

Online Figure 1. HFD induces cardiac hypertrophy in mice

Mice fed with ND or HFD for 8 weeks. (A) Heart weight (HW) to tibial length (LV W/ TL) ratio HFD (n=6, each). (B) Representative wheat germ agglutinin staining to assess CM cross-sectional area in mice fed with ND or HFD (n=6, each). (C) Representative gel pictures and quantitative analysis of ANP and α -tubulin in the heart. (n=6, each). (D) Analysis of relative mRNA expression of ANF and BNP in mice fed with ND or HFD (n=6, each). All results are expressed as mean ± SEM. *P<0.05, **P<0.01 by ANOVA.

Online Figure 2. HFD induces cardiac activation of YAP and inactivation of Lats2 in mice Mice fed with ND or HFD for 8 weeks. Quantitative analysis of immunoblot of YAP/ α -tubulin and phosphoLats2/total Lats2 in the heart. (n=6, each). All results are expressed as mean ± SEM. *P<0.05 by ANOVA.

Online Figure 3. The effect of HFD on CM de-differentiation in response to PO

(A-F) Quantitative analysis of YAP, TEAD1, OSM, MYH7, ACTA2 and RUNX1 in response to PO after HFD treatment. **P<0.01 by ANOVA. The results are from 6 independent experiments. In box plots, whiskers show minimum and maximum values while bars represent the median and 25th and 75th percentiles.

Online Figure 4. CM de-differentiation with or without Verteporfin in response to PO in the presence of HFD (A-F) Quantitative analysis of YAP, TEAD1, OSM, MYH7, ACTA2 and RUNX1 in the hearts. **P<0.01 by ANOVA. (n=6,each) In box plots, whiskers show minimum and maximum values while bars represent the median and 25th and 75th percentiles.

Online Figure 5. Inflammatory response in the heart during PO in the presence of HFD

(A) Representative immunostaining and quantitative analysis of CD45 (CD45, red; Sarc actinin, green; DAPI, blue) in the hearts 4 weeks after operation, with or without Verteporfin (VP) treatment. (n=4, each) (**B**) Representative immunostaining and quantitative analysis of CD68 (CD68, green; TnT, red; DAPI, blue) in the hearts 4 weeks after operation, with or without VP treatment. (n=4, each) (**C**) Representative immunostaining and quantitative analysis of Ly6G (Ly6G, red; Sarc actinin, green; DAPI, blue) in the hearts 4 weeks after operation, with or without VP treatment. (n=4, each) (**C**) Representative immunostaining and quantitative analysis of Ly6G (Ly6G, red; Sarc actinin, green; DAPI, blue) in the hearts 4 weeks after operation, with or without VP treatment. (n=4, each) Results are expressed as mean ± SEM. *P<0.05 by ANOVA.

Online Figure 6

Online Figure 6. TEAD1 deletion attenuated the YAP-TEAD1-OSM loop during PO in the presence of HFD

(A-C) Quantitative analysis of the immunoblot of the hearts. (n=6,each) All results are expressed as mean \pm SEM. *P<0.05, **P<0.01 by ANOVA.

Online Figure 7. TEAD1 deletion attenuates PO-induced cardiac death in the presence of HFD Kaplan-Meier survival curves after TAC in HFD treated Ctr mice and TEAD1 +/- mice.

Online Figure 8 - continued-

Online Figure 8. Heart failure patients with diabetes showed YAP activation in CMs

(A) Representative double-immunostaining of YAP and Sarcomeric actinin in heart failure patients with and without diabetes (YAP, red; Sarc actinin, green; DAPI, blue). Nuclear YAP accumulation in CMs is indicated by arrow heads. (B) Quantitative analysis of YAP immunostaining in heart failure patients with and without diabetes. *P<0.05 versus the patients without diabetes.

Online Figure 9. Schematic representation of molecular mechanisms of HFD in response to PO. PO induces severer cardiac dysfunction accompanied by CM de-differentiation in HFD treated mice through continuous upregulation of YAP. This process is dramatically facilitated by a positive feedback loop consisting of YAP-TEAD1-OSM. We propose that the suppression of YAP-TEAD1 has a novel therapeutic target for the cardiac dysfunction due to CM de-differentiation in metabolic syndrome/ diabetes mellitus with hypertension.

	ND	HFD	
DSEP WT(mm)	0.73 ± 0.03	0.81 ± 0.02	
LVEDD(mm)	3.47 ± 0.11	3.54 ± 0.06	
DPWT(mm)	0.79 ± 0.03	0.85 ± 0.04	
LVESD(mm)	2.0 ± 0.1	2.0 ± 0.1	
%FS	42.3 ± 1.4	42.8 ± 1.2	
HR (bpm)	494 ± 10	474 ± 22	

Online Table 1. Echocardiographic analyses of mice treated with ND or HFD for 8 weeks.

Cardiac function was evaluated with echocardiography (n=6, each). All results are expressed as mean \pm SEM.

DSEP WT, diastolic septal wall thickness; **LVEDD**, left ventricular end diastolic dimension; **DPWT**, diastolic posterior wall thickness; **LVESD** left ventricular end systolic dimension; **%FS**, fractional shortening; **HR**, Heart rate.

	ND	HFD	
LVSP (mmHg)	95.3 ± 4.8	94.8 ± 2.4	
LVEDP (mmHg)	4.7 ± 0.9	6.2 ± 0.8	
+dP/dt (mmHg/s)	7625 ± 381	6958 ± 395	
-dP/dt (mmHg/s)	7375 ± 417	6875 ± 346	
HR (bpm)	447 ± 10	444 ± 12	

Online Table 2. Hemodynamic measurements of mice treated with ND or HFD for 8 weeks.

Hemodynamic study was performed with micromanometer catheter (n=6, each). All results are expressed as mean \pm SEM.

LVSP, left ventricular systolic pressure; **LVEDP**, left ventricular end diastolic pressure; +dP/dt and -dP/dt, change in pressure over time; **HR**, Heart rate.

No.	Age	Sex	BMI	DM	Hypertension	
1	68y0m	F	21.6	Applicable	under treatment	
2	43y4m	F	18.8	N/A	under treatment	
3	62y1m	M	21.2	Applicable	under treatment	
4	72y7m	M	21.6	Applicable	under treatment	
5	40y11m	M	27.9	N/A	N/A	
6	66y10m	M	21.5	N/A	under treatment	
7	25y3m	M	43.8	Applicable	N/A	
8	54y8m	F	28.8	Applicable	under treatment	
9	72y8m	M	37.7	N/A	under treatment	
10	76y8m	M	16.8	Applicable	under treatment	
11	82y4m	M	24.4	N/A	under treatment	
12	66y0m	F	25.6	N/A	under treatment	
13	46y2m	F	25.0	N/A	N/A	
14	72y1m	M	24.3	N/A	under treatment	
15	83y1m	F	18.7	Applicable	under treatment	
16	71y3m	M	19.3	Applicable	under treatment	
17	59y11m	F	21.6	Applicable	under treatment	
18	29y10m	M	42.5	N/A	under treatment	
19	49y11m	M	30.0	Applicable	under treatment	
20	53y8m	F	24.7	N/A	under treatment	
21	30y0m	M	26.0	N/A	untreated	
22	46y2m	F	40.0	N/A	under treatment	
23	49y1m	M	32.2	Applicable	under treatment	
24	69y4m	Μ	25.6	N/A	under treatment	
25	52y9m	M	24.1	N/A	under treatment	
26	42y10m	F	29.4	Applicable	untreated	
27	58y9m	M	24.8	N/A	under treatment	
28	66y4m	F	19.1	N/A	under treatment	
29	68y5m	M	22.6	N/A	under treatment	
30	62y4m	M	23.2	Applicable	under treatment	
31	28y9m	F	28.6	Applicable	untreated	
32	65y1m	M	23.4	Applicable	under treatment	
33	44y5m	M	38.4	Applicable	under treatment	
34	65y10m	M	24.9	N/A	under treatment	
35	61y8m	F	20.9	N/A	under treatment	
36	47y5m	M	41.2	N/A	under treatment	

Online Table 3 - continued-

No.	Age	Sex	BMI	DM	Hypertension	
37	82y3m	M	24.5	N/A	under treatment	
38	73y3m	M	25.0	N/A	under treatment	
39	35y1m	M	35.7	N/A	under treatment	
40	47y11m	M	34.5	Applicable	under treatment	
41	68y3m	F	25.7	Applicable	under treatment	
42	73y1m	F	26.6	N/A	under treatment	
43	25y8m	M	22.0	N/A	N/A	
44	49y0m	F	26.1	N/A	under treatment	
45	41y8m	M	29.2	N/A	under treatment	
46	57y4m	F	19.4	Applicable	N/A	
47	67y0m	F	19.5	N/A	N/A	
48	66y7m	M	25.8	N/A	under treatment	
49	38y1m	M	24.5	N/A	Untreated	
50	43y0m	F	21.2	N/A	N/A	
51	56y8m	M	24.6	N/A	under treatment	
52	41y1m	M	22.6	N/A	under treatment	
53	75y10m	F	20.3	Applicable	under treatment	
54	67y1m	F	28.2	N/A	under treatment	
55	47y11m	M	18.4	Applicable	under treatment	
56	83y3m	F	24.3	Applicable	under treatment	
57	57y1m	F	24.8	N/A	under treatment	
58	48y5m	F	24.3	N/A	under treatment	
59	76y7m	M	26.0	N/A	under treatment	
60	49y9m	M	26.5	N/A	under treatment	
61	62y1m	F	23.6	N/A	under treatment	
62	60y0m	M	16.7	N/A	under treatment	
63	62y11m	F	22.9	Applicable	under treatment	
64	66y0m	M	23.3	N/A	under treatment	
65	68y7m	F	23.5	Applicable	under treatment	
66	56y7m	F	20.1	Applicable	under treatment	

Online Table 3. The characteristic of patients with heart failure who received myocardial biopsy Myocardial biopsy specimens were obtained from patients with heart failure for the clinical diagnosis in Tohoku University Hospital. The 66 consecutive observable biopsy specimens were obtained from January 2016 to June 2017. The average Ejection Fraction of heart failure patients was 33.8 ± 7.6 %. Twenty-five patients were diagnosed with DM and their average HbA1c level was 6.98 ± 0.68 %. BMI; body mass index, DM; diabetes mellitus, M; male, F; female

	DM- (n=41)	DM+ (n=25)	P value
Age (years)	56.6 ± 14.5	59.4 ± 15.0	0.42
Male sex, n (%)	26 (63.4)	12 (48.0)	0.22
Body mass index (kg/m ²)	25.9 ± 5.8	25.1 ± 6.7	0.20
Medical history, n (%)			
Hypertension	34 (82.9)	20 (80.0)	0.77
Untreated Hypertension	2 (4.9)	2 (8.0)	0.61
Dyslipidemia	30 (73.2)	16 (64.0)	0.44
Laboratory data			
LVEF (%)	33.7 ± 7.0	34.1 ± 8.6	0.12
HbA1c (%)	5.7 ± 0.3	7.0 ± 0.7	<0.001
Duration of diabetes (month)		28.3 ± 20.9	
Medications, n (%)			
Calcium channel blocker, n (%)	8 (19.5)	4 (12.0)	0.72
ACE inhibitors/ ARB, n (%)	33 (80.5)	19 (76.0)	0.67
Beta blocker, n (%)	25 (61.0)	14 (56.0)	0.70
Oral diabetes medicine, n (%)		22 (88.0)	
Insulin injection, n (%)		2 (8.0)	

Online Table 4. Characteristics of patients with heart failure who underwent myocardial biopsy Myocardial biopsy specimens were obtained for clinical diagnosis from patients with heart failure in Tohoku University Hospital. All continuous variables are reported as mean \pm SD or n (%). To compare two quantitative variables, t-test and chi-square test was used. ACE : angiotensin-converting enzyme, ARB : angiotensin II receptor blocker