping their endowment 

and, if the public good was realized, also received the common reward. In the modeling the authors 

claim that a social learning model that balances individual and group utility provides the best fit to the 

data. In the model-based fMRI analysis, they found several brain region (ACC, dmPFC, lPFC, vmPFC, 

rTPJ) - known from other studies on social decision-making - to be involved in representing and 

integrating key model-based signals.  

 

The topic of this study (strategic social decision-making) is timely and relevant to broad readership of 

Nature Communication. The experimental design of the study is good and capable of producing 

interesting data. However, there are many inaccuracies and even errors in the modeling and fMRI 

analysis (detailed below) some of which are likely going to have an impact on the results. This makes 

this paper unsuitable for a top-level journal like Nature Communications.  

 

 

Behavior  

 

Figure 1D show basically the same thing in 3 different panels, namely that participants contribute less 

in k=2 trials and that their probability of contribution declines across the PGG. I like the trial-by-trial 

display, but it would be more informative to combine these data with the success of the subjects (just 

as in the companion paper using POMDPs (Khalvati et al., 

https://www.biorxiv.org/content/early/2018/09/17/419515). This could reveal an interesting pattern 

in the model-free behavior, which could then be used for a posterior predictive check (see Model 

Comparison below).  

 

Also, the authors claim that participants in PGGs often free-ride on the last trial, because they don’t 

have to worry about the consequences for future interactions. This was the stated reason for excluding 

the last trial from the model and in the fMRI analysis. However, by judging the data in Figure 1D this 

doesn’t seem to be the case as there is no sudden drop in contribution on the last trial.  

 

Computational Modeling  

The top-level computation of the model is a weighted linear combination of the relative individual 

utility of contributing vs free-riding and the group utility that represents the cumulative expected 

reward for the remaining trials (p. 5). However, Eq 10 defines the group utility not as a cumulative 

sum of the reward, i.e. the reward does not appear in the summation. There may be just a term 

missing here, but if the group utility was computed according to Eq 10, then is does no represent what 

the authors are claiming. Alternatively, if the group utility was changed into a cumulative sum of 

expected rewards, then likely all results are going to change (modeling, model comparison, and fMRI). 

Finally, unlike the definition of the individual utility, the group utility is computing without taking the 

individual action (C/F) in account. I would suggest to make G contingent upon the individual action, 

which might also help to resolve an inconsistency in the interpretation of the PPI (see below).  

 

The social prediction error (SPE) is updated with a dynamic learning rate that consists of a constant 

part (alpha) and a weighted reward prediction error (RPE) (Eq 12). The authors claim that because the 

RPE-weight (theta) is significantly different from zero, this demonstrates that this weighted RPE (and 



hence the dynamic learning rate) is an essential part of the model. However, this claim is overstated 

and needs to be tested in a formal model comparison (see below) against a model with a constant 

learning rate.  

 

Overall, there were quite a few careless errors in the model equations:  

(a) indices (e.g. i) are included in some equations and dropped in others,  

(b) Eq 2 is not correct and should read: p(C) = logit(Q) = logit(omega * I + (1-omega) * G)  

(c) in some equations it makes more sense to sum until N and not N-1,  

(d) in Eq. 4 it would be better to include k and reference Gamma to Eq 11,  

(e) in Eq 15 it would to use a different letter than Q as it easy to confuse with the Q from the social 

learning model. Also, k is not properly placed.  

 

I would strongly urge the authors to carefully review their equations prior to a resubmission.  

 

 

Model Comparison  

 

The computation of the BIC values does not adhere to standards and current practice, i.e. the final 

term (ln(N)) is usually not divided by N. Such a deviation from common practice can change the result 

of the model comparison itself. It also makes the BIC values unusually low, which also suggests that 

they were averaged across cross-validation samples and subjects. (The text in the methods suggests 

that 12-fold cross validation was carried out only once, but I assume in favor of the authors that they 

iterated across all possible folds in their cross-validation analysis.) A more common approach would be 

to sum up the log-likelihoods across cross-validation samples and subject and then include these 

numbers in the penalty terms of the BIC.  

 

Furthermore, the difference in BIC values in Table 1 appear rather marginal, sometimes even just 

after the decimal. I am not convinced that the best-fitting social learning model is really providing a 

better fit to the data than the competing models. In that respect, it would be better to convert the BIC 

values in Bayes Factors (or Bayesian model weights or exceedance probabilities) that would clearly 

indicate (irrespective of how information criteria were calculated) whether one model has a substantial 

advantage over the others.  

 

Even if we were to believe that the social learning model was superior, we have no idea whether the 

model actually fits the data, as there is no posterior predictive check provided in the paper. The 

authors should simulate new data using their fitted parameter value and then analyze them in a 

model-free way (e.g. as they did with their initial behavioral analysis). If done this way, it will become 

clear if the model is able to generate synthetic data that is comparable to the empirical data from the 

experiment.  

 

Finally, the entire model comparison needs a more systematic approach. The social learning model has 

many different parameters and their necessary role in the final model should be evaluated using 

model comparison. In addition, in the supplement, the authors estimate a model with 2 omega 

parameter and 2 lambda parameters, but this variant of the model was never formally tested against 

the others.  

 

 

Model-based fMRI  

 

Some of the GLMs are constructed with experimental regressors that are never tested. For instance, in 

GLM1 there are regressors for the outcome in trial t and decision phase in trial t+1, but all model-



based signals (individual and group utility are modeled on the outcome. Why? It is common practice 

to model value signals at the time of the decision, not the outcome.If the goal was to look for value 

computation immediate after the outcome, then the utility of trial t+1 should have been modeled at 

the outcome of trial t, and the regressor at the decision phase is superfluous.  

 

Furthermore, the authors state that the individual and group utility are independent - an important 

information if they are to be modeled on the same outcome event. It would be nice to see that they 

are uncorrelated. Unfortunately, it has become a sort standard practice to create different GLMs to 

test for different model-based terms. This avoid the problem of multi-collinearity of different model-

based regressors and the authors also follow this unfortunate practice here. However, running several 

different GLMs is just avoiding, not addressing the problem as the interpretation of different GLMs 

could become obscured if the inherent correlation between signals is not addressed. Therefore, it is 

even more important to report correlations between different regressors and model-based signals.  

 

It is confusing that GLM2 conflates the dynamic RPE-dependent learning rate with the SPE, which 

precludes the identification a region coding purely for and SPE signal. Also, this doesn’t appear to be a 

belief update signal, which is rather modeled in GLM3.  

 

The connectivity analysis (psycho-physiological interaction analysis) presented in Figure 4 is 

meaningless, because the psychological variable is not properly defined. The authors used a simple 

onset regressor as the psychological modulator, but this is incorrect. A connectivity analysis like this 

does not reveal any task-specific modulation, but rather general functional connectivity (like in resting 

state experiments). I suggest that the authors use a physio-physiological interaction, which includes 

two BOLD time series from different regions as seeds. This seems to be more what the authors are 

aiming for.  

 

There are some interpretational inconsistencies that are not properly addressed. According to the 

findings of Figure 1, vmPFC is inversely correlation with the relative individual utility, so it is 

associated with free-riding. lPFC is positive correlated with the group utility, so it is associated with 

contributing. However, these contrasting signals are both positively coupled with dmPFC, which the 

authors claim is coding the strategic decision, for which they are using the action probability of free-

riding (p(F)). It is unclear, how two opposing signals can be both positively coupled with the action 

probability for just one of the choices. Furthermore, I think it would make more sense to use the 

integrated utility Q (Eq 2) instead of the action probability.  

 

 

Figures  

 

Figure 1D: The t-tests in the middle panel do appear to be corrected for multiple comparisons. Please 

sue a correction method (e.g. permutation test) to do so.  

Figure 2C: The legend states that that these figures show the group utility G, but there is not G in the 

panels! Also, in the left panel N-k should be above the Sigma, not a superscript of Gamma, Figures 2B 

and 2C are not mentioned in the main text  

Figure 3B: x-axis show be labeled “low” and “high”. It would be better to show the value of theta 

here, not the product of theta * RPE  

 

 

 

Reviewer #2:  

Remarks to the Author:  

Park et al. have elucidated neural mechanisms underlying human strategic group decision-making. By 



using model-based fMRI together with functional connectivity analysis, they have demonstrated that 

participants’ behavior in Public Goods Game was driven by individual utility encoded in vmPFC and 

group utility encoded in FPC; and that these computational variables were integrated in dmPFC. I 

appreciate their efforts to conduct the great experiments and the data analyses, and believe that this 

study could potentially provide significant insights into wide-range of researchers who are interested in 

human social cognition and decision-making.  

 

My primary concern is about decision-algorithm of other agents. In strategic interactions, scanned 

participants’ behavioral pattern would highly depend on the other agents’ behavioral pattern. The 

authors have claimed "The computer agent was programmed … in an ecological manner."; however I 

could not find any justification or validation. That’s a critical point. I believe they need to conduct an 

additional behavioral experiment involving real interactions among human participants, and to show 

that their main computational model provides the better fit to the data compared with other models 

do.  

 

My secondary concern is about computational models. The main model looks plausible, but I believe 

this should be compared with many other models. For example, they can construct a model with 

Lambda = 0, Pi = 0, a mixed strategy model (P(C) = p where p is a free-parameter), the optimal 

mixed strategy model (P(C) = p* where p* is the optimal probability predicted by the Nash 

equilibrium) and a model relying only on Group-utility model etc. Furthermore, is it possible to 

construct a hybrid model of social learning and inequity aversion?  

 

The authors have assumed participants updated their belief about others' decision in a model-free 

manner. I believe they need to provide justification. As far as I know, many researchers believe that 

model-based learning is required to predict others’ behavior in strategic interactions (e.g., Yoshida et 

al., 2010).  

 

In the model comparison procedure (see P.5), why did the authors calculate BIC based on cross-

validated likelihood? That’s strange. If they employed cross-validation to compute likelihood, they can 

compare likelihood (not BIC). If they employed BIC, likelihood should be derived without cross-

validation. I believe cross-validation is not valid in this study, as each data (i.e., trial) in the repeated-

game experiment is not independent from one another. I would recommend Bayesian model selection 

(Stephan et al., 2009) or hierarchical modeling approach (Daw, 2009: 

http://www.princeton.edu/~ndaw/d10.pdf).  

 

In the fMRI analyses, why did the authors focus on feedback phase, not decision phase? What 

happens if they look into neural correlates of the key computational variables in decision phase?  

 

In the fMRI analyses, why did the authors have four separate GLMs? Is there specific reason? In 

principle, I believe all the computational variables of interest should be included into one single GLM to 

evaluate the explained-variance of each variable.  

 

The present study have shown that key computational variables in the decision-making were 

integrated in dmPFC. To my knowledge, it is still controversial in which brain regions multiple 

computational variables are integrated for value-based decision-making. Some studies supported the 

possibility that value integration occurs in dmPFC including dACC (Hare et al., 2011; and Suzuki et al., 

2015), while others provided the evidence for value integration in vmPFC (Behrens et al., 2008; Hare 

et al., 2010; Smith et al., 2014; and Lim et al., 2013; Suzuki et al., 2017). It would be interesting to 

discuss this issue in the Discussion section.  

 

Why was the number of interaction fixed (T = 15)? A conventional way in this type of repeated-game 



experiments is that the number of interaction is determined stochastically. The concept of “backward 

induction” in Game Theory predicts that participants do not cooperate in any trials (not only the last 

trials!) in this type of finite repeated interactions.  

 

In Figure 4A, the activation labeled ACCg is corpus callous?  

 

The authors said they recruited N strangers for each experiment. How did they confirm the 

participants are strangers?  

 

As far as I understand, when decision-making participants could see information about k, t and T-t. 

How about including these variables into GLM as regressors of no-interest?  

 

 

 

Reviewer #3:  

Remarks to the Author:  

This study by Park and colleagues investigated brain mechanisms underlying the computations 

involved in social decision-making during public-good game. In the experiment, participants played 

multi-round, threshold public good game with different groups of 4 virtual people. Authors reported 

that participants’ decision could be modeled as a combined function of individual and group utilities, 

both of which depended on participants’ learned estimate for the number of free-riders among other 

people at a given round. Using fMRI, authors also reported that activations in separable regions of the 

brain (ventromedial prefrontal cortex, lateral frontopolar cortex, dorsomedial prefrontal cortex) were 

correlated with modeled decision variables such as utilities and estimated choice (contribution vs. 

free-riding) probabilities at a given trial.  

 

Authors used computational approach to model the latent decision variables that allows authors to 

quantitatively characterize behavior and to look for neural correlates for the latent variables, which is 

the strength of the study. The public good game in group might provide a good platform to study the 

mechanisms underlying complex reasoning processes involved in social decision-making.  

 

However, behavioral analyses are rather underwhelming, which makes it hard to evaluate how well 

the best model captures the representative behaviors of participants during the game. Analyses of 

fMRI data (GLM models) are also underwhelming and didn’t take account the variables whose effects 

could be potentially confounded with the main results reported in the study. Descriptions of some 

analyses lack of clarity. In summary, additional behavioral and neural analyses that can convincingly 

support the validity of the computational model as well as main results from fMRI data could improve 

the significance of the study.  

 

Major comments:  

 

1. Authors need to present the results of behavioral analyses as well as how well computational model 

fits the main aspects of participants' behavior. As an example of the most fundamental analyses, 

authors could use logistic regression model and see how participants’ choice (contribution vs. free-

ride) at a given round was influenced by relevant variables, such as number of free-riders (among 

other people; nF) and participant’s choice in the past few trials, trial history of reward, success/failure 

of producing public good, interaction of reward and choice (i.e. win-stay-lose-switch), etc. to name a 

few. To see if “N-k” (among N-1) is the critical value that determines participants’ choice, separate 

regressors for nF=N-k, nF<N-k, nF>n-K. If participants’ behavior is consistent with the model 

prediction, regressor for nF=N-k should have positive coefficients (i.e. participants tend to contribute 

when nF=N-k in the previous trials compared to other nFs), consistent with the modeled effect of 



individual utility. On the other hand, the regressor for nF<N-k would provide evidence for the effect of 

modeled group utility. If group utility is determining factor of choice, then the regressor for nF<N-k 

should have positive coefficients (i.e. the more other people contributes, the more participant 

contributes), while negative coefficients indicate stronger effect of individual utility (i.e. the more 

other people contribute, the less participant contributes). This is only one example. Authors need to 

provide strong evidence that participants' behavior was consistent with model predictions.  

 

2. Although social-game paradigm provides an opportunity to study the strategic decision (i.e. 

iterative reasoning, higher-order beliefs on other’s beliefs, etc.), it is unclear what are the strategic 

components of participants’ behavior in this study. First, group utility in social learning model might 

capture it. However, the estimated weight (w~=0.8) for individual utility is very high, suggesting that 

individual utility was major determinant of the choice. The BIC difference between social learning 

model and myopic model seems to be only marginal. In addition, it is not clear whether the model-

term group utility was capturing only the temporal decay of contribution tendency over time (i.e. 1-

K^T-t+1/1-K), not the effect of successful group cooperation (i.e. probability that >k people would 

contribute). Second, participants might have used iterative reasoning, forming higher-order beliefs on 

other people’s beliefs. It may be helpful for the authors to explore if higher-order beliefs (e.g. belief of 

other people on the belief of other people) can partially explain participants’ behavior. Finally, previous 

studies have shown that dmPFC region can be involved in strategic reasoning or switching/arbitration 

between different strategies (e.g. Hampton et al., 2008; Seo et al., 2014). It would be helpful, if 

authors can more clearly describe what are the novel aspects of "strategic decision" that could be 

studied in public good game in groups, and what are the novel insights readers can gain from this 

study about the function of dmPFC in strategic decision-making.  

 

3. In the analyses of fMRI data, authors used separate GLM models to look for activations correlated 

with different sets of decision-variables (e.g. individual/group utilities-GLM1, prediction errors for the 

belief on others’ probability of free-riding (PFr) – GLM 2, PFr itself – GLM 3, estimated choice 

probability – GLM 4). However, these variables tested in separate models are not necessarily 

independent of each other. For example, in the social learning model, PFr (GLM 3) and prediction error 

for PFr (GLM 2) are linearly correlated. Choice probability (GLM 4) is also correlated with individual 

and group utilities (GLM 1). Therefore, in order to know the effect of each variable independent of 

other correlated variables, all the co-linear variables need to be included in the same regression 

model. Otherwise, the significant effect of one variable tested in one model could actually reflect the 

effect of other correlated variables.  

 

4. In general, the description of GLM models in method section is lack of clarity. Particularly, it is 

unclear how the PPI analysis was done. Authors need to provide better description of what are the 

“psychological” variables that modulate the functional connectivity. Including equations would help.  

 

5. Authors argued that dmPFC might be involved in strategic decision, as its activation was correlated 

with choice probability estimated by the model. However, it is not clear how the activation correlated 

with choice probability can be the evidence for strategic decision. If the decision based on group utility 

is a “strategic choice” as opposed to a choice based on individual utility, then the region whose 

activation was correlated with group utility could be involved in “planning” strategic choice or 

switching between strategies. The activation correlated with choice probability could be simply related 

to the execution of final decision. Activation related to the “arbitration” between two strategies 

(individual vs. group utility) can be also related to strategic choice (Lee et al., 2014). This issue is 

related to the comment #2. It would be helpful if authors provide clear conceptual framework for what 

“strategic” choice means in the public good game, as well as valid quantitative measurement of 

strategic choice.  
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Reviewer #1 (Remarks to the Author): 

 

Comment 1: Figure 1D show basically the same thing in 3 different panels, namely that 

participants contribute less in k=2 trials and that their probability of contribution declines 

across the PGG. I like the trial-by-trial display, but it would be more informative to 

combine these data with the success of the subjects (just as in the companion paper 

using POMDPs (Khalvati et al.,https://www.biorxiv.org/content/early/2018/09/17/419515). 

This could reveal an interesting pattern in the model-free behavior, which could then be 

used for a posterior predictive check (see Model Comparison below). 

 

Answer to the comment 1: 

 In our revised version of the paper, we have now removed the previous panels C left and 

right, D and E. We kept the panel showing the mean contribution rate across trials, which 

provides unique information to the readers about the changes in contribution rate during the 

public goods game. In addition, we now include the model-free analysis that explains the 

decision on trial t based on one’s previous decisions and outcomes from trials t-1 to t-3 (current 

panel D). Moreover, we now also provide the formal model comparisons between model-based 

analysis and model-free analysis using Bayesian model comparison, supporting that the 

strategic decisions in the current experiment are driven by model-based behavior (current Panel 

E; See our answer to the comment 6). Last, we tested the contribution of each of free-

parameters for predicting contribution decision using a cross-validation approach (current Panel 

F; See our answer to the comment 4). 

 

Comment 2: Also, the authors claim that participants in PGGs often free-ride on the last 

trial, because they don’t have to worry about the consequences for future interactions. 

This was the stated reason for excluding the last trial from the model and in the fMRI 

analysis. However, by judging the data in Figure 1D this doesn’t seem to be the case as 

there is no sudden drop in contribution on the last trial. 

 

Answer to the comment 2: 

 We agree with the reviewer. In the revision, in our behavioral and fMRI analyses, we 

have now included decisions on every trial, including the last trial. Therefore, the number of data 

points increased from 168 to 180 per participant (15 trial × 12 Public goods games). We have 
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made the following changes to the Methods section, on p.14 to indicate that all the trials are 

now included in the analysis: 

Methods (p.15) 

The goal of the computational model is to predict the contribution decision at trial t while a 

participant plays a threshold PGG with repetition (t = [1:15]). 

 

Comment 3: The top-level computation of the model is a weighted linear combination of 

the relative individual utility of contributing vs free-riding and the group utility that 

represents the cumulative expected reward for the remaining trials (p. 5). However, Eq 10 

defines the group utility not as a cumulative sum of the reward, i.e. the reward does not 

appear in the summation. There may be just a term missing here, but if the group utility 

was computed according to Eq 10, then is does no represent what the authors are 

claiming. Alternatively, if the group utility was changed into a cumulative sum of 

expected rewards, then likely all results are going to change (modeling, model 

comparison, and fMRI). Finally, unlike the definition of the individual utility, the group 

utility is computing without taking the individual action (C/F) in account. I would suggest 

to make G contingent upon the individual action, which might also help to resolve an 

inconsistency in the interpretation of the PPI (see below). 

 

Answer to the comment 3: 

 There seems to be a misunderstanding because we did include the reward 𝑅 in our 

definition of the group utility 𝐺𝑡. The 𝑅 is a multiplicative factor of the cumulative sum over the 

belief about the probability that I people free-ride among 𝑁 − 1. The cumulative rewards for the 

remaining trials can be defined with another ∑ sign and this part equals the outer part of the first 

∑ in the group utility model. This misunderstanding might have been caused by the fact that we 

did not include the unfolded formula but the simpler version of the equation. We appreciate that 

it may be helpful for readers to see the unfolded formula before the simpler version. To clarify 

this point, we now include the cumulative reward in the new version of the manuscript (p. 18) as 

follows: 

 

𝐺𝑡 = ∑ 𝑅𝐾𝑇−𝑗

𝑇

𝑗=𝑡

∑ 𝛤𝑡
𝑖

𝑁−𝑘

𝑖=0
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=
1 − 𝐾𝑇−𝑡+1

1 − 𝐾
𝑅 ∑ 𝛤𝑡

𝑖

𝑁−𝑘

𝑖=0

 

(8) 

Therefore, the ∑ sign in the previous manuscript in the group utility model indicated the possible 

scenarios of other players’ decisions in which the group can generate public goods. Therefore, it 

comprises all possible cases in which the group can generate the public goods given that one 

contributes. It includes the case in which there are no free-riders among others (i=0) to the case 

in which there are N-k free-riders (i=N-k). The case in which the group won't generate the public 

goods can be omitted since the allocated expected utility is 0 MU. 

 

Comment 4: The social prediction error (SPE) is updated with a dynamic learning rate 

that consists of a constant part (alpha) and a weighted reward prediction error (RPE) (Eq 

12). The authors claim that because the RPE-weight (theta) is significantly different from 

zero, this demonstrates that this weighted RPE (and hence the dynamic learning rate) is 

an essential part of the model. However, this claim is overstated and needs to be tested 

in a formal model comparison (see below) against a model with a constant learning rate. 

 

Answer to the comment 4: 

 The social learning (SL) model contained 4 free-parameters, α, θ, π, and λ, which 

denote the learning rate, the weight on the reward prediction error, one’s altruistic tendency, and 

the subjective contribution cost. As the reviewer suggested, we have now tested whether these 

parameters are necessary to explain strategic decision-making by showing that removing any 

one of these parameters causes a decrease in the quality of the fit. The quality of fit was 

assessed by leave-one-block-out cross-validation using -2-log likelihood on test datasets, which 

allowed us to estimate the contribution of each free-parameter from an independent dataset 

from the training dataset used for estimating the parameters. In the revision, we reported the 

changes in likelihood (%) when we fixed each of the free-parameters to a constant compared to 

the full SL model. To address this point, we included the following paragraph in the Model 

validation and comparison section in the results on page 6 and Figure 1 F : 

 

Model validation and comparison (p.6) 

Last, we tested the contribution of free-parameters of social learning models to the 

quality of the fit. The social learning model contained four free parameters, α, θ, π, and λ, 
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respectively associated with the learning rate on the estimated decision of others, the weight on 

the reward prediction error, one’s altruistic tendency, and the subjective contribution cost. We 

tested whether these parameters were necessary to explain strategic decision-making by 

investigating whether removing any of these parameters causes a decrease in the quality of the 

fit. This was assessed with the changes in log likelihood using the same cross-validation 

procedure (leave-one-block-out). We found that the goodness of fit decreases when fixing any 

of four parameters as a constant value (Figure 1F). 

 

 

Figure 1 F. Changes in quality of fit resulting from removing free-parameters in the social 

learning model; 𝛼, learning rate; 𝜃, weight on learning rate; 𝜆, contribution cost; 𝜋, willingness to 

make altruistic decisions. 

 

Comment 5: Overall, there were quite a few careless errors in the model equations: 

(a) indices (e.g. i) are included in some equations and dropped in others, 

(b) Eq 2 is not correct and should read: p(C) = logit(Q) = logit(omega * I + (1-omega) * G) 

(c) in some equations it makes more sense to sum until N and not N-1, 

(d) in Eq. 4 it would be better to include k and reference Gamma to Eq 11, 

(e) in Eq 15 it would to use a different letter than Q as it easy to confuse with the Q from 

the social learning model. Also, k is not properly placed. 

I would strongly urge the authors to carefully review their equations prior to a 

resubmission. 

 

Answer to the comment 5: 

 Our answers to these points are the following: 

(a) In the formula, 𝑖 was not an index. It should be distinguished from 𝐼𝑡  which indicates the 

individual utility or 𝑂𝑛𝑒 in 𝔼(𝐶𝑡)𝑂𝑛𝑒  in Eq. 2. As we mentioned in the methods section, 𝑖 is the 

number of free-riders among others. We are afraid that reviewer #1 thought that 𝑖 was the index 

of the participant herself (we used “𝑂𝑛𝑒” as the index for that purpose, instead). If it is the case, 
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he/she misread our computational model. To avoid such misunderstanding, this is now explicitly 

mentioned in our revised manuscript on page 16. 

 

Methods (p.16) 

Furthermore, the expected reward of contribution (𝔼(𝐶𝑡)) and that of free-riding (𝔼(𝐹𝑡)) allocated 

to the participants (called ‘𝑜𝑛𝑒’) are determined by their belief about 𝛤𝑖 which was defined as the 

probability that the number of free-riders among N-1 others will be i at round t (i is the number of 

free-riders among others; 0 ≤ i ≤ N-1). 

 

(b) We thank the reviewer for spotting this mistake. We have now corrected it in equation 1 

(p.15): 

𝑝(𝐶𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝑄𝑡) 

𝑄𝑡 = 𝜔𝐼𝑡 + (1 − 𝜔)𝐺𝑡 

(1) 

(c) Since the model assumes that participants simulate the decision of other individuals except 

herself, 𝑁 − 1 is correct. 

 

(d) We do not need to include k in 𝛤 because we the way 𝑅𝐶  and 𝑅𝐹 are defined, they already 

account for k. Indeed, since 𝛤𝑖 indicates the probability that the group has 𝑖 free-riders among 

others (𝑁 − 1) except the participant herself, “∑ 𝛤𝑖𝑁−1
𝑖=0 ” in Eq. 4 indicates the probability (p) of all 

possible interactions. Therefore, “∑ 𝛤𝑖𝑁−1
𝑖=0 (𝑅𝐶)” or “∑ 𝛤𝑖𝑁−1

𝑖=0 (𝑅𝐹)” include the sum of expected 

utility when 𝑖 = 0, 𝑖 = 1, 𝑖 = 2, 𝑖 = 3 and 𝑖 = 4, because participants always played with four 

other individuals, in this experiment, 𝑖 can be any integer value from 0 to 4. Moreover, because 

(𝑅𝐶) and (𝑅𝐹) respectively indicate the reward allocated to a participant when she contributed or 

when she made a free-riding decision, and were inherently defined as variables (Eq. 6), we do 

not need to include the decision threshold k to define expected utility of participants in Eq. 3 (Eq. 

4 in the previous manuscript).  𝛤 indicates the probability of the group, and 𝛤𝑁−𝑘  Eq. 11 is 

should be read in association with Eq.9 (individual utility) rather than Eq.3. 

𝔼(𝐶𝑡)𝑂𝑛𝑒 = 𝜆 + ∑ 𝛤𝑖(𝑅𝐶)

𝑁−1

𝑖=0
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𝔼(𝐹𝑡)𝑂𝑛𝑒 = ∑ 𝛤𝑖(𝑅𝐹)

𝑁−1

𝑖=0

 

(3) 

 

𝑅𝐹 = {
𝑅 𝑖𝑓 (𝑁 − 1) − 𝑖 ≥ 𝑘

0 𝑖𝑓 (𝑁 − 1) − 𝑖 < 𝑘
 

𝑅𝐶 = {
𝑅 𝑖𝑓 (𝑁 − 1) − 𝑖 ≥ 𝑘 − 1

0 𝑖𝑓 (𝑁 − 1) − 𝑖 < 𝑘 − 1
 

𝑅𝐶 − 𝑅𝐹 = 𝑅 𝑤ℎ𝑒𝑛 𝑖 = 𝑁 − 𝑘 (𝑅𝑐 ≠ 𝑅𝐹) 

𝑅𝐶 − 𝑅𝐹 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑅𝑐 = 𝑅𝐹) 

(6) 

 

(e) We thank the reviewer for pointing out this mistake, which we have now corrected in 

equation 15 (p.20): 

𝑝(𝐶𝑡) = 𝑝(𝐶1) × 𝑝(𝑊𝑡) 

𝑤ℎ𝑒𝑟𝑒 𝑝(𝑊𝑡) = 𝑙𝑜𝑔𝑖𝑡 (𝜅 ∑ 𝜀𝑅𝑖 − 𝛿(𝐶𝑖 − �̅�𝑖)

𝑡−1

𝑖=1

) 

(15) 

 

Comment 6: The computation of the BIC values does not adhere to standards and 

current practice, i.e. the final term (ln(N)) is usually not divided by N. Such a deviation 

from common practice can change the result of the model comparison itself. It also 

makes the BIC values unusually low, which also suggests that they were averaged 

across cross-validation samples and subjects. (The text in the methods suggests that 12-

fold cross validation was carried out only once, but I assume in favor of the authors that 

they iterated across all possible folds in their cross-validation analysis.) A more common 

approach would be to sum up the log-likelihoods across cross-validation samples and 

subject and then include these numbers in the penalty terms of the BIC. Furthermore, the 

difference in BIC values in Table 1 appear rather marginal, sometimes even just after the 

decimal. I am not convinced that the best-fitting social learning model is really providing 

a better fit to the data than the competing models. In that respect, it would be better to 
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convert the BIC values in Bayes Factors (or Bayesian model weights or exceedance 

probabilities) that would clearly indicate (irrespective of how information criteria were 

calculated) whether one model has a substantial advantage over the others. 

 

Answer to the comment 6:  

 We now provide the sum of BIC as suggested by reviewers, not divided by the number 

of samples, N. In addition to the BIC, we now also provide the exceedance probabilities 

computed from Bayesian model selection (BMS). Both measures indicate that the social 

learning model still outperforms the other models. The protected exceedance probabilities are 

shown in Fig. 1F, showing that the social learning (SL) model outperforms the alternative 

models (Myopic: M, Group utility: GU, and inequity aversion: IA models) and model-free (MF) 

prediction (See our response to the comment 7 for details about MF analysis). We have now 

added the following analysis on page 5 to answer this comment: 

 

Model validation and comparison (p.5) 

To test whether the social learning model captures the characteristics of decisions 

during PGG, we performed a number of analyses. First, we fitted those four computational 

models to the participants’ actual choice data. Using the Bayesian information criteria (BIC; 

Equation 16) which penalizes additional free parameters, we compared the goodness of fit of 

each model (Table 1). We found that the social learning model better explained participants’ 

decision during PGG than other alternative models, and this was also true when comparing the 

posterior model probabilities using Bayesian model selection (BMS, Figure 1E). … 

Taken together, these analyses show that behavior in the volunteer’s dilemma can be 

best captured by the social learning model. According to this model, people compute the 

following key variables: individual utility, group utility, their integration, a prediction of the group’s 

likely choice, and a corresponding social prediction error. Next, we harnessed quantitative 

predictions from the social learning model to identify the neural correlates of these computations. 
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Figure 1 E. Model comparisons based on the Bayesian model selection. The protected 

exceedance probabilities indicate that the social learning (SL) model explains decisions in PGG 

better than other alternative models: Myopic (M); Group utility (GU); Inequity aversion (IA); 

Model-free analysis (MF).  

 

Comment 7: Even if we were to believe that the social learning model was superior, we 

have no idea whether the model actually fits the data, as there is no posterior predictive 

check provided in the paper. The authors should simulate new data using their fitted 

parameter value and then analyze them in a model-free way (e.g. as they did with their 

initial behavioral analysis). If done this way, it will become clear if the model is able to 

generate synthetic data that is comparable to the empirical data from the experiment. 

 

Answer to the comment 7:  

 We thank the reviewer for this important comment. We now provide evidence that the 

model-free characteristics in actual data are captured also in the synthetic data generated by 

the computational model. This new analysis also allows us to address the point of the reviewer. 

In the revised manuscript, we provide the results of the model-free analysis for both actual and 

model generated data. This analysis uses multiple logistic regression analysis to predict the 

decision at trial t with the number of free-riders (nF), the previous decision (D), the success or 

failure (S/F) to generate the public goods, and the win-stay and loose-switch strategy (Ws/Ls). 

We also included these regressors up to t-3 trials into the past. To perform unbiased tests, the 

synthetic data were generated with leave-one-block-out cross-validation with the decision of one 

public goods game (PGG) made (test set) using the parameters estimated from other 11 PGG 

(training set). We have clarified this issue by stating that we did perform all possible 12-fold 

repetitions to generate synthetic data the same size as the actual data. The results of this 

model-free analysis show that the social learning model generally captures the model-free 

characteristics. 
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 We have made the following changes to the results section to describe in detail this 

model-free analysis on page 3 and the model validation and comparison on page 4: 

 

Model-free analysis (p.4) 

Using a mixed effect logistic regression model, we examined how participants’ 

contribution decision at a given round, t was influenced by relevant variables, such as the 

number of free-riders (nF), the previous decision (D), the success or failure (S/F) to generate 

the public goods, and the win-stay and loose-switch strategy (Ws/Ls). We also included these 

regressors up to t-3 previous trials. We found that participants were not contributing more when 

the number of other free-riders increased (t24 = 1.73, p=0.10), nor when there was success in 

generating the public goods (t24 = -0.30, p=0.77). This result suggests that participants generally 

used a model to make a strategic decision rather than simply repeating their decisions that 

generated the public goods in previous interactions in a model-free way (Figure 1D). 

 

 

Figure 1 D. Model-free analysis. We regressed the behavioral decision on the number of free-

riders (nF), decision (D), success or failure to generate the public goods (S/F), and win-stay and 

lose-switch strategy (Ws/Ls) in previous trials up to three trials back. (mixed effect logistic 

regression). 

 

Model validation and comparison (p.5) 

 Given that the social learning model outperforms the alternative models, we tested 

further whether the social learning model accurately predicts the series of decisions made 

during a PGG (test-set) from the independent data (training-set). To do this, we conducted a 

leave-one-block-out cross-validation approach such that the decision made for the N-th PGG is 

predicted based on the parameters estimated by fitting the model to decisions made for the 

other 11 PGGs except for the N-th PGG of each participant. This process was repeated 12 
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times. In doing so, we simulated new data using our parameters fitted to an independent 

dataset. First, the social learning model predicts that for the PGG with stronger volunteer’s 

dilemma, participants are less likely to contribute to the PGG compared to the weaker 

volunteer’s dilemma across trials. The mean contribution rates in the model-predicted dataset 

are shown in Figure S1 B. Second, we also performed a model-free analysis of the decisions 

generated by computational models. We found that the model free characteristics that we 

observed in the actual behavior were largely recapitulated in the model-generated behaviors 

(Figure S1 C). 

 

 

 

Figure S1 B. Average probability to contribute in each round (2 ≤ t ≤ 15) generated by the 

computational model. As in the actual decisions made by human participants, the weaker the 

volunteer’s dilemma (k=4), the higher rate of contribution decisions was made by the social 

learning model during the PGG. Error bars indicate s.e.m; *: q<0.05 FDR corrected for multiple 

comparisons. C. Model-free analysis of the synthetic data. We regressed the behavioral 

decision on the number of free-riders (nF), previous decision (D), success or failure to generate 

the public goods (S/F), and win-stay and lose-switch strategy (Ws/Ls) in previous trials up to 

three trials back. Error bars indicate s.e.m; *: p<0.05, **: p<0.01 (mixed effect logistic 

regression). 

 

Comment 8: Finally, the entire model comparison needs a more systematic approach. 

The social learning model has many different parameters and their necessary role in the 

final model should be evaluated using model comparison. In addition, in the supplement, 

the authors estimate a model with 2 omega parameter and 2 lambda parameters, but this 

variant of the model was never formally tested against the others. 

 

Answer to the comment 8:  
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 Please see our answers to the comment 4 and to the comment 6, where we took a more 

systematic approach and fitted four computational models to the participants’ actual choice data 

using the Bayesian information criteria. We discarded the results testing potential changes in 

parameters (𝜔 and 𝜆) in the revised manuscript. We decided to be cautious, as the reviewer 

pointed out that it is hard to control covariance between free-parameters if we assume that 

participants may use different parameters in different levels of volunteers’ dilemma conditions, 

especially since this would only use half of the dataset for different levels of volunteer’s dilemma 

to fit the model. 

 

Comment 9: Some of the GLMs are constructed with experimental regressors that are 

never tested. For instance, in GLM1 there are regressors for the outcome in trial t and 

decision phase in trial t+1, but all model-based signals (individual and group utility are 

modeled on the outcome. Why? It is common practice to model value signals at the time 

of the decision, not the outcome. If the goal was to look for value computation immediate 

after the outcome, then the utility of trial t+1 should have been modeled at the outcome 

of trial t, and the regressor at the decision phase is superfluous. 

 

Answer to the comment 9:  

 We believe that the reviewer understood that the decision phase was modeled with 

parametric modulators. However, it was not. We modeled the decision phase without parametric 

regressors to control for other cognitive process (because this decision phase did occur on each 

trial and has to be modeled to explain this variance) but not to identify the brain signals 

encoding computational variables at the time of decision. 

Moreover, as the reviewer suggested, we added the results of the alternative GLM 

(Figure S6) which modeled the brain signals at the time of the decision to examine the neural 

encoding of specific computational variables. Results from this alternative time point revealed 

weaker effects in a similar network of areas including the vmPFC and lFPC. As in previous 

studies using repeated decision tasks, we find that more variance is captured at the preceding 

feedback, most likely because subjects can already make their next decision since all the 

relevant information for the upcoming decision is in hand. 

In the current study, we are only predicting the decision of the following trial, t based on 

the brain signals elicited during the feedback phase of the previous trial, t-1. Otherwise, as the 

reviewer pointed, it is “surplus”. This is now described in a clearer fashion in the revised 

manuscript (see our changes below). Several published studies have shown that, during social 
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interactions, the brain signals at the time of feedback of the previous trial are predictive of the 

decision of the following trial 1–6. We found that this is also true in our study. It is also important 

to note that, in the current design of the task, participants should rate the level of  satisfaction 

after getting feedback but before deciding in the next trial. This additional temporal dissociation 

between feedback and decision for the next trial may weaken the predictability of the brain 

activity measured at the time of the decision phase. To resolve this issue, in the new version of 

the manuscript, we include such secondary analysis in the supplementary results on page 7 

showing an attenuation of brain signals computing computational variables at the time of 

decision. Moreover, we found that the level of difficulty in decision-making was not correlated 

with the reaction times, which supports the notion that the decision may have already been 

formed before the decision phase. 

 

Results (p.7) 

 Previous studies indicate that during repeated social interactions in groups, individuals 

are more likely to update their belief when observing the decision of others at trial t-1, which 

explains variance in decision-making at trial t 1,3,7. For this reason, we modeled the brain 

responses at the outcome phase, i.e. the utility of the decision at trial t was modeled at the time 

of receiving the outcome of social interactions at trial t-1. To test the alternative hypothesis that 

the computational variables are encoded at the time of decision-making, we also analyzed the 

fMRI data at the time of decision-making phase. The brain responses were modeled in the 

same way as in GLM1, except that we modeled brain responses at the decision phase on trial t 

to predict the decision on trial t. We found that activity in the vmPFC (x,y,z)=(0,59,1) inversely 

correlated with the model estimated It, and that activity from the lFPC (x,y,z)=(39,44,1) 

correlated positively with Gt (p<0.001, uncorrected). These activations were not significant at the 

whole-brain FWE corrected at cluster level (pFWE = 0.69 for vmPFC and 0.79 for lFPC; Figure 

S6). In addition, we found that the model estimates of decision difficulty (|𝑝(𝐶) − 0.5|−1) did not 

significantly explain the reaction times from the decision onset (t24=-0.16, p=0.87), suggesting 

that participants were more likely to have made a decision when the outcome of the previous 

interaction was revealed. 
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Figure S6. Neural correlates of Individual utility (It) and Group utility (Gt) at the time of decision 

onset. Activity (in blue) in the ventromedial prefrontal cortex (vmPFC) at the time of decision on 

trial t inversely correlated with It. Activities (in red) in the right lateral frontopolar cortex (lFPC) 

and bilateral inferior parietal lobule (IPL) at the time of decision on trial t positively correlated 

with the estimated Gt. The statistical maps are thresholded at p<0.005, uncorrected (darker 

color). The lighter color map was thresholded at p<0.001, uncorrected. 

 

Comment 10: Furthermore, the authors state that the individual and group utility are 

independent - an important information if they are to be modeled on the same outcome 

event. It would be nice to see that they are uncorrelated. Unfortunately, it has become a 

sort standard practice to create different GLMs to test for different model-based terms. 

This avoid the problem of multi-collinearity of different model-based regressors and the 

authors also follow this unfortunate practice here. However, running several different 

GLMs is just avoiding, not addressing the problem as the interpretation of different GLMs 

could become obscured if the inherent correlation between signals is not addressed. 

Therefore, it is even more important to report correlations between different regressors 

and model-based signals. 

 

Answer to the comment 10:  

 To resolve the potential multicollinearity issue raised by the reviewer, we have now 

changed the GLMs to deal with this potential problem. We ran new GLM analyses in which we 

used the following regressors: estimates of the individual utility (𝐼), the group utility (𝐺), and 

one’s belief about the decision of others (𝛾). Moreover, we now allow these regressors to 

compete with other regressors: the weighted prediction errors (𝑤𝑃𝐸), the magnitude of reward 

(𝑅), and the current trial (𝑡). 

Importantly, we examined the brain signals encoding 𝐼 and 𝐺 (using GLM1), and 𝛾 (using 

GLM2) while controlling for the covariation between regressors. To do this, we regressed out 
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the shared variance with the regressors of interest by performing a partial correlation before we 

inputted the other regressors. 

Specifically, for GLM1, which serves to identify the brain activity encoding individual 

utility (𝐼) and group utility (𝐺), we included the parametric regressors of utilities (𝐼 and 𝐺), as well 

as 𝑤𝑃𝐸𝐼𝐺 , 𝑅𝐼𝐺 , 𝑡𝐼𝐺  and 𝛾𝐼𝐺 . For instance, the parametric regressor, 𝑤𝑃𝐸𝐼𝐺  was computed as 

𝑤𝑃𝐸 − 𝐼𝛽𝑤𝑃𝐸,𝐼 − 𝐺𝛽𝑤𝑃𝐸,𝐺 where 𝛽𝑤𝑃𝐸,𝐼 and 𝛽𝑤𝑃𝐸,𝐺  determine to what extent 𝑤𝑃𝐸 was explained 

by 𝐼 and 𝐺 (partial correlation coefficient). This process of partialling out covariance between 

regressors was also applied for computing other regressors, 𝑅𝐼𝐺 , 𝑡𝐼𝐺  and  𝛾𝐼𝐺 . This partial 

correlation allowed us to control for the confounding variable of other regressors (𝑤𝑃𝐸, 𝑅, 𝑡 

and  𝛾 ) by preferentially assigning covariance to regressors of interests without any 

transformation ( 𝐼  and 𝐺 ), which is done by computing the partial correlation coefficients. 

Importantly, 𝑤𝑃𝐸𝐼𝐺, 𝑅𝐼𝐺 , 𝑡𝐼𝐺 , and 𝛾𝐼𝐺  are still highly correlated with 𝑤𝑃𝐸, 𝑅, and 𝛾 respectively, 

while they do not correlate with 𝐼 and 𝐺  anymore. In doing so, we are able to identify brain 

activity specifically correlating with 𝐼 and 𝐺, while partialing out the signals which were more 

likely modulated by other regressors of non-interests. This partial correlation method allows us 

to prioritize multiple regressors of interests equally (𝐼 and 𝐺  in GLM1) and to preserve their 

values while competing with other regressors of no interest (𝑤𝑃𝐸, 𝑅 , and 𝛾  in GLM1). The 

advantage of this method over the classical orthogonalization method is that the latter would 

only allow us to keep one regressor’s value and to change the values of sub-rank regressors 

sequentially according to their priority. 

For GLM2, which serves to identify brain activity specifically encoding 𝛾, we used the 

same parametric regressors as for GLM1. In GLM2, 𝐼𝛾 , 𝐺𝛾, 𝑤𝑃𝐸𝛾 , 𝑅𝛾 , and 𝑡𝛾  were included 

while partialing out their confounding variable with 𝛾. As described above, 𝐼𝛾 was computed as 

𝐼 − 𝛾𝛽𝐼,𝛾  where 𝛽𝐼,𝛾  indicates to what extent 𝐼 was explained by 𝛾. In this way, again, 𝐼𝛾 , 𝐺𝛾 , 

𝑤𝑃𝐸𝛾, 𝑅𝛾, and 𝑡𝛾 are still highly correlated with 𝐼, 𝐺, 𝑤𝑃𝐸, 𝑅 and 𝑡 respectively, while they do 

not correlate with 𝛾 anymore. We thus controlled the confounding variables of other regressors 

(𝐼𝛾, 𝐺𝛾, 𝑤𝑃𝐸𝛾, 𝑡𝛾, and 𝑅𝛾) by prioritizing the effects of regressor of interest (𝛾). The impact of 

partial correlation, which resolves the issue of multicollinearity, is shown in the supplementary 

Figure S5 (see below). We added the following paragraphs to the fMRI data analysis on p.22 : 

 

fMRI data analysis (p.22) 

 We ran general linear model (GLM) analyses to identify which brain regions encode the 

following computational variables: estimates of the individual utility (𝐼), the group utility (𝐺), and 
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one’s belief about the decision of others (𝛾). These computations are serving to make decision 

at trial, 𝑡. In addition, we allow these regressors to compete with other regressors which are 

serving to process the outcome of the previous interaction, 𝑡 − 1: the weighted prediction errors 

(𝑤𝑃𝐸, the update term in Equation 10) and the reward allocated to the participant (𝑅). To 

control for the number of remaining trials, we also inputted the trial number, 𝑡 as an additional 

regressor. First, we examined the brain signals encoding 𝐼 and 𝐺 (GLM1), and examined the 

brain regions computing 𝛾 (GLM2) while controlling for the covariation between regressors. To 

deal with the multicollinearity issue (Figure S6 A), we inputted the regressors of interest (𝐼 and 

𝐺 for GLM1 and 𝛾 for GLM2), and we inputted the other regressors after regressing out their 

shared variance with the regressors of interest by performing a partial correlation. 

Specifically, for GLM1, which serves to identify the brain regions encoding individual 

utility (𝐼) and group utility (𝐺), we included the parametric regressors of utilities (𝐼 and 𝐺), as well 

as 𝑤𝑃𝐸𝐼𝐺, 𝑅𝐼𝐺 , 𝑡𝐼𝐺  and 𝛾𝐼𝐺 . The parametric regressor, 𝑤𝑃𝐸𝐼𝐺 was computed as 𝑤𝑃𝐸 − 𝐼𝛽𝑤𝑃𝐸,𝐼 −

𝐺𝛽𝑤𝑃𝐸,𝐺 where 𝛽𝑤𝑃𝐸,𝐼 and 𝛽𝑤𝑃𝐸,𝐺  indicate to what extent 𝑤𝑃𝐸 was explained by variances of 𝐼 

and 𝐺, which was also applied for computing 𝑅𝐼𝐺 , 𝑡𝐼𝐺  and 𝛾𝐼𝐺 . This partial correlation allowed us 

to control for the confounding variable of other regressors (𝑤𝑃𝐸𝐼𝐺 , 𝑅𝐼𝐺 , 𝑡𝐼𝐺 , and  𝛾𝐼𝐺 ) by 

preferentially assigning covariance to regressors of interests without any transformation (𝐼 and 

𝐺 ). Importantly, 𝑤𝑃𝐸𝐼𝐺 , 𝑅𝐼𝐺 , 𝑡𝐼𝐺 , and  𝛾𝐼𝐺  are still highly correlated with 𝑤𝑃𝐸 , 𝑅 , 𝑡 , and  𝛾 

respectively (See orange colored area in Figure S6 B), while they do not correlate with 𝐼 and 𝐺 

anymore (See purple colored area in Figure S6 B). This partial correlation method allows us to 

prioritize multiple regressors of interests equally (𝐼 and 𝐺 in GLM1) and identify brain activity 

specifically correlating with each of computational variables while controlling their covariance 

with other regressors (𝑤𝑃𝐸 , 𝑅 , 𝑡, and 𝛾  in GLM1). The advantage of this method over the 

classical orthogonalization method is that the latter would only allow us to keep one regressor’s 

value and to change the values of sub-rank regressors sequentially according to their priority.  

For GLM2, which serves to identify brain activity specifically encoding 𝛾, we included 𝛾, 

𝐼𝛾, 𝐺𝛾, 𝑤𝑃𝐸𝛾, 𝑡𝛾, and 𝑅𝛾. As described above, 𝐼𝛾 was computed as 𝐼 − 𝐼𝛽𝐼,𝛾 where 𝛽𝐼,𝛾indicates 

to what extent 𝐼 was explained by 𝛾. In this way, again, 𝐼𝛾, 𝐺𝛾, 𝑤𝑃𝐸𝛾, 𝑡𝛾, and 𝑅𝛾 are still highly 

correlated with 𝐼, 𝐺, 𝑤𝑃𝐸, 𝑡, and 𝑅 respectively (See orange colored area in Figure S6 C), while 

they do not correlate with 𝛾  anymore (See purple colored area in Figure S6 C). We thus 

controlled the confounding variables of other regressors ( 𝐼𝛾 , 𝐺𝛾 , 𝑤𝑃𝐸𝛾 , 𝑡𝛾 , and 𝑅𝛾 ) by 

prioritizing the effects of regressor of interest (𝛾). 
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The participant-specific design matrices contained the boxcar functions of outcome 

presentation (from its onset with 4 s duration) from the 1st to the 14th rounds to examine brain 

activity involved in decision-making for the 2nd to the 15th trials of PGG. Additional regressors of 

non-interests were as follows: a stick function for the button press onsets and the decision 

onsets; a boxcar function of error message presentation - trials in which subjects or their team 

member did not respond -, which was modeled as separate regressors (3 s). In addition, the 

motion parameters produced by head movement were also entered as additional regressors of 

no interest to account for motion-related artifacts. 

 

 

 

Figure S5. We ran general linear model (GLM) analyses to identify the brain regions encoding 

the following computational variables: estimates of the individual utility (𝐼), the group utility (𝐺), 

and one’s belief about the decision of others (𝛾). In addition, we allow these regressors to 

compete with other regressors: the reward allocated to the participant ( 𝑅 ), the weighted 

prediction errors (𝑤𝑃𝐸), and the trial number (𝑡, to control the effects of the number of remaining 

trials). A. The mean cross-correlation among these regressors. B. For GLM1, to deal with 

multicollinearity of other regressors with the regressors of interests (𝐼 and 𝐺), we inputted the 

other regressors between regressors of non-interests (𝑤𝑃𝐸, 𝑅, 𝑡, and 𝛾) after regressing out 

their covariance with the regressors of interest by performing a partial correlation. The off-

diagonal triangle shows the mean cross-correlation among the regressors inputted into the 

GLM1 – 𝐼, 𝐺, 𝑤𝑃𝐸𝐼𝐺, 𝑅𝐼𝐺 , 𝑡𝐼𝐺  and 𝛾𝐼𝐺 . Importantly, these regressors are still highly correlated 

with their original values (the diagonal highlighted in orange), while they do not correlate with 𝐼 

and 𝐺  anymore (off-diagonal highlighted in purple). C. For GLM2, to deal with the 

multicollinearity of other regressors with the regressors of interests (𝛾), we inputted the other 

regressors between non-interests regressors (𝐼, 𝐺 , 𝑤𝑃𝐸, 𝑅, and 𝑡) after regressing out their 

covariance with the regressors of interest by performing a partial correlation. The off-diagonal 

triangle shows the mean cross-correlation among the regressors inputted into the GLM2 – 𝐼𝛾, 
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𝐺𝛾 , 𝑤𝑃𝐸𝛾 , 𝑅𝛾 , 𝑡𝛾  and  𝛾 . Importantly, these regressors are still highly correlated with their 

original values (the diagonal highlighted in orange), while they do not correlate with 𝛾 anymore 

(off-diagonal highlighted in purple). 

 

Comment 11: It is confusing that GLM2 conflates the dynamic RPE-dependent learning 

rate with the SPE, which precludes the identification a region coding purely for and SPE 

signal. Also, this doesn’t appear to be a belief update signal, which is rather modeled in 

GLM3. 

 

Answer to the comment 11: 

 We agree with the reviewer about this point. By definition, the prediction error is updated 

by the monetary prediction error and by the social prediction error. It is therefore difficult to 

specify whether the neural underpinnings of the weighted prediction errors (𝑤𝑃𝐸) is specific or 

not to the social prediction error (i.e. to what extent one’s expectation about the decision of 

another player in the group is violated). In the revised manuscript, we have now taken off this 

result. Instead, we now focus on the neural correlates of 𝛾 using the GLM in which the 

covariance with 𝑤𝑃𝐸 is taken care by regressing out its partial correlation (see the answer to the 

comment 10). 

 

Comment 12: The connectivity analysis (psycho-physiological interaction analysis) 

presented in Figure 4 is meaningless, because the psychological variable is not properly 

defined. The authors used a simple onset regressor as the psychological modulator, but 

this is incorrect. A connectivity analysis like this does not reveal any task-specific 

modulation, but rather general functional connectivity (like in resting state experiments). 

I suggest that the authors use a physio-physiological interaction, which includes two 

BOLD time series from different regions as seeds. This seems to be more what the 

authors are aiming for. 

There are some interpretational inconsistencies that are not properly addressed. 

According to the findings of Figure 1, vmPFC is inversely correlation with the relative 

individual utility, so it is associated with free-riding. lPFC is positive correlated with the 

group utility, so it is associated with contributing. However, these contrasting signals are 

both positively coupled with dmPFC, which the authors claim is coding the strategic 

decision, for which they are using the action probability of free-riding (p(F)). It is unclear, 

how two opposing signals can be both positively coupled with the action probability for 
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just one of the choices. Furthermore, I think it would make more sense to use the 

integrated utility Q (Eq 2) instead of the action probability. 

 

Answer to the comment 12: 

 The reviewer pointed out that the task-specific modulation was not tested in the previous 

PPI since we have treated all decisions as being made strategically. Moreover, the reviewer 3 

(comment 4) recommended that we provide a better definition of ‘strategic decision-making’ to 

define the psychological variable more clearly in the PPI analysis. 

Taking these comments into account, we are now providing a better description of what 

are the “psychological” variables that modulate functional connectivity. According to this point, in 

the revised manuscript, we performed a new functional connectivity analysis replacing the 

previous one, adopting the reviewer 3’s suggestion (comment 5) to define strategic-decisions as 

arbitration between strategies. More precisely, in the previous PPI, we adopted a broad 

definition of strategic decisions and we included all decision trials as a strategic decision. 

However, this previous definition made it hard to distinguish between the neural mechanisms 

underlying different motives for strategic decisions. In the new PPI included in the revised 

manuscript, we addressed this issue by narrowing down the definition of strategic decision-

making. That is, we now define the psychological factor of strategic decisions as the trials 

requiring the arbitration between different decisions. Based on this definition, there are two 

types of strategic decisions. One of the strategic decisions is to switch one’s free-riding (Fr) 

decision to contribution (Co) in favor of the group utility (FrCo). Since a strategic contribution 

can induce future contribution of others, switching to contribution is a strategy which potentially 

leads to greater rewards in the long-term. The other type of strategic decision is to switch one’s 

contribution decision to free-riding to maximize one’s immediate reward (CoFr). These 

decisions of switching to the other strategy are contrasted with the decision of staying with the 

previous strategy. To incorporate this strategic decision-making as the psychological factor, we 

estimated to what extent the model’s predicted value of contribution decision is changed from 

one trial to the next (∆𝑄 = 𝑄𝑡 − 𝑄𝑡−1 ). Note that we used the integrated utility 𝑄  here as 

suggested by the reviewer (instead of the action probability). 

With this new operational definition of strategic decisions, we performed a new PPI 

analysis (see description below). First, we observed that activity in the anterior cingulate cortex 

(ACC) and the ventrolateral prefrontal cortex (vlPFC) increased for trials in which one switches 

strategy compared to trials in which one stays with the same strategy (Figure 4A). We then 

performed a functional connectivity analysis using the time series extracted from the seed 
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regions − the ACC and vlPFC − inputted as the physiological factors. The psychological factor 

includes the changes in the utility of one’s strategy from free-riding to contribution (positive 

values) and the changes in the utility of one’s strategy from contribution to free-riding (negative 

values) which was estimated by the model. Finally, we searched for brain regions encoding their 

psycho-physiological interactions. This new PPI analysis revealed brain areas showing 

increasing functional connectivity with ACC or vlPFC when participants changed their strategy. 

Specifically, when participants changed their decision strategy in favor of long-term collective 

rewards and switching their strategy to contribution, we observed increased functional 

connectivity between seed areas to the lateral frontopolar cortex (lFPC), which computes the 

group utility (𝐺) (red blob in Figure 4B), while showing a decrease in functional connectivity with 

the ventromedial prefrontal cortex (vmPFC), which computes the individual utility (𝐼) (blue blob 

in Figure 4B). The results also suggest that, when participants changed their decision strategy 

in favor of immediate rewards and switched their strategy to free-riding, the functional 

connectivity of seed areas increased with the vmPFC and decreased with the lFPC. These 

results clarify how the computational variable of individual and group utilities are encoded in 

distinct brain areas and how they guide the arbitration between different strategic decisions. We 

added the following paragraphs about the new PPI analysis and results in Results on p.8, 

Methods on p.23, and Discussion secession on p.11 and Figure 4 A and B: 

 

Figure 4. Neural mechanisms of arbitration between different strategies during the Public 

goods game. A. Activity in the right ventrolateral prefrontal cortex (vlPFC) and the anterior 

cingulate gyrus (ACC) increased when switching one’s decision during the PGG. The statistical 

maps are thresholded with the same convention as in Figure 2. B. Connectivity analyses 

between the brain regions engaged in the arbitration between different strategies (the vlPFC 

and the ACC) and the brain areas encoding the individual utility and the group utility. The circles 



 

 21 

represent seed regions from which physiological signals were extracted, and colored blobs 

show the psychophysiological interaction effect. The ventromedial prefrontal cortex (vmPFC; 

blue), encoding the individual utility, shows a negative correlation with the activity in seed 

regions modulated by the probability to change one’s strategy to contribution 𝛥Q (𝛥Q = Qt - Qt-1), 

predicted by the social learning model (p<0.05 small-volume corrected). The right lateral 

frontopolar cortex (rlFPC; red), which encoded the group utility, shows a positive correlation with 

the signals in seed regions modulated by 𝛥Q (p<0.05 small-volume corrected). For illustrative 

purpose, the statistical maps are thresholded at p<0.005, uncorrected. 

 

Neural mechanisms arbitrating different strategies (Results part, p.8) 

 One of the strategic decisions in the current study is switching one’s decision to 

contribution away from immediate individual utility in favor of the long-term group utility (which 

indicates collective future expected rewards allocated to not only others but also the player 

oneself). Because a strategic contribution can induce future contribution of others, switching to 

contribution is a strategy which potentially leads to greater rewards in the long-term. The other 

type of strategic decision is switching one’s decision from contribution to free-riding to maximize 

one’s immediate reward. To investigate the neural underpinnings of such strategic decision-

making, we examined the brain areas showing increased activity for the trials in which one 

switches their decision compared to the trials in which one stays with the previous decision 
8,9. 

We found that strategy switching at round t is predicted by increased activity in the right 

ventrolateral prefrontal cortex (vlPFC), (x,y,z = 39,26,13), and in the ACC, (x,y,z = 0,17,31) at 

the time of the outcome of the previous round, t-1 (Figure 4A and Table S1A, p<0.05, GLM3, 

whole-brain corrected with FWE at cluster level). These areas are therefore likely to be involved 

in implementing an arbitration between strategies. 

 To identify the neural mechanism underlying the arbitration between strategies, we 

examined how the choice probability modulates the interactions between the brain areas 

involved in switching decisions and the areas involved in encoding the individual utility and the 

group utility. We hypothesized that brain regions implementing the arbitration between 

strategies would show enhanced coupling with those areas encoding subjective utilities. To test 

for this, we conducted a psychophysiological interaction (PPI) analysis. The physiological 

variables were the brain signals extracted from the brain areas involved in the arbitration 

between different strategies (ACC and vlPFC) at the time of feedback. The psychological 

variable was the model prediction of the changes in decision value (∆𝑄) as a function of what 
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extent one is more likely to change their strategy at the trial, t to contribution (∆𝑄 = 𝑄𝑡 − 𝑄𝑡−1). 

That is, ∆𝑄  is positive when one is more likely to change the strategy to contribution and 

negative when one is more likely to change the strategy to free-riding, while it is close to zero 

when one is more likely to stay the previous strategy. The decision value Q was predicted by 

the social learning model (Equation 1). 

 We found that the vlPFC and the ACC showed increased functional connectivity with the 

right lFPC, (x,y,x)=(30,50,1) (p<0.05, small volume corrected), the same region encoding the 

group utility. We also revealed that the vmPFC (x,y,z)=(9,50,-8), one of the regions encoding 

the individual utility, showed the opposite pattern of functional connectivity (p<0.05, small 

volume corrected). That is, increased functional connectivity was found between the lFPC and 

the brain areas engaged in the arbitration between strategies as a function of the changes in 

decision value to contribution strategy, while increased functional connectivity was observed 

between the vmPFC and the brain areas engaged in the arbitration between strategies as a 

function of the changes in decision value to free-riding strategy (Figure 4B and Table S1B). 

Together, these findings suggest that the neural encoding of the group utility and individual 

utility, as formalized from the social learning model, inform the arbitration between strategies in 

vlPFC and ACC during social interactions (Figure 4C). 

 

Psychophysiological interaction (PPI) analysis (Methods part p.23) 

 We define the psychological factor of strategic decisions as the trials requiring the 

arbitration between different decisions. Based on this definition, there are two types of strategic 

decisions. One of the strategic decisions is to switch one’s free-riding (Fr) decision to 

contribution (Co) in favor of the group utility (FrCo). Since a strategic contribution can induce 

future contribution of others, switching to contribution is a strategy which potentially leads to 

greater rewards in the long-term. The other type of strategic decision is to switch one’s 

contribution decision to free-riding to maximize one’s immediate reward (CoFr). With this 

definition of strategic decisions, we were able to examine the functional connectivity specific to 

the decision of switching to free-riding and the decision of switching to contribution compared to 

the decision of staying with the previous decision. 

Using a PPI analysis, we focused on the time of feedback and examined the changes in 

functional connectivity between the brain regions involved in the arbitration between two 

strategies and the brain regions encoding the computational variables (the individual utility, I t 
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and the group utility, Gt). For the PPI, we defined the seed regions of interest (ROIs) as a 8 mm 

radius spheres centered on the coordinates extracted from the peak voxel of the right 

ventrolateral prefrontal cortex (vlPFC), (x,y,z= 39,26,13) in MNI coordinates and the anterior 

cingulate cortex (ACC), (x,y,z=0,17,31) predicting the arbitration between two strategies (GLM3). 

The physiological variable is therefore the timeseries extracted from a priori ROIs at the time of 

feedback phase of 𝑡 − 1 trial (the 1st to the 14th rounds) of the PGG. In addition, we defined the 

psychological factors as the model prediction of the probability to switch one’s strategy to 

contribution. Specifically, it was computed as the difference in the decision value (𝛥𝑄 = 𝑄𝑡  −

 𝑄𝑡−1) (Equation 1). The decision value, 𝑄 is predicted from the social learning model. That is, 

participants tend to switch to contribution strategy when 𝛥𝑄 > 0, while they tend to switch to 

free-riding strategy when 𝛥𝑄 < 0, and they tend to stay to their current strategy when 𝛥𝑄 ≈ 0. 

The GLM for the PPI analysis therefore contained the following regressors: (1) physiological 

factors, BOLD signals from the ROIs, (2) psychological factors, and (3) PPI factors, interaction 

terms of the psychological and physiological factors, as well as the same regressors of no 

interests that we used for GLM1. 

The statistical significance of the functional connectivity in the vmPFC and in the right 

lFPC were tested within anatomically defined independent regions of interest (ROIs). The ROIs 

were defined by a previous study that anatomically parcellated the prefrontal cortex according to 

the resting state connectivity 10. Specifically, we respectively used two parcellations annotated 

as area ‘11m’ and the ‘frontopolar cortex lateral’ (FPl). 

 

Discussion (p.11) 

 In the current study, participants who adopted a mixed strategy might flexibly switch their 

strategies between free-riding in favor of the individual utility and contribution in favor of the 

group utility. Considering strategic decision-making as the flexible arbitration between different 

strategies, we observed that the activity from the vlPFC and the ACC increased when switching 

between strategies, suggesting that these brain regions compute an arbitration signal in 

strategic decision making during collective decisions. It is important to note that here, we 

defined a change in strategic-decision as a change in model predicted decision-value, because 

it is not possible to dissociate a change in strategy from a change in behavioral response. This 

interpretation relates to the results of a previous study suggesting that the vlPFC is engaged in 

controlling model-based and model-free decision strategies 9. Also, the functional connectivity of 

the ACC to other brain areas tracking the history of others’ decisions and one’s own preference 
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has been shown to guide collective decisions during consensus decision for a group 11. 

Moreover, the activity of the ACC correlates with individual differences in the degree to which an 

individual prefers one strategy over the other during competitive decision-making 12. Moreover, 

the functional connectivity between the vlPFC and ACC −regions selectively engaged for the 

event predicting the strategy switch– decreased with the vmPFC encoding ‘individual utility’ and 

increased with the lFPC encoding ‘group utility’ when the probability of contribution was high at 

the time of feedback. The increased strength of the relationship between ACC-lFPC may relate 

to a central role of the dACC-dlPFC interactions proposed in relation to a decision variable 

called prospective value, as opposed to an immediate myopic value 13,14. In such framework, 

when making sequential decisions, the overall value of the environment can be decomposed 

into a myopic component, corresponding to the average benefits that might immediately follow a 

decision, and prospective value, corresponding to future benefits that might accrue over the 

longer term by taking a particular choice now 13. In light of this previous study, our results 

suggest that the strength of the dACC-lFPC connectivity increasing with group utility may reflect 

choice strategy related to prospective valuation. 

 

Comment 13: Figure 1D: The t-tests in the middle panel do appear to be corrected for 

multiple comparisons. Please sue a correction method (e.g. permutation test) to do so. 

 

Answer to the comment 13:  

 The changes in contribution rates were compared across trials. The method we used for 

multiple comparisons was the false discovery rate (FDR) to correct at the threshold, q=0.05 

using the methods introduced by Benjamini and Hochberg 15. We make this clear this in the 

figure legend and have also made the following changes in Results (p.4) and Figure 1 (p.30): 

 

Results (p.4) 

false discovery rate (FDR)15 corrected for multiple comparison; Figure 1C 
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Figure 1 C. … **: q<0.01, *: q<0.05 FDR corrected for multiple comparisons 

 

Comment 14: Figure 2C: The legend states that that these figures show the group utility 

G, but there is not G in the panels! Also, in the left panel N-k should be above the Sigma, 

not a superscript of Gamma, Figures 2B and 2C are not mentioned in the main text 

 

Answer to the comment 14: 

 We thank the reviewer for noting these mistakes, which are now corrected. We have 

made the following changes to Fig 2B and 2C: 

 

 

 

Figure 2 legend (p.31) 

B. Conceptual illustration of individual utility (It) according to one’s belief about the decision of 

another (𝛾). After the feedback of the previous trial, t-1, a participant may compute the 

immediate expected utility for oneself (It) while computing the cumulative expected rewards for 

the group (Gt) for remaining interactions (T-t+1, where T=15). It correlates with the binomial 

probability density function of 𝛾t which indicates one’s belief about the probability that one of 

other members will free-ride at round t. C. Conceptual illustration of group utility (Gt) according 

to one’s belief about the decision of another (𝛾). Gt depends on the probability that the group 

generates the public goods and the number of remaining trials. (Left) The probability to generate 
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the public goods varies as a binomial cumulative density function given 𝛾t at trial t. (Right) 

Relationship between Gt and 𝛾t. Gt is high when participants believe that another player is less 

likely to free-ride (e.g. 𝛾t=.3) compared to when they believe that another player is more likely to 

free-ride (e.g. 𝛾t=.7, dotted line). Gt is also discounted by the number of remaining interactions. 

 

Comment 15: Figure 3B: x-axis show be labeled “low” and “high”. It would be better to 

show the value of theta here, not the product of theta * RPE 

 

Answer to the comment 15:  

 This result is no longer in the revised manuscript. Please see our response to the 

comment 11 for explanation. 
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Reviewer #2 (Remarks to the Author): 

 

Comment 1: My primary concern is about decision-algorithm of other agents. In strategic 

interactions, scanned participants’ behavioral pattern would highly depend on the other 

agents’ behavioral pattern. The authors have claimed "The computer agent was 

programmed … in an ecological manner."; however I could not find any justification or 

validation. That’s a critical point. I believe they need to conduct an additional behavioral 

experiment involving real interactions among human participants, and to show that their 

main computational model provides the better fit to the data compared with other models 

do. 

 

Answer to the comment 1: 

 We agree with the reviewer that it is an important issue, especially in a behavioral 

economics study. However, the goal of this study was not only to investigate behavior but also 

its neural basis. When it comes to neuroimaging studies, it is critical that the brain responses of 

all participants are modulated by a specific range of computational variables. If the behavior is 

uncontrolled but is acquired while participants in the scanner are facing real humans, then there 

is a very high chance that the participants will interact with individuals having different behaviors 

(e.g. perseverating in a contribution or free-riding decision). To rule out these effects, behavioral 

studies often have much larger samples than neuroimaging studies. In a neuroimaging study 

such as ours, to control the variance across participants, it is necessary to test participants 

under controlled conditions, as is common in studies investigating strategic decisions with fMRI 

(e.g.5,6). Moreover, a recent study reported no difference in both behavior and brain activity 

while interactions with real humans were compared to interactions with computer agents 

requiring strategic decisions 11. 

Regarding the question about the decision algorithm of other agents, as we described in 

the supplementary information (Eq. S1, see below), the decision of the computer agent was 

determined in a model-free way by integrating a subject’s previous decision ( Ct−1
i ), the 

proportion of contributors among others in the previous round (C̅t−1
N−1), the number of remaining 

trials (T − t + 1), and the ratio of the minimum number of contributors to make public goods (K) 

as below: 

𝑙𝑜𝑔𝑖𝑡(�̅�𝑡
𝑁−1) = 𝛽𝐶𝑡−1

𝑖 + (1 − 𝛽) {(
1 − 𝐾𝑇−𝑡+1

1 − 𝐾
) �̅�𝑡−1

𝑁−1 − 𝐾} 
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where β indicates to what extent information influences the decision of the next trial. 

More importantly, we set a value of β as 0.15≤ β ≤0.35 which was estimated by fitting this model 

to the actual behaviors of human subjects who had been playing the same PGG in a previous 

study from the first author 3. This procedure helped the decision made by a computer mimic the 

behavior of real humans. We now explain this process in detail in the revised supplementary 

methods (see below). More importantly, we addressed this point in the methods section in the 

revised manuscript on page 3 and 14, paragraph ‘Decisions of other members of the group’ in 

the methods secession:  

 

Results (p.3) 

 To control the underlying motivations of other individuals across participants while 

creating plausible behavior in social interactions, decisions of other members of the group were 

generated by a computer program, unbeknownst to the participants. In neuroimaging studies, it 

is critical that the brain responses of all participants are modulated by a specific range of 

controlled computational variables. If the behavior is uncontrolled but is acquired while facing 

real humans, then there is a very high chance that the participants could interact with individuals 

having different motives underlying decisions (See decisions of other members of the group in 

Methods). 

 

Decisions of other members of the group (p.14 in Methods) 

To control the underlying motivations of other individuals across participants while 

creating plausible behavior in social interactions, unbeknownst to the participants, decisions of 

other members of the group were determined by a computer algorithm. First, the probability that 

a computer agent contributed in the first round was determined by the proportion of contribution 

decisions made by each of the participants during the control condition of PGG in which no 

feedback was given. That is, the computer agent contributed as much as the participant did. 

Second, the decision of the computer agent was determined by their and others’ decision 

(𝐶𝑡−1
𝑖  and 𝐶𝑡−1

𝑁−1, respectively) in the previous round, the decision threshold (k), and the number 

of remaining interactions ( 𝑇 − 𝑡 + 1  where 𝑡  is the current trial) with a weight (𝛽), which 

determined to what extent the agents change their decision according to the decision of others, 

or stay with their previous decision. Third, 𝛽 was determined by the value which gave the 

maximum likelihood while predicting the actual decisions made during real human interactions 

in a previous study 3. As a result, the computer agent tended to stay with their previous 

decisions, he/she was more likely to contribute in a more cooperative group, and he/she was 



 

 29 

more likely to free-ride when failing to generate the public goods in a less cooperative group. At 

last, with the post-scanning questionnaire, we ensured that we analyzed the data acquired from 

the participants who had believed that they had interacted with real human participants 

simultaneously (see the supplementary methods for social contextualization score). The details 

of the computer algorithm generating the decision of others are described in the supplementary 

methods. 

 

The decision of others (p.12 in Supplementary Methods) 

 The decision of others was determined by the following function given the size of the 

group, N, the number of remaining interactions, T-t+1, the minimum ratio of contributors to 

generate public goods, K (K=k/N), the previous decision of participants (𝐶𝑡−1
𝑖 ; it was 1 if they 

made a contribution), and the proportion of contributors among others in the previous round 

(�̅�𝑡−1
𝑁−1).  

 

𝑙𝑜𝑔𝑖𝑡(�̅�𝑡
𝑁−1) = 𝛽𝐶𝑡−1

𝑖 + (1 − 𝛽) {(
1 − 𝐾𝑇−𝑡+1

1 − 𝐾
) �̅�𝑡−1

𝑁−1 − 𝐾} 

Eq. S2 

Note that this function has a parameter β which reflects to what extent others copied the 

decision of participants. β was selected randomly within the range 0.15≤ β ≤0.35. Moreover, the 

effects of successful cooperation decay with the number of remaining interactions (T-t+1). In the 

first round (t=1), others’ decisions were determined by the contribution rate of the participant, 

which was measured while she made no-feedback PGGs (because the computer did not have a 

previous decision history of the participant). 

The computer agent was programmed to interact with the participants’ decisions 

themselves in an ecological manner. This has been used in other studies of social interactions, 

and it allowed us to ensure that every participant played against agents whose decision was 

based on the same algorithm 5. In doing so, participants were more likely to interact with 

cooperative fellow members when they contributed their resources in the previous round and 

after the group successfully generated a public good. 

 

Comment 2: My secondary concern is about computational models. The main model 

looks plausible, but I believe this should be compared with many other models. For 

example, they can construct a model with Lambda = 0, Pi = 0, a mixed strategy model 
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(P(C) = p where p is a free-parameter), the optimal mixed strategy model (P(C) = p* where 

p* is the optimal probability predicted by the Nash equilibrium) and a model relying only 

on Group-utility model etc. Furthermore, is it possible to construct a hybrid model of 

social learning and inequity aversion? 

 

Answer to the comment 2:  

 The individual utility model comprises the mixed model satisfying the Nash equilibrium in 

one-shot PGG. If we model the decision of participants based on the assumption that they think 

others’ decisions are guided by the Nash equilibrium, then, the model should incorporate a 

higher level of sophistication in mentalizing. In the revised manuscript, we performed and 

included model comparisons for different levels of sophistication in the mentalizing process. 

Regarding this point, please see our answer to the next comment (comment 3). In addition, we 

included another model in which the decision of participants was only guided by long-term 

collective rewards (group utility model), as the reviewer suggested. We also agree that we can 

test many different models. In this study, we focused on two questions: (1) whether human 

participants use a mental model to make a strategic decision rather than model-free decisions 

such as those driven by inequity aversion, and (2) to incorporate this model-based decision, 

whether the brain computes both immediate and long-term expected rewards, which enables 

the decisions to be more strategic in repetitive interactions. We have added a results section on 

p 4 to report the results of the group utility model suggested by the reviewer: 

 

(p.5 in Results) 

 Compared to the social learning model that incorporates the importance of future 

expected utility, the agent of the myopic model only considers immediate rewards when making 

decisions. Third, the forward-looking model assumed that participants only take long-term 

collective utility for groups into account (Equation 14). 

 

(p.20 in Methods) 

 The second alternative model is the ‘group utility model’ which can be distinguished from 

the ‘social learning’ model because it only takes G𝑡  into account. In doing so, this model 

assumed that participants are more likely to contribute in the group where they can expect high 

mutual contribution. In this model, the probability of making a contribution depends on the 

decision value 𝑉𝑡 which includes 4 free-parameters including 𝜒 as the weight assigned to the 

group utility and 𝜁 as the initial bias (error term). 
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𝑝(𝐶𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝑉𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝜁 + 𝜒𝐺𝑡) 

(14) 

 

Comment 3: The authors have assumed participants updated their belief about others' 

decision in a model-free manner. I believe they need to provide justification. As far as I 

know, many researchers believe that model-based learning is required to predict others’ 

behavior in strategic interactions (e.g., Yoshida et al., 2010). 

 

Answer to the comment 3:  

 Thank you for raising this very interesting and important issue. We tested the hypothesis 

that participants might have used iterative reasoning, forming higher-order beliefs on other 

people’s beliefs. In the social learning model, we assumed that participants track the probability, 

𝛤𝑡
𝑁−𝑘 which indicates the probability in which 𝑁 − 𝑘 people among others (𝑁 − 1) will free-ride at 

the next trial 𝑡 to estimate the utility of one’s contribution. When N-k people free-ride, the group 

can benefit from public goods only when the participant contributes. Therefore, one’s decision 

plays a pivotal role and participants expect a higher utility of a contribution decision when 𝛤𝑡
𝑁−𝑘 

is high. Moreover, this belief (𝛤𝑡
𝑁−𝑘) is updated in every trial based on one’s belief about the 

probability that another member will free-ride, 𝛾𝑡. If participants use the 2nd order belief model, 

then, they think that another player will use the 1st order belief model for free-riding with 

probability 𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘 because these players who used the 1st belief model think that others 

will free-ride with probability, 𝛾𝑡. Therefore, the decision of players who use the 2nd order belief 

model is predicted based on their belief about the decision of another as 𝛤𝑡
𝑁−𝑘 instead of 𝛾𝑡. 

Likewise, if the participants use the 3rd order belief model, they think that another player will 

free-ride with probability, 𝛾𝑡
2𝑛𝑑  given the assumption that another player thinks that others will 

free-ride with probability 𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘. 

To examine whether higher-order beliefs explain participants’ behavior better, we 

compared the predictability of models assuming different levels of iterative reasoning. 

Specifically, we replaced 𝛾𝑡 in the social learning model (Equation 12) with 𝛾𝑡
1𝑠𝑡  for the 2nd order 

belief model and with 𝛾𝑡
2𝑛𝑑 for the 3rd order belief model where 𝛾𝑡

1𝑠𝑡  and 𝛾𝑡
2𝑛𝑑 are computed as 

follows: 

𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘 = (
𝑁 − 1
𝑁 − 𝑘

) 𝛾𝑡
𝑁−𝑘(1 − 𝛾𝑡)𝑘−1 
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𝛾𝑡
2𝑛𝑑 = (

𝑁 − 1
𝑁 − 𝑘

) 𝛤𝑡
𝑁−𝑘𝑁−𝑘

(1 − 𝛤𝑡
𝑁−𝑘)

𝑘−1
 

We further compared their predictabilities of contribution decisions with that of the 1st 

order belief model. We found that higher-order reasoning was inferior to the 1st-order belief 

model (social learning model) at explaining decisions for the current version of the PGG. This 

procedure is now included in the revised manuscript on p 5 and p 17 (see below): 

 

Testing different levels of iterative reasoning (p.6 in Results) 

 To explore if higher-order beliefs (e.g. belief of other people on the belief of other people) 

explain participants’ behavior better, we compared the likelihoods of the social learning model 

while modulating the level of iterative reasoning. Previous findings have suggested that 

participants might adopt iterative reasoning, forming higher-order beliefs on other people’s 

beliefs when predicting others’ behavior in strategic interactions 6,16,17. To address the influences 

of iterative reasoning on decision-making during the PGG, we tested alternative social learning 

models in which the individual utility and the group utility are updated based on one’s belief 

using 2nd and the 3rd order belief reasoning (Equation 11). We further compared their 

predictabilities of contribution decisions with that of the 1st order belief model. We found that 

higher-order reasoning did not explain decisions better than the 1st order belief model (social 

learning model) for the current version of the PGG (Figure S2). The fact that participants, in the 

current study, were less likely to use higher order reasoning may be due to the feedback 

provided, to the finite number of interactions with the same partners and/or to the fact that we 

did not explicitly show the decision of each player but only the proportion of contributors in the 

group. Notably, this setup mimics many ecologically relevant group decision-making situations. 

 

Testing higher-order beliefs on other people’s beliefs (p.19 in Methods) 

 Last, we tested the hypothesis that participants might have used iterative reasoning, 

forming higher-order beliefs on other people’s beliefs. If participants use the 2nd order belief 

model, then, they think that another player will use the 1st order belief model for free-riding with 

probability 𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘 because these players who used the 1st belief model think that others 

will make free-riding with probability, 𝛾𝑡. Therefore, the decision of players who use the 2nd order 

belief model is predicted based on their belief about the decision of another as 𝛤𝑡
𝑁−𝑘  instead of 

𝛾𝑡. Likewise, if the participants use the 3rd order belief model, they think that another player will 

free-ride with probability, 𝛾𝑡
2𝑛𝑑  given the assumption that another player thinks that others will 
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free-ride with probability 𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘 . To examine whether higher-order beliefs explain 

participants’ behavior better, we compared the predictability of the models assuming different 

levels of iterative reasoning. Specifically, we replaced 𝛾𝑡 in the social learning model (Equation 

11) with 𝛾𝑡
1𝑠𝑡  for the 2nd order belief model and with 𝛾𝑡

2𝑛𝑑 for the 3rd order belief model where 𝛾𝑡
1𝑠𝑡  

and 𝛾𝑡
2𝑛𝑑 are computed as follows: 

 

𝛾𝑡
1𝑠𝑡 = 𝛤𝑡

𝑁−𝑘 = (
𝑁 − 1
𝑁 − 𝑘

) 𝛾𝑡
𝑁−𝑘(1 − 𝛾𝑡)𝑘−1 

𝛾𝑡
2𝑛𝑑 = (

𝑁 − 1
𝑁 − 𝑘

) 𝛤𝑡
𝑁−𝑘𝑁−𝑘

(1 − 𝛤𝑡
𝑁−𝑘)

𝑘−1
 

(11) 

 

Figure S4. The changes in quality of model fits (-2 log likelihood) resulting from changing the 

level of iterative reasoning in the social learning model. The 1st order beliefs model explains the 

decisions better than those of other higher order beliefs models. 

 

Comment 4: In the model comparison procedure (see P.5), why did the authors calculate 

BIC based on cross-validated likelihood? That’s strange. If they employed cross-

validation to compute likelihood, they can compare likelihood (not BIC). If they employed 

BIC, likelihood should be derived without cross-validation. I believe cross-validation is 

not valid in this study, as each data (i.e., trial) in the repeated-game experiment is not 

independent from one another. I would recommend Bayesian model selection (Stephan 

et al., 2009) or hierarchical modeling approach (Daw, 

2009: http://www.princeton.edu/~ndaw/d10.pdf). 

 

Answer to the comment 4:  
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 We have now recomputed BIC as the reviewer suggested and we also provided the 

results of Bayesian model selection (BMS). Please see our answer to reviewer1’s comment 6, 

responding to an identical point. 

 

Comment 5: In the fMRI analyses, why did the authors focus on feedback phase, not 

decision phase? What happens if they look into neural correlates of the key 

computational variables in decision phase? 

 

Answer to the comment 5:  

 Thank you for raising this issue. We discussed this in detail in our response to reviewer 

1’s comment 9. 

 

Comment 6: In the fMRI analyses, why did the authors have four separate GLMs? Is there 

specific reason? In principle, I believe all the computational variables of interest should 

be included into one single GLM to evaluate the explained-variance of each variable. 

 

Answer to the comment 6:  

 We agree that it is an important issue. In the revised manuscript, we tested this by 

allowing regressors to compete with each other. Please see our answer to reviewer 1’s, 

comment 10, which details how we dealt with the multicollinearity issue in the revised 

manuscript. 

 

Comment 7: The present study have shown that key computational variables in the 

decision-making were integrated in dmPFC. To my knowledge, it is still controversial in 

which brain regions multiple computational variables are integrated for value-based 

decision-making. Some studies supported the possibility that value integration occurs in 

dmPFC including dACC (Hare et al., 2011; and Suzuki et al., 2015), while others provided 

the evidence for value integration in vmPFC (Behrens et al., 2008; Hare et al., 2010; Smith 

et al., 2014; and Lim et al., 2013; Suzuki et al., 2017). It would be interesting to discuss 

this issue in the Discussion section. 

 

Answer to the comment 7:  

 Providing a better definition of strategic decision-making helped to discuss this issue 

compared to the previous finding which considered that all decisions were made strategically. 
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Since we performed a new analysis based on a narrower definition of strategic decision (GLM3) 

and PPI, the previous results reporting dmPFC activity are no longer in the revised manuscript. 

The results of the new analysis indicate that the ACC is involved in the decision to switch 

strategy and that its activity is modulated by the vmPFC, encoding the individual utility (the 

immediate expected utility in the strategic decision). We believe that this finding helps us to 

understand how the ACC serves to guide a strategic decision. Please see our answer to the 

reviewer1’s, comment 12, for more detailed information on this new analyses and results. 

 

Comment 8: Why was the number of interaction fixed (T = 15)? A conventional way in 

this type of repeated-game experiments is that the number of interaction is determined 

stochastically. The concept of “backward induction” in Game Theory predicts that 

participants do not cooperate in any trials (not only the last trials!) in this type of finite 

repeated interactions. 

 

Answer to the comment 8:  

 In the revision, we included decisions in every trial including the last trial to analyze the 

data. Please see also our response to reviewer 1’s comment 2. 

 

Comment 9: In Figure 4A, the activation labeled ACCg is corpus callous? 

 

Answer to the comment 9:  

 There seems to have been a misunderstanding. The activation was not only including 

the corpus callosum, but also the ACCg. However, since we performed a newly defined PPI, the 

subsequent results including Figure 4 are no longer in the revised manuscript, and therefore do 

not need to be discussed. 

 

Comment 10: The authors said they recruited N strangers for each experiment. How did 

they confirm the participants are strangers? 

 

Answer to the comment 10:  

 We are sorry if there was a misunderstanding in the sentence that we wrote, ‘N 

strangers made collective decisions together as a group. We kept the number of members in a 

group constant (N=5)’. Please remember that the participants were led to believe that they were 
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interacting with 4 other individuals who were strangers. We changed this sentence as below to 

avoid confusion: 

 

Methods part (p.13) 

 In the PGG used in the current study, a participant was led to believe that he made 

decisions within a group of 5 members (N=5). The participants were told that they would play 

with 19 other participants located in another room, so that 20 participants in total would play the 

PGG in 4 different groups of 5 subjects simultaneously, randomly arranged by a computer at the 

beginning of every PGG. Hence, participants lying in the scanner knew that they were 

interacting with a different combination of group members at the beginning of every PGG. 

 

Comment 11: As far as I understand, when decision-making participants could see 

information about k, t and T-t. How about including these variables into GLM as 

regressors of no-interest? 

 

Answer to the comment 11:  

 As the reviewer suggested, we inputted the current trial (𝑡) as regressors of non-interest 

in the GLM. Please see our answer to reviewer 1’s comment 10 for details. 
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Reviewer #3 (Remarks to the Author): 

 

Comment 1. Authors need to present the results of behavioral analyses as well as how 

well computational model fits the main aspects of participants' behavior. As an example 

of the most fundamental analyses, authors could use logistic regression model and see 

how participants’ choice (contribution vs. free-ride) at a given round was influenced by 

relevant variables, such as number of free-riders (among other people; nF) and 

participant’s choice in the past few trials, trial history of reward, success/failure of 

producing public good, interaction of reward and choice (i.e. win-stay-lose-switch), etc. 

to name a few. To see if “N-k” (among N-1) is the critical value that determines 

participants’ choice, separate regressors for nF=N-k, nF<N-k, nF>n-K. If participants’ 

behavior is consistent with the model prediction, regressor for nF=N-k should have 

positive coefficients (i.e. participants tend to contribute when nF=N-k in the previous 

trials compared to other nFs), consistent with the modeled effect of individual utility. On 

the other hand, the regressor for nF<N-k would provide evidence for the effect of 

modeled group utility. If group utility is determining factor of choice, then the regressor 

for nF<N-k should have positive coefficients (i.e. the more other people contributes, the 

more participant contributes), while negative coefficients indicate stronger effect of 

individual utility (i.e. the more other people contribute, the less participant contributes). 

This is only one example. Authors need to provide strong evidence that participants' 

behavior was consistent with model predictions. 

 

Answer to the comment 1:  

 The reviewer suggested two regression analyses. The first is related to testing the 

hypothesis of whether participants used model-free decision-making. In the revised manuscript, 

we included the model-free analysis as the reviewer suggested. 

The second is to test the effects of the trial in which the number of free-riders among 

others was N-k (𝑛𝐹 = 𝑁 − 𝑘) in subsequent decision-making compared to the other trials. The 

reviewer suggested this latter analysis to test our assumption underlying the individual utility (𝐼𝑡). 

We performed this analysis but we did not find that the regression coefficient on 𝑛𝐹 = 𝑁 − 𝑘 

was higher than the others: mean 𝛽nF=N-k=-0.53±6.13 while mean 𝛽nF>N-k=-13.58±7.89; mean 

𝛽nF<N-k=6.93±8.26 (all 𝛽 was not significant (n.s.) in p<0.05). Below, we discuss why we think 

this analysis was not appropriate to test the definition of individual utility (𝐼𝑡). We have tested 

this regression not only for the behavioral data made by participants but also for the synthetic 
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data which were generated by the social learning model. We found a similar pattern (𝛽nF<N-k > 

𝛽nF=N-k > 𝛽nF>N-k) with regression coefficients in the data generated by a computer agent: mean 

𝛽nF=N-k=-12.70±9.55 while mean 𝛽nF>N-k=-21.67±10.55; mean 𝛽nF<N-k=21.08±10.46. This result 

shows that there is no guarantee that we should find higher 𝛽nF=N-k even if the decisions were 

actually driven by the social learning model which incorporate the individual utility. 

We believe that the proposed analysis is only able to test an oversimplified version of the 

social learning model for the following reasons. First, we did not define the individual utility (𝐼𝑡) 

as dependent on whether the number of the free-rider (𝑛𝐹) in the previous trial was 𝑁 − 𝑘 or not. 

Instead, we defined it as one’s belief about the probability that there will be 𝑁 − 𝑘 free-riders 

(e.g. participants did not necessarily believe that N-k will freeride after they have experienced N-

k free-riders in the previous interaction). Therefore, it follows a function of the updated belief, γ𝑡, 

which varies not only according to 𝑛𝐹 but also depends on each participant’s learning rate and 

their previous reward prediction error (related to 𝛼 and 𝜃). Second, 𝐼𝑡  was not defined as a 

deterministic but as a continuous function of 𝛾𝑡. Moreover, 𝐼𝑡 also varied according to the extent 

to which a participant was willing to contribute to others’ payoff (𝜋), which varies across 

individuals. Last, more importantly, the decision is also guided by the group utility (𝐺𝑡). Unlike 𝐼𝑡, 

the term 𝐺𝑡 allows us to capture the changes in motive underlying contribution in the progress of 

Public goods game by incorporating the remaining interactions. Considering the points noted 

above, we think that the proposed regression has not taken those complexities into account. 

In fact, we provide an additional result proving that the data purely generated by the 

social learning model also can afford similar characteristics of the model-free regression that we 

found in the actual behavioral data. To test this, we generated the synthetic data set with cross-

validation using the social learning model and performed the same model-free regression 

analysis. We show that the model-based prediction outperformed the model-free decision 

predictions using Bayesian model selection. We have provided the details of this analysis in our 

response to reviewer 1’s comment 7. 

 

Comment 2.1. Although social-game paradigm provides an opportunity to study the 

strategic decision (i.e. iterative reasoning, higher-order beliefs on other’s beliefs, etc.), it 

is unclear what are the strategic components of participants’ behavior in this study. First, 

group utility in social learning model might capture it. However, the estimated weight 

(w~=0.8) for individual utility is very high, suggesting that individual utility was major 

determinant of the choice. The BIC difference between social learning model and myopic 

model seems to be only marginal. In addition, it is not clear whether the model-term 
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group utility was capturing only the temporal decay of contribution tendency over time 

(i.e. 1-K^T-t+1/1-K), not the effect of successful group cooperation (i.e. probability that >k 

people would contribute). 

 

Answer to the comment 2.1: 

 We have realized that we previously included by mistake the parameters estimated of 

participants excluded (due to the excessive head movements) and their responses in the post-

scanning questionnaire (attached in supplementary methods) when averaging the parameters 

reported in the previous Table 1. Those participants include ones who might not believe that 

other players made a simultaneous decision with them in post-scanning questionnaire. The 𝜔 of 

those participants increased the overall value of 𝜔. 

Moreover, in the revised manuscript, we estimated the parameters to fit the decisions 

made by participants in all trials rather than to the decisions of trials except for the last trial (see 

our response to reviewer 2’s comment 8). 

By correcting these errors and after including all decisions, we found that the influence of 

group utility (1-𝜔) over that of individual utility (𝜔=0.65±0.07) was not minimal and that the 

overall quality of fit was greatly improved. Following other reviewers’ suggestion, we computed 

the BIC as the sum of all trials, not as the average per trial: the BIC in social learning model was 

-6149 compared to the myopic model for which the BIC was -5721 (see the updated Table 1 

below). The model comparison was tested rigorously with Bayesian model selection (see our 

response to reviewer 1’s comment 6 for details).  

Last, we included the current trial t as regressors of no-interest in the neuroimaging 

analysis to rule out the possibility that 𝐺𝑡 only captures the temporal decay and not the effect of 

successful group cooperation. This confirmed that the lateral frontopolar cortex encoded the trial 

by trial 𝐺𝑡  during PGG (See our response to reviewer 1’s comment 10 for details). Taken 

together, these results reported in the revised manuscript support the interpretation that the 

group utility (𝐺𝑡) plays a critical role in predicting strategic decision-making. 

Importantly, as noted previously, we have now adopted a clearer definition of strategic 

decision-making. In the volunteer’s dilemma, saving one’s endowed money by choosing not to 

contribute to the group also can be considered as a strategic decision when one expects that 

there will be enough contributors to generate the public goods, as well as contribution to foster a 

cooperative environment. By incorporating this perspective, we defined the decision to switch 

one’s strategy from the previous one as driven by strategic decision. This is exactly what the 

reviewer proposed us to consider in his/her comment 5. Taking this suggestion into account, we 
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performed a new analysis to examine the neural underpinning of switching between strategies. 

Please see our answer to the comment 2.3 below. 

 

 

Table 1 

 

Comment 2.2. Second, participants might have used iterative reasoning, forming higher-

order beliefs on other people’s beliefs. It may be helpful for the authors to explore if 

higher-order beliefs (e.g. belief of other people on the belief of other people) can partially 

explain participants’ behavior. 

 

Answer to the comment 2.2: 

 To address this issue, we tested for the existence of higher order beliefs. We have 

responded to this point in detail in our response to the reviewer2’s comment 3.  

 

Comment 2.3. Finally, previous studies have shown that dmPFC region can be involved 

in strategic reasoning or switching/arbitration between different strategies (e.g. Hampton 

et al., 2008; Seo et al., 2014). It would be helpful, if authors can more clearly describe 

what are the novel aspects of "strategic decision" that could be studied in public good 

game in groups, and what are the novel insights readers can gain from this study about 

the function of dmPFC in strategic decision-making. 

 

Answer to the comment 2.3: 

 We believe that the lack of clarity that the reviewer raised here was caused by our poor 

definition of strategic decisions. We have now addressed this issue by introducing a clearer 

definition, adopting the reviewer’s suggestion from comment 5. That is, we defined strategic-

decisions in this study as an arbitration between strategies. According to this new definition, we 

identified brain areas that are specific to switching strategy with the GLM3. Furthermore, we 
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performed a functional connectivity analysis using the time series extracted from the seed 

regions from this GLM3 − the ACC and vlPFC − inputted as a physiological factor. Importantly, 

as psychological variables, we estimated to what extent the model predicted value of 

contribution decision is changed from the previous trial ( ∆𝑄 = 𝑄𝑡−𝑄𝑡−1 ). Therefore, the 

psychological factor includes the probability of changing one’s strategy from free-riding to 

contribution (positive values) and the probability of changing one’s strategy from contribution to 

free-riding (negative values). Finally, we identified the brain areas encoding such psycho-

physiological interactions. For the details of this GLM3 and the new PPI analysis, please see 

our response to reviewer 1’s comment 12. Note that we are no longer discussing dmPFC 

activity since the new PPI analysis identified the vmPFC and frontopolar cortex as key nodes. 

 

Comment 3. In the analyses of fMRI data, authors used separate GLM models to look for 

activations correlated with different sets of decision-variables (e.g. individual/group 

utilities-GLM1, prediction errors for the belief on others’ probability of free-riding (PFr) – 

GLM 2, PFr itself – GLM 3, estimated choice probability – GLM 4). However, these 

variables tested in separate models are not necessarily independent of each other. For 

example, in the social learning model, PFr (GLM 3) and prediction error for PFr (GLM 2) 

are linearly correlated. Choice probability (GLM 4) is also correlated with individual and 

group utilities (GLM 1). Therefore, in order to know the effect of each variable 

independent of other correlated variables, all the co-linear variables need to be included 

in the same regression model. Otherwise, the significant effect of one variable tested in 

one model could actually reflect the effect of other correlated variables.  

 

Answer to the comment 3:  

 We corrected the issue of multicollinearity by introducing a new GLM. We have 

responded to this point in our responses to reviewer 1’s comments 10 and 11. 

In addition, the reviewer pointed out that the activation correlating with choice probability 

could be simply related to the execution of the final decision (in comment 5). The reviewer 

suggested to examine the neural underpinnings of strategic decision-making, i.e. the activation 

related to the arbitration between two strategies. Following this suggestion, we have constructed 

GLM3, which identified the brain regions specific to trials switching strategy compared to trials 

keeping the previous strategy. This new analysis replaces the previous GLM searching for brain 

areas showing correlation with the model predicted decision probability. The design of the 
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GLM3 and corresponding results are now shown in the revised manuscript. We have responded 

to this point in our responses to reviewer 1’s comments 12: 

 

Comment 4. In general, the description of GLM models in method section is lack of 

clarity. Particularly, it is unclear how the PPI analysis was done. Authors need to provide 

better description of what are the “psychological” variables that modulate the functional 

connectivity. Including equations would help. 

 

Answer to the comment 4:  

 Please see our response to comment 2.3 which clarifies the GLM models and also 

details the new PPI analysis. 

 

Comment 5. Authors argued that dmPFC might be involved in strategic decision, as its 

activation was correlated with choice probability estimated by the model. However, it is 

not clear how the activation correlated with choice probability can be the evidence for 

strategic decision. If the decision based on group utility is a “strategic choice” as 

opposed to a choice based on individual utility, then the region whose activation was 

correlated with group utility could be involved in “planning” strategic choice or 

switching between strategies. The activation correlated with choice probability could be 

simply related to the execution of final decision. Activation related to the “arbitration” 

between two strategies (individual vs. group utility) can be also related to strategic 

choice (Lee et al., 2014). This issue is related to the comment #2. It would be helpful if 

authors provide clear conceptual framework for what “strategic” choice means in the 

public good game, as well as valid quantitative measurement of strategic choice. 

 

Answer to the comment 5:  

 This issue is associated with comment 2. We have addressed this in our responses to 

reviewer 3, comment 2.1 and 2.3. 
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Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

I appreciate the tremendous amount of work that the authors have put into this revision to address 

my comments and those of other reviewers. This has improved the manuscript substantially. In 

particular I liked the new definition of strategic reasoning with the differentiation into immediate 

individual utility and long-term group utility and the associate switches to contribution or free-riding. I 

also appreciated the posterior predictive check that the authors included in Figure S1.  

 

However, one short coming of the presentation of this ppc analysis, is that we only get to see the 

average trial-by-trial decisions of all subjects. Such average behavior is easy to simulate, but it would 

be more convincingly to demonstrate that the social learning model also predicts individual behavior. 

In addition, the time points (trials) of the above-mentioned individual switches to contribution or free-

riding should be an essential part of the posterior predictive check. Can the model simulate data, that 

also exhibits switches to contribution or free-riding at roughly the same time-points? Such an analysis 

should be included as an additional figure in the supplement.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors have adequately addressed my concerns.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

In this revised manuscript, authors addressed reviewer's concerns with additional analyses and 

results. Nevertheless, some concerns still remains mostly regarding authors' analysis of strategic 

decision and the interpretation of the result.  

 

Authors argue that participants tended to switch to free-riding decision in favor of individual utility 

whereas they switch to contribution decision in favor of group utility.  

 

First, it is not clear from the social learning model (equation 5 and 8) that this is necessarily true, 

when Q is a weighted sum of individual and group utility. In other words, the sign of delta Q may not 

necessarily reflect increase or decrease of individual over group utility. Authors need to explicitly show 

how delta Q is related to the trial-by-trial changes in individual and group utility. It is also unclear (not 

quantitatively shown) whether delta Q had significant influence on choice switch.  

 

Second, it is unclear how delta Q can reflect "arbitration". It can simply reflect change in choice 

tendency as a combined function of individual and group utility.  

 

Third, the issue of potential confounding that was raised for GLM 1 and GLM 2 still remains for GLM 3.  
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Reviewer #1 (Remarks to the Author): 
I appreciate the tremendous amount of work that the authors have put into this revision 
to address my comments and those of other reviewers. This has improved the 
manuscript substantially. In particular I liked the new definition of strategic reasoning 
with the differentiation into immediate individual utility and long-term group utility and 
the associate switches to contribution or free-riding. I also appreciated the posterior 
predictive check that the authors included in Figure S1. 
 
However, one short coming of the presentation of this ppc analysis, is that we only get to 
see the average trial-by-trial decisions of all subjects. Such average behavior is easy to 
simulate, but it would be more convincingly to demonstrate that the social learning 
model also predicts individual behavior. In addition, the time points (trials) of the above-
mentioned individual switches to contribution or free-riding should be an essential part 
of the posterior predictive check. Can the model simulate data, that also exhibits 
switches to contribution or free-riding at roughly the same time-points? Such an analysis 
should be included as an additional figure in the supplement. 
 

Thank you for the positive feedback. We agree with the reviewer that, in addition to its 
ability to predict the contribution/ free-riding decision, it is also important to check whether the 
model can provide information about individual behavior and about when to switch from the 
previous strategy or to stay with the current strategy. To address this point, we estimated to 
what extent the model predicts a stay/switch decision at trial t (2 ≤ t ≤ 15) across trials. We 
found that in the model-based simulation with cross-validation (as shown in Fig S1), the same 
switch is made 36.6 ± 0.08 % of the cases within the next trial. Note that accurate prediction in a 
switch decision indicates that the model not only accurately predicts the current decision but 
also the decision in the previous trial (conditional probability, p(Contribution | Free-riding) and 
p(Free-riding | Contribution)). It suggests that the chance level prediction of switching decision is 
not 50%. Moreover, in repetitive social interactions, the probability to make a contribution 
decision is continuously influenced by the previous interactions. Considering that, we computed 
the baseline prediction of switching strategy with number-matched simulation and compared it 
to that of the model-based simulation. We found that the model-based simulation predicts the 
same switch more accurately than the number-matched simulation (t24=2.56, p=0.017, paired t-
test; Fig. S1 D). To compute the baseline predictability from the number-matched simulation, we 
generated 100 sets of randomly shuffled data for each participant while matching the number of 
the contribution decision with those of the model-based simulation during each of the 12 blocks 
of PGG, and we used the number of accurate predictions of stay/switch decisions from this 
number matched simulation as the baseline prediction. 

Among 168 trials of decisions, we found that the model-based simulated decision 
accurately predicted the switch/stay decision in 131.9 ± 5.1 trials across participants, which is 
significantly above the number matched baseline simulation (107.2 ± 2.8 trial; t24=4.99, p=4.27e-
05; left panel in Fig. S1 E). We also reported the number of missed prediction according to the 
following categories: 1) the number of switch decisions while the model-based simulation made 
a stay decision (29.7±4.6 trial in model simulate data < 33.8 ± 3.1 trials in number matched 
simulation); 2) the number of stay decisions while the model-based simulation made a switch 
decision (0.9 ± 0.3 < 5.2 ± 0.7); 3) the number of switch decisions that the model-based 
simulation switches in different direction (e.g. switching to the contribution decision while the 
model-based simulation made a switch to the free-riding decision) (0.9 ± 0.3 < 5.2 ± 0.7) (right 
panel in Fig. S1 E). These results are now added in the model validation in the results section 
(on p. 6) and Figure S1 D (p.3 in the supplementary information) as indicated below. 
 
Model validation and comparison in p.6 
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… When a participant switches from his previous decision, the model-based simulation also predicts the 
same change that participants made (switch to contribution or switch to free-riding) in 36.8±0.08% 
accuracy within the next trial. To test how well these decisions in the model-based simulation reflect the 
actual sequence of switch/stay decisions made by a participant, we compared the model-based 
simulation to a control number-matched simulation. To do this, we generated 100 sets of randomly 
shuffled data for each participant while matching the number of the contribution/free-riding decisions 
with those of the model-based simulation during each of the 12 blocks of PGG, and we compared this 
baseline prediction of stay/switch decisions to that of the model-based simulation. We found that the 
model-based simulation better predicts the same switch decision than the number-matched simulation 
within the next trial (t24=2.56, p=0.017, paired t-test; Fig. S1 D). In the model-based simulation, the 
decisions of each participant about whether to switch to contribution or free-riding or whether to stay to 
the previous strategy were accurately predicted for 131.9±5.1 (s.e.m.) trials among 168 in total (except 
for the first decision in each block of PGG). We found that the agent in the model-based simulation is 
more likely to make the same switch/stay decision on the same trial of the actual decision made by a real 
participant, and this effect was significantly above the baseline (t24=4.99, p<0.001, paired t-test; Fig. S1 
E). 
 

 
Fig. S1 D. The percentage of accuracy of the model-based simulated decision in predicting the same 
switch decision that a participant made within the next one trial. The model-based simulated decision set 
used here is the same 12 folds cross-validation as shown in Fig S1 B and C. To examine how well switch 
decisions are predicted by the model-based simulation, we compared this with the baseline prediction of 
switch decisions. To compute the baseline prediction, we measured how much the randomly shuffled 
data predict the switch/stay decisions while matching the number of contribution/free-riding decisions of 
each subject in each block (100 times iterations per block). The model-based simulation more accurately 
predicts the switch decision than the number-matched simulation (t24=2.56, p=0.017, paired t-test). E. 
Average number of trials across participants in which the decision to switch from the previous strategy or 
to stay with the current strategy is accurately predicted by the synthetic decisions generated by the social 
learning model across 168 trials (except for the decision in the first trial of each block) (Left) and number 
of trials in which the model-based simulation differed from the actual switch/stay decision (right). The 
social learning model not only generated series of switch/stay decisions that are more similar to those 
made by a participant than the number matched baseline (left; t24=4.99, p<0.001), but had also lower 
miss predictions than the number matched baseline simulation (right). In the right panel, the first bar 
indicates the number of trials in which the model-based simulation made a stay decision when the 
participant made a switch decision; the second bar indicates the number of trials in which the model-
based simulation made a switch decision when the participant made a stay decision; the third bar 
indicates the number of trials in which the model-based simulation had a switch decision in a different 
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direction from the direction a participant made (e.g. the model switches from the contribution to free-
riding, C-F while the participant switches from free-riding to contribution, F-C). The baseline prediction 
estimated from the number-matched simulation is shown in dotted line. Error bars indicate s.e.m. 
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Reviewer #2 (Remarks to the Author): 
The authors have adequately addressed my concerns. 
 
 
Reviewer #3 (Remarks to the Author): 
In this revised manuscript, authors addressed reviewer's concerns with additional 
analyses and results. Nevertheless, some concerns still remains mostly regarding 
authors' analysis of strategic decision and the interpretation of the result. 
 
Authors argue that participants tended to switch to free-riding decision in favor of 
individual utility whereas they switch to contribution decision in favor of group utility. 
 
First, it is not clear from the social learning model (equation 5 and 8) that this is 
necessarily true, when Q is a weighted sum of individual and group utility. In other words, 
the sign of delta Q may not necessarily reflect increase or decrease of individual over 
group utility. Authors need to explicitly show how delta Q is related to the trial-by-trial 
changes in individual and group utility. It is also unclear (not quantitatively shown) 
whether delta Q had significant influence on choice switch. 
 

We agree with the reviewer that it is not necessarily true that participants tend to switch 
to free-riding decision in favor of individual utility while they switch to contribution decision in 
favor of group utility. We want to clarify that we are NOT arguing that ‘participants tended to 
switch to free-riding decision in favor of individual utility whereas they switch to contribution 
decision in favor of group utility’. We are afraid that the reviewer may have misunderstood our 
interpretation of the psychological factor (∆Q) in the PPI analysis based on the incorrect 
assumption that ∆Q either reflects changes in the individual utility or changes in group utility. In 
fact, our analyses and interpretation of the results stand on the definition of Q as the weighted 
sum of the individual utility and of the group utility. Therefore, ∆Q is the index of the trial-by-trial 
tendency to switch one’s decision to the alternative or to keep with the previous decision, and 
does not reflect the changes in either individual or group utility alone. 

Please note that we also did not state in the manuscript that ∆Q is only driven by either 
individual or group utility. For example, the following sentences were extracted from our 
discussion (p.12): “Moreover, the functional connectivity between the vlPFC and ACC −regions 
selectively engaged for the event predicting the strategy switch– decreased with the vmPFC 
encoding ‘individual utility’ and increased with the lFPC encoding ‘group utility’ when the 
probability of contribution was high at the time of feedback.” We are concerned that this 
argument may be misread by the reviewer. If this is the case, we would like to clarify this point. 
What we described here concerned the results of two independent analyses. First, in the PPI 
analysis, we found that the connectivity between the vlPFC and ACC to the vmPFC and lFPC 
are modulated by ∆Q. We used ∆Q as the psychological factor indicating the trial-by-trial 
changes in tendency to switch one’s decision from the previous one. Second, in an independent 
univariate analysis (GLM1), we found that activity in the vmPFC inversely correlated with 
individual utility, and that activity in the lFPC positively correlated with the group utility. Lastly, 
we found, in univariate analyses, that the vmPFC and lFPC encoding individual and group utility 
are the same areas that were found in the PPI analysis as showing changes in connectivity with 
the vlPFC/ACC as a function of ∆Q. We have attempted to clarify this subtle point further in the 
Discussion (see below).  

As the reviewer mentioned, the social learning (SL) model predicts free-riding decision 
with decreases in Q, which can be caused not only by a decrease in the individual utility 
(associated with vmPFC activity increases) but also by a decrease in the group utility 
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(associated with lFPC activity decreases). Therefore, for a participant whose Qt-1 was large 
enough to make a contribution decision at the previous trial t-1, if Qt is decreasing on the current 
trial t, then the activity in the brain areas which guide switching to the alternative strategy (vlPFC 
and ACC) may increase while ∆Q (∆Q = Qt - Qt-1) has a negative value. Our PPI analysis tested 
this hypothesis. Therefore, we agree that our results should not be interpreted as reflecting that 
the changes in functional connectivity are modulated solely by changes in individual utility or by 
changes in group utility. Instead, our results suggest that the switch to a free-riding decision is 
guided by both increase in vmPFC to vlPFC/ACC connectivity and decrease in the lFPC and the 
vlPFC/ACC connectivity. Likewise, the switch to the contribution decision is guided by both 
decrease in vmPFC to vlPFC/ACC connectivity and increase in the lFPC and the vlPFC/ACC 
connectivity. 

To avoid potential misunderstanding, we have revised the sentences mentioned above 
as follows (p.12 in Discussion). 

Moreover, the functional connectivity between the brain areas selectively engaged for the event 
predicting the strategy switch (vlPFC and ACC) decreased with the vmPFC and increased with the lFPC 
when the probability of contribution is increasing (∆Q > 0) at the time of feedback. This finding suggests 
that the brain computes the expected utility by integrating the individual utility encoded in the vmPFC 
and the group utility encoded in the lFPC. When the expected utility of the current strategy is lower than 
that of the alternative strategy, these brain regions are more likely to exhibit changes in functional 
interactions to the vlPFC and ACC to guide a switch between strategies. 
 
We have also noticed the first sentence in the same paragraph (p.11 in discussion) could have 
led to the confusion that the reviewer raised while reading the following part of the discussion. 
We have therefore also changed this sentence to provide an appropriate premise. 
 
In the current study, participants who adopted a mixed strategy might flexibly switch their strategies 
between free-riding and contribution according to the changes in their expected utility. 
 
 
Second, it is unclear how delta Q can reflect "arbitration". It can simply reflect change in 
choice tendency as a combined function of individual and group utility. 
 

The terminology “arbitration” was adopted from a previous comment made by one of the 
reviewers. We understand that this term can be misleading because it has previously been used 
in a more specific way, such as “arbitration between model-free and model-based learning”. To 
avoid giving the impression that we are using such specific connotation, in the revised 
manuscript, we are no longer using the word ‘arbitration’. We have used other terms to deliver 
our message more accurately. 

In the manuscript, the word arbitration was used to indicate the process of strategy 
selection which includes the changes in tendency to choose a different strategy. Importantly, as 
we described in the previous manuscript (p.12 in discussion), it is hard to dissociate the 
changes in decision from the changes in strategy in this study: “It is important to note that here, 
we defined a change in strategic-decision as a change in model predicted decision-value, 
because it is not possible to dissociate a change in strategy from a change in behavioral 
response.” Therefore, the “arbitration between strategies” was also used to indicate the choice 
process between two strategies. 

Below is the list of sentences in which we previously used the word “arbitration” and the 
changes we made consequently in italics with underline. 
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Abstract 
When it is required to change one’s strategy, these two brain regions exhibited changes in functional 
interactions with brain regions engaged in switching decision strategies (the anterior cingulate cortex 
(ACC) and ventrolateral prefrontal cortex (vlPFC). 
 
p.2 in introduction 
Finally, when participant can expect better utility by choosing the alternative strategy, the ACC and the 
ventrolateral prefrontal cortex (vlPFC), which were engaged for switching decision strategy, showed 
changes in functional connectivity with the vmPFC and lFPC, regions encoding the utility of the strategy. 
 
p.8 the title of a subsection in results 
Neural mechanisms underlying switch between different strategies 
 
p.8 in results 
These areas are therefore likely to be involved in implementing a choice between strategies. 
 
To identify the neural mechanism underlying the changes in strategies, we examined how the choice 
probability modulates the interactions between the brain areas involved in switching decisions and the 
areas involved in encoding the individual utility and the group utility. We hypothesized that brain regions 
implementing the switch between strategies would show enhanced coupling with those areas encoding 
subjective utilities. 
 
p 9 in results 
The physiological variables were the brain signals extracted from the brain areas involved in the switch 
between strategies (ACC and vlPFC) at the time of feedback. 
 
That is, increased functional connectivity was found between the lFPC and the brain areas engaged in 
switching strategies as a function of the changes in decision value to contribution strategy, while 
increased functional connectivity was observed between the vmPFC and the brain areas engaged in 
switching strategies as a function of the changes in decision value to free-riding strategy. Together, these 
findings suggest that the neural encoding of the group utility and individual utility, as formalized from 
the social learning model, inform the alteration between strategies in vlPFC and ACC during social 
interactions. 
 
p.11 in discussion 
Considering strategic decision-making as the flexible shifts between different strategies, we observed 
that the activity from the vlPFC and the ACC increased when switching between strategies, suggesting 
that these brain regions signal the needs to change the current strategy during collective decisions. 
 
p.12 in discussion 
Finally, functional connectivity between areas (ACC and vlPFC) guiding switch to different strategies 
 
p.24 in methods 
the contrast images related to switching the current strategy (Switch > Stay; GLM3) were calculated and 
entered in a second level analysis 
 
We define the psychological factor of strategic decisions as the trials requiring the switch in strategy. 
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p.25 in methods 
we focused on the time of feedback and examined the changes in functional connectivity between the 
brain regions involved in the switch in strategies and the brain regions encoding the computational 
variables 
 
the anterior cingulate cortex (ACC), (x,y,z=0,17,31) predicting the changes in strategies (GLM3). 
 
Figure 4. title and its legend 
Neural mechanisms of strategy selection during the Public goods game. 
 
Connectivity analyses between the brain regions engaged in switching to the alternative strategy (the 
vlPFC and the ACC) 
 
Third, the issue of potential confounding that was raised for GLM 1 and GLM 2 still 
remains for GLM 3.  
 
 We believe that the reviewer is referring to the previous potential problem noted in the 
previous reviews: “running several different GLMs is just avoiding, not addressing the problem 
as the interpretation of different GLMs could become obscured if the inherent correlation 
between signals is not addressed. Therefore, it is even more important to report correlations 
between different regressors and model-based signals”. We have reported that due to the 
inherent process of repetitive social interactions there are potential confounds in GLM1 and 
GLM2. To address this potential confound for GLM1 and GLM2, we have adopted the partial 
correlation and prioritize the brain area computing the regressors of interest over others (see 
our answers to the previous reviews). 
 Concerning GLM3, we believe there may have been some confusion since there this 
GLM did not include any parametric regressor, obviating the concern about collinearity. Rather, 
GLM3 was a factorial model. We were aware that GLM3 should be independent from the 
computational model to define the seed region for the PPI analysis. Specifically, with GLM3, we 
determined brain areas reflecting a switch of strategy (switch > stay). The following paragraph is 
the description of this model (p. 24): “Last, we examined the brain regions specifically engaged 
when switching one’s decision strategy from one trial to another, compared with staying with 
one’s previous strategy (Switch>Stay). For the third GLM (GLM3), we thus compared the brain 
responses of the outcome at round t-1 (including the 1st to the 14th round of the PGG) to model 
the decision at the round t. The outcome phases of the round t-1 of the PGG were split into the 
‘switch’ and the ‘stay’ trials according to the interaction between the decision at round t-1 and 
the decision at the following round t. GLM3 also included the same regressors of no interest 
defined in GLM1, which includes button press, instructions, decision onsets, missing trials and 
motion regressors.” 
 

To avoid potential misunderstanding, we added the following sentence to specify that the 
switch/stay decision in GLM3 was not based on the prediction from the social learning model 
but was based on actual decisions made by participants. 
 
p.24 in discussion 
The switch and stay trials were determined based on the decisions made by each participant, and were 
not based on the model-based prediction. 



Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The authors have addressed all my comments. Congratulations on a well-conducted study and a well-

written paper.  

 

A final minor comment: It took me quite some time to figure out, what the italicized labels (ie.. 

Prediction Switch(Stay) ...) in Fig S1E actually refer to. Can this be explained in the Figure legend?  

 

 

 

Reviewer #3:  

Remarks to the Author:  

concerns were properly addressed. 
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