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The experimental model.  We used a coarse-grain statistical metrics for estimating 

the behavior of a gene ensemble, adopting a statistical mechanics-inspired model 

of biological regulation (1). Accordingly, whole genome expression is ruled by self-

organization processes, as described by the Self Organized Criticality (SOC) theory 

(2).  

Briefly, SOC considers a cell-fate decision-making model where diverse cell-fate 

options are first generated by sorting out of various transcriptional programs, and 

then a cell-fate gene module is selectively amplified when the network system 

approaches a critical state.  

It is generally assumed that each differentiated state – a cell phenotype - 

corresponds to a very stable gene expression pattern. This condition implies that 

the system displays high coherence values, recognizable by very strong correlation 

between key parameters (transcriptome profiles, among others) obtained from 

independent samples belonging to the same tissue (3). Supplementary Methods 

figure 1 refers to MCF7 cell line and clarifies this point: the axes refer to two 

independent MCF7 samples whose single gene expression values are the points of 

the graph (around 23000, expression values in logarithm units), the d-value 

corresponds to the range (box size) of variation, inside which the correlation 



(Pearson coefficient, r) is computed (3). The correlation computed overall is near to 

unity (r = 0.98), and declines at decreasing range of variation. The inset on top left 

angle of the figure shows the reaching of a plateau correlation at d = 0.45. This 

remark outlines how correlation values are tightly dependent on the observation 

scale, and it is consequently mandatory to choose a proper level of observation in 

setting the experimental investigation. The scale dependence of the correlation is 

instrumental to keep alive both the functionality of the tissue (the specialized 

physiological function asks for an invariant “ideal” pattern of gene expression) and 

the flexibility required to adapt to changing microenvironment, tuning the specific 

gene expressions at the small scale. This fine-tuning does not alter the global profile 

invariance and corresponds to the scattering of the points around the identity line 

reported in Supplementary Methods figure 1. Even if (slightly) less precise, this 

correlation holds even at the single cell scale (4), and changes in single cell 

correlation structure are instrumental to predict cell fate transitions (5).The 

dispersion across the identity line corresponds to the equilibrium around a definite 

physiological state and keeps invariant the correlation coefficient between two 

snapshots of the cell population. Only when the system undergoes a transition 

toward another state, with a concomitant wide modification in gene expression 

pattern, this correlation changes in a relevant manner. In principle, any directed 

modification of the phenotypic state is sustained by the coordinated change of 

activities at a large number of gene loci across the genome, altering the relative 

proportion of gene expression, thus affecting their mutual correlation. Because 



genes influence one another’s expression by means of a network of regulatory 

interactions, genes cannot alter their expression in an independent manner, and 

transcriptomes (which are the measurable proxies for genome-wide gene activation 

profiles and hence, for cell states) can change only in a highly constrained manner 

(6).  
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Supplementary Methods Fig. 1. Pearson’s correlation between independent samples of the 

same cell type. The figure reports the correlation between two independent samples of MCF7 (axes 

of the plot) in terms of expression levels of around 23000 genes (vector points). The overall 

correlation is near to unity (r = 0.98) consistently with the existence of a main attractor correspondent 

to the cell-kind. At smaller scale of variation (different values of d, box-size) the correlation decreases, 

Supplementary methods Figure 1



given the local expression fluctuations needed to cope with slight environmental changes (genetic 

noise) obscure the existence of an ‘ideal expression profile’. The top-left inset shows how the 

attractor structure is fully present at d = 0.45 (modified from (11)). 

 

It is crucially important to keep in mind the hierarchical character of the definition of 

‘state’: each cell type can be defined, in dynamical terms, as an ‘attractor’, i.e. a 

minimum energy configuration to which the system returns when the effect of a 

perturbation (e.g., a drug, a physical cue) fades away. We can imagine this attractor 

as a deep valley of a rugged energy landscape (6). The minimum-energy bottom of 

this valley, in analogy with protein three-dimensional configuration, is not a single 

point but admits several sub-attractors that can be considered quasi-stable states 

in which the system might reside (7). The presence of multiple, quasi-identical 

solutions of energy minima at the bottom of the energy landscape is instrumental to 

guarantee adaptation to environmental changes. In principle, a physical constraint 

can modify the phenotypic state, without modifying the cell type. This would 

correspond to a (relatively small) change in between gene expression profiles 

correlation coefficient (hypothesis b). 

We set us in investigating such changes in correlation values between gene 

expression profiles to check for a ‘gene expression profile counterpart’ of the 

morphological changes induced by microgravity. In order to have a magnitude 

estimation of such changes, we are describing herein previously published 

correlation values between transcriptomes of the same tissue in two physiological 



states (Supplementary Methods figure 2a), together with the correlation between 

two different tissues relative to the same animal (Supplementary Methods figure 2b). 

Passing from the same tissue in different physiological states (jumping between two 

sub-attractors of the same main tissue attractor) to two different tissues (two 

different main attractors), the correlation coefficient drops from 0.97 to 0.30. The 

near to unity correlation of different physiological states relative to the same tissue 

(Supplementary Methods figure 2a), depends from the existence of a tissue-specific 

‘ideal’ profile shared by the different states, which disappears in the bottom panel 

representation (Supplementary Methods figure 2b) (8). 
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Supplementary Methods Figure 2. Gene expression patterns and Pearson’s correlation 

coefficients. Fig. 2a reports the gene expression profiles of two independent (obtained from different 

animals) samples of the same tissue (colon). Fig.2b depicts on x-axis the gene expression profiles 

relative to two different tissues (colon and pituitary gland) pertinent to the same animal. In the top-
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panel, correlation is near to unity (r=0.97), whereas it drops to r=0.30, when different tissue of the 

same animal are considered (bottom panel) (modified from (8)). 

 

In physical-mathematical terms, we consider every stable transcriptome as an 

‘attractor’, to which the system tends to come back when perturbed. In biological 

terms, we can define an ‘attractor’ as a stable, observable cell phenotype in which 

all gene regulatory interactions show slight oscillations, preserving the overall 

coherence. Accordingly, the switch from one stable cell state to another corresponds 

to a ‘transition’ from one attractor to another (9). The invariance of gene expression 

profile in respect to perturbations (resilience) comes from the existence of robust 

gene interaction network. This implies that a tissue observed at different time 

intervals keeps a near to unity autocorrelation in respect to its initial (t0) profile, 

displaying only minor variations, mostly due to stochastic fluctuations. We must 

outline that the autocorrelation is detectable given we select a sufficiently wide range 

of mean expressions of any choice of probe genes, instead of analysing the overall 

transcriptome landscape, as already reported in greater details (2, 10, 11). 

Therefore, here we focused on an appropriate set of 26 gene expression data. 

These 26 genes – independently from the biological function they fulfil - were chosen 

with a sufficiently diverse average expression range of variation (d = 0.60 in 

logarithmic units, well inside the plateau correlation range, see inset of 

Supplementary Methods figure 1) to highpoint the attractor-like behaviour. In the 

full-rank situation each sample is thus a 26-component, real-valued vector. It is 



worth noting to recall that cell cultures in vitro do not perfectly adhere to the ideal 

portrait. They are more aptly defined as ‘quasi’ equilibrium states, as we do expect 

a slow decay of autocorrelation in time reflecting the impossibility to maintain forever 

viable an in vitro cell culture (11). On the other hand, a lethal disruption of the gene 

interaction networks is expected to destroy the between profiles correlation. We 

selected genes relative to a coherent network that, as expected, gave rise to very 

high average between genes correlation (r = 0.834, SD = 0.07). This between genes 

strict correlation is instrumental for dealing with eventual missing values. Each 

pairwise comparison between profiles can be only computed over the components 

(gene expression data) esteemed in both samples. The mutual correlation between 

gene expression values, reassures us that the obtained results are largely invariant 

for small variations of the considered genes due to eventual missing values. 

According to the aforementioned approach, we planned to investigate the following 

points: 

1. Assessment of quasi-stability of cells exposed to microgravity is crucial to 

eliminate the possibility that microgravity exerts a disruptive effect on cells. The 

quasi-stability condition would be mirrored by the observation of near-to-unity 

autocorrelation values across different times for gene expression profiles in the 

three experimental conditions: OG (cells On Ground), RPMAD (Adherent Cells 

obtained in simulated microgravity by Random Positioning Machine) and 

RPMCLUM (Random Machine Positioning Clump cells). We expect that time spent 

in microgravity only provokes a mild decay from unity correlation with t0, and in any 



case, a decline of the same order of magnitude of what happens in OG condition, 

only due to the forcedly artificial character of in vitro cell cultures. 

2. We thus posit that the dramatic changes on both morphology and functions 

(apoptosis, proliferation) observed in cell exposed to microgravity are adaptive 

modifications, involving only modest changes in the overall gene expression 

patterns. In this case, quantitative gene changes must be ‘buffered’ and coordinated 

across the different genes, so provoking a shift of the system to another sub-

attractor state (a new stable situation). This discrete minor (i.e. relative to the minor 

ruggedness on the bottom of minimum energy valley) ‘transition’ allows the system 

in preserving its ‘identity’ (exactly in the same way the haemoglobin molecule 

preserves its identity going from R to T configuration). 

3. According to this framework, the recovery rate of the native OG gene profile 

from different physiological states elicited by the microgravity condition is expected 

to be inversely proportional to the distance of these states from the native OG state. 

The comeback trajectory should then display a hysteresis-like behavior. Hysteresis 

means that a system has more than one stable state in respect to changes occurring 

in a (internal/external) control parameter, where the ‘manipulation’ of that parameter 

can eventually enable the reversion to the native state. In this case, the forward and 

return trajectories are not coincident, due to both the ‘memory’ (12) of the previous 

visited states and the non-ideal character of the transformation. Broadly speaking, 

this means that to induce a switch back to the original stable state (the native 

‘attractor’), the system needs to go back through another bifurcation point. Such 



hysteresis cycles have been largely investigated in ecology (13) but are actually 

observed also in cell state changes dynamics (14). 

We checked point 1) by calculating the autocorrelation in time of the three OG, 

RPMAD and RPMCLUM conditions. We investigated point 2) by computing the 

correlation between Euclidean and Angular distances from reference OG state. 

Euclidean distances embed both additive (expression differences over the entire set 

of genes) and profile (relative proportions) changes. The Euclidean distance 

measures how the expression gene profiles differ in magnitude among the different 

samples, e.g. to what extent the same genes are differently expressed 

(Supplementary figure 2). On the contrary, cosine (angular) distances correspond 

to the angle between two vectors. Pearson correlation coefficient permits to 

measure such distance as it corresponds to the cosine of the angle between the two 

analysed variable vectors (in our case the gene expression profiles). The angle 

distance distinguishes how gene expression pattern differs in terms of relation 

among different gene expression, thus recognizing a qualitative difference in their 

expression pattern. In practice, if we have three genes with expression values 10, 

20, 30 in sample A and 20, 40, 60 in sample B, they have non-zero Euclidean 

distance (d(AB) = 37.4). On the contrary, they have a zero angular distance (the two 

A and B vectors have a Pearson correlation r = 1, given the proportions among their 

components do not differ), being Pearson r the cosine of the angle between the two 

vectors that is to say the two vectors are parallel (zero angle) (15).  



The demonstration of a statistically significant and relevant co-variation between 

Euclidean and Angular measures would demonstrate that the quantitative changes 

happen in a coordinated manner over the entire set of genes pointing to the need of 

adjusting mutual gene expression proportions according to the existence of sub-

attractors correspondent to different populations. Finally, point 3) was investigated 

by the projection of different samples on a polar plot where y-axis is the Euclidean 

distance values and x-axis reports Angle values, determined in respect to the 

reference OG profile located at the centre of the plot. This representation highlights 

the hysteresis character of the phenotypic states trajectory with respect to the OG 

baseline condition, while allowing us to estimate the mutual distances in the gene 

expression multidimensional phase space among different samples (16). 

  



Supplementary figure 1 

 

Supplementary figure 1. (a) MCF7 were grown for 72 hours in ultra-low attachment 

vessels (Corning) to prevent the attachment and the monolayer growth observed in 

standard OG conditions (OGAD : on ground, adherent ; OGCLUM : on ground, 

clumps). (b) apoptosis was assessed in MCF7 grown in monolayer (OGAD) and in 

MCF7 grown in non-adherent conditions (OGCLUM). Scale bar : 50 µm. Ns : not 

significant. 
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Supplementary figure 2. Histograms show the modulation of analyzed genes in normal gravity 

(OG) and after microgravity, dividing the two population of adherent cells (RPMAD) and clumps 

(RPMCLUM). Genes were divided according to pathways: a) reprogramming b) epithelial – 

mesenchymal transition c) apoptosis d) multidrug resistance, Hedgehog pathway and Notch 

pathway e) cell cycle. GAPDH, HPRT, beta ACTIN and beta 2 MICROGLOBULIN were used as 

housekeeping. *p<0.05. 
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Supplementary figure 1. Histograms show the modulation of analyzed genes in normal 
gravity (OG) and after microgravity, dividing the two population of adherent cells (RPMAD) 
and clumps (RPMCLUM). Genes were divided according to pathways: a) reprogramming 
b) epithelial – mesenchymal transition c) apoptosis d) multidrug resistance, Hedgehog 
pathway and Notch pathway e) cell cycle. GAPDH, HPRT, beta ACTIN and beta 2 
MICROGLOBULIN were used as housekeeping. *p<0.05.
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Supplementary figure 3. Metric spaces. We define as ‘metric’ a space where we 

can we can compute a distance between any two p and q vectors pertaining to 

that space.  A distance function is defined by three basic properties: 

1. d(p, q) ≥ 0     (non-negativity) 

2. d(p, q) = 0   if and only if   p = q     (identity of indiscernibles) 

3. d(p, q) = d(q, p)     (symmetry) 

4. d(p, z) ≤ d(p, q) + d(q, z)     (subadditivity / triangle inequality). 

In this paper, we deal with two different metrics: Euclidean and Angular (Correlation) 

metrics. 

The following figure reports (dashed line) the Euclidean distance d between two p 

and q point vectors of coordinate (x1,y1) and (x2,y2). The formula is an application 

of Pythagoras theorem, being d the hypotenuse of the triangle having cathects: (x1-

x2) and (y1-y2) respectively. 
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Supplementary figure 2. Metric spaces. We define as ‘metric’ a space where we can 
we can compute a distance between any two p and q vectors pertaining to that space.  
A distance function is defined by three basic properties:
d(p, q) ≥ 0     (non-negativity)
d(p, q) = 0   if and only if   p = q     (identity of indiscernibles)
d(p, q) = d(q, p)     (symmetry)
d(p, z) ≤ d(p, q) + d(q, z)     (subadditivity / triangle inequality).
In this paper, we deal with two different metrics: Euclidean and Angular (Correlation) 
metrics.
The following figure reports (dashed line) the Euclidean distance d between two p and q 
point vectors of coordinate (x1,y1) and (x2,y2). The formula is an application of 
Pythagoras theorem, being d the hypotenuse of the triangle having cathects: (x1-x2) 
and (y1-y2) respectively.
The above formula extends to spaces having a number n of dimensions greater than 
two as (Fig. S1a):
!(#, %) = √∑ (#) − %))+

,-. 2

The above formula gives the Euclidean distances between two p and q gene 
expression profiles with a maximal n = 26 components (different gene expression). In 
order to cope with missing values, we normalized the above distance formula by 
dividing it by n(e) = number of gene expressions values actually present in both 
profiles: 

!/012 #, % = !(#, %)//(5)
This normalization was necessary because any dimension (gene expression value) 
adds a positive contribution to distance, the distance computation over (slightly) varying 
dimensionality spaces does not alter the global metrics (17).
While both ‘size’ and ‘shape’ differences enter into Euclidean metrics, Correlation 
metrics takes into consideration only ‘shape’ differences between two vectors. In other 
words two p = (10,20,30) and q = (1,2,3) vectors have a null angular distance because 
the ratios among their components are conserved. In geometrical terms, that is to say 
we consider the distance between two vectors as the width of the angle between them 
(Fig. S1b). The cosine of the angles between two vectors correspond to their Pearson 
correlation coefficient according to:

6)2)781)9:	 #, % = cos ? = @. B
@ B = @58160/	1(#, %)

The maximal similarity being correspondent to a unit Pearson correlation between p 



The above formula extends to spaces having a number n of dimensions greater than 

two as (Fig. S1a): 
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The above formula gives the Euclidean distances between two p and q gene 

expression profiles with a maximal n = 26 components (different gene expression). 

In order to cope with missing values, we normalized the above distance formula by 

dividing it by n(e) = number of gene expressions values actually present in both 

profiles:  

!./01 #, % = !(#, %)/.(4) 

This normalization was necessary because any dimension (gene expression value) 

adds a positive contribution to distance, the distance computation over (slightly) 

varying dimensionality spaces does not alter the global metrics (17). 

While both ‘size’ and ‘shape’ differences enter into Euclidean metrics, Correlation 

metrics takes into consideration only ‘shape’ differences between two vectors. In 

other words two p = (10,20,30) and q = (1,2,3) vectors have a null angular distance 

because the ratios among their components are conserved. In geometrical terms, 

that is to say we consider the distance between two vectors as the width of the angle 

between them (Fig. S1b). The cosine of the angles between two vectors correspond 

to their Pearson correlation coefficient according to: 



5(1(670(89	 #, % = cos > = ?. A
? A = ?4705/.	0(#, %) 

The maximal similarity being correspondent to a unit Pearson correlation between 

p and q and consequently to > = 0. 

The angular distance is thus 

C.DE670	F(587.G4	 #, % = 70G/5(5(1(670(89 #, % = 70G/5(0 #, % ) 

In order to go more in depth with these arguments we suggest to read Chapter 6 of:  

McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. 

Gleneden Beach. 

(https://www.umass.edu/landeco/teaching/multivariate/readings/McCune.and.Grac

e.2002.chapter6.pdf). 
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Supplementary table 1. Raw data for gene expression of MCF7 cells exposed to microgravity. 

Values represent the average of the triplicate as described in material and methods. 
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Supplementary table 1. Raw data for gene expression of MCF7 cells exposed to 
microgravity. Values represent the average of the triplicate as described in material and 
methods.  



Supplementary Table 2 

 

GENE NAME ID ASSAY 

glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 
Hs02786624_g1 

hypoxanthine guanine phosphoribosyl transferase 

(HPRT) 
Hs02800695_m1 

β–Actin (BACTIN) Hs01060665_g1 

β-2-microglobulin (B2MICRO) Hs00187842_m1 

NOTCH1 Hs01062014_m1 

NOTCH2 Hs01050702_m1 

GLI1 Hs00171790_m1 

B-cell lymphoma 2 (BCL2) Hs00699441_m1 

BAX Hs00180269_m1 

Vascular endothelial growth factor A (VEGFA2) Hs00900055_m1 

Cyclin A2 (CCNA2) Hs00996788_m1 

Cyclin D1 (CCND1) Hs01050839_m1 

Cyclin E2 (CCNE2) Hs00180319_m1 

MYC proto-oncogene Hs00153408_m1 

MYCN proto-oncogene Hs00232074_m1 

Caspase7 (CASP7) Hs00169152_m1 

Caspase8 (CASP8) Hs06630780_s1 

epidermal growth factor receptor (EGFR) Hs01076090_m1 

erb-b2 receptor tyrosine kinase 2 (ERBB2) Hs01001580_m1 

insulin like growth factor 1 receptor (IGF1R) Hs00609566_m1 

HES1 Hs00172878_m1 

POU Class 5 Homeobox 1 (OCT4) Hs04260367_gH 



SRY-box 2 (SOX2) Hs01053049_s1 

Nanog homeobox (NANOG) Hs02387400_g1 

zinc finger E-box binding homeobox 1 (ZEB1) Hs01566408_m1 

β-3-tubulin (TUBB3) Hs00801390_s1 

 

Supplementary Table 2. List of Taqman assay IDs for gene expression analyses 
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