Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation

Jillian M Petersen, Anna Kemper, Harald Gruber-Vodicka, Ulisse Cardini, Matthijs van der Geest, Manuel Kleiner, Silvia Bulgheresi, Marc Mußmann, Craig Herbold, Brandon K. B. Seah, Chakkiath Paul Antony, Dan Liu, Alexandra Belitz, Miriam Weber

Supplementary Discussion

Confirming that the nif genes belong to the symbiont genomes

In the lucinid symbiont genomes, the nitrogenase gene cluster was always found on a large contig of between 407 kb and 3.8 Mb in length. These contigs always contained many other genes identical to their homologs in the other symbiont draft genomes. The presence of nif gene clusters in the lucinid symbiont genomes is therefore unlikely to be due to random contamination in the lucinid symbionts.

Unlike the *Ca*. Thiodiazotropha endoloripes draft genomes, most of which assembled on fewer than 20 contigs, the draft genome of *Ca*. Thiosymbion oneisti was highly fragmented and could not be assembled on fewer than 2026 contigs. To confirm that the nif genes belong to the *Ca*. Thiosymbion oneisti genome, we did a connectivity analysis of the best assembly (*Ca*. Thiosymbion oneisti A) using the software Bandage¹. This analysis showed clear connections between

the ribosomal RNA operon of *Ca*. Thiosymbion oneisti and the core nif genes

within eight graph nodes, confirming the physical linkage between these gene clusters (Supplementary Figure 1).

Nitrogenase regulation in the Loripes lucinalis symbiosis

Nitrogenase transcripts or proteins could not be detected in all lucinid individuals analysed (Datasets 1 and 2). This could be due to 1) the absence of these genes in the symbiont populations in some host individuals, or 2) downregulation of the nitrogenase by the populations of symbionts in some individuals. A recent study of the sulphur-oxidizing symbionts of deep-sea mussels showed that different strains of bacteria colonize these mussels, and that some metabolic capabilities such as hydrogen oxidation are only encoded by some symbiont strains². In the lucinid symbionts, a number of observations indicate that our results reflect regulation of gene expression and not strain-level differences in nitrogen-fixing ability. Firstly, in all draft genomes, the nitrogenase gene cluster was found on a large contig (between 407 kb and 3.8 Mb in length), and the metagenome coverage of the nif gene cluster was similar to the rest of the genome, indicating that it is likely present in all symbionts in a particular host individual (for an example see Supplementary Figure 6). Secondly, although the nitrogenase genes were not among the 30 most abundantly expressed in three of the five individuals sequenced for transcriptomics, a few transcripts did map to these genes (Supplementary Dataset 1). Finally, using specific primers, we were able to amplify and sequence a \approx 290 bp fragment of the *nifH* gene from DNA extracted from the same samples used for the transcriptome analysis. These sequences were 99%-100% identical to the *nifH* gene from *Loripes lucinalis* symbiont A, which we used as a reference for transcriptome mapping. This

2

indicates that at least the *nifH* gene is present in the symbionts of the clam individuals where few or no transcripts could be detected. Nitrogen fixation therefore seems to be tightly regulated by the *Ca*. Thiodiazotropha endoloripes, similar to other known nitrogen fixers (reviewed by³).

Our expression studies are consistent with the hypothesis that nitrogen fixation genes are upregulated when the symbionts experience nitrogen limitation. Expression of genes encoding transporters for ammonium and urea could only be detected in those individuals where nitrogenases could also be detected, both in our transcriptomics and proteomics studies (Figure 4, Supplementary Figure 4, Supplementary Datasets 1 and 2). In *Corynebacterium glutamicum*, a model organism for studies of the regulation of nitrogen metabolism, ammonium and urea transporters are strongly upregulated under ammonium-limiting nitrogen-fixing conditions⁴.

Carbon and nitrogen fixation at the single-cell level

Nitrogen fixation is metabolically costly, requiring eight electrons and up to 16 molecules of ATP per molecule of N₂ reduced to NH₃ and H₂⁵. Most nitrogenfixing bacteria rely on phototrophic or heterotrophic metabolism to power nitrogen fixation. However, exceptions are known, such as acidophilic iron oxidizers of the *Leptospirillum* group III from acid mine drainage biofilms, which can fix nitrogen and inorganic carbon using reduced iron as the sole energy source, without the addition of organic carbon⁶. Metabolic reconstruction from our draft genomes showed that the bivalve and nematode symbionts encode complete TCA cycles and genes for importing organic compounds (Figure 2).

3

Moreover, based on our transcriptomes, the complete TCA cycle was expressed in all five individuals of *Loripes lucinalis* sequenced (Supplementary Dataset 1). It is currently unclear whether single symbiont cells are capable of fixing nitrogen and carbon simultaneously, using the energy gained from sulfide oxidation. Nitrogen-fixing symbiont cells may supplement their energy needs by taking up organic carbon. Possibly, the symbiont population may be partitioned into two sub-populations: one fixing carbon, and the other fixing nitrogen, as has been shown for the phototrophic cyanobacterium *Crocosphaera watsonii*⁷. This could also explain our transcriptome results, which indicated that aerobic and anaerobic metabolisms function concurrently in the gills. A sub-population experiencing aerobic conditions might preferentially fix carbon, and a subpopulation experiencing micro-aerobic or anaerobic conditions might preferentially fix nitrogen. Future experiments tracking the incorporation of N₂, CO₂ and organic compounds at the single-cell level, for example with nanoSIMS, would help to answer these questions.

References

- Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of *de novo* genome assemblies: Fig. 1. *Bioinformatics* **31**, 3350– 3352 (2015).
- 2. Ikuta, T. *et al.* Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. *ISME J.* (2015).
- Dixon, R. & Kahn, D. Genetic regulation of biological nitrogen fixation. *Nat. Rev. Microbiol.* 2, 621–631 (2004).

- Silberbach, M. *et al.* Adaptation of *Corynebacterium glutamicum* to ammonium limitation: a global analysis using transcriptome and proteome techniques. *Appl. Environ. Microbiol.* **71**, 2391–2402 (2005).
- 5. Karl, D. *et al. Dinitrogen fixation in the world's oceans*. (Springer Business and Science Media, 2002).
- Tyson, G. W. *et al.* Genome-directed isolation of the key nitrogen fixer *Leptospirillum ferrodiazotrophum* sp. nov. from an acidophilic microbial community. *Appl. Environ. Microbiol.* **71**, 6319–6324 (2005).
- Mohr, W., Vagner, T., Kuypers, M. M. M., Ackermann, M. & LaRoche, J. Resolution of conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. *PLoS ONE* 8, e66060 (2013).
- 8. Taylor, J. D. & Glover, E. A. Lucinidae (Bivalvia) the most diverse group of chemosymbiotic molluscs. *Zool. J. Linn. Soc.* **148**, 421–438 (2006).

Supplementary Tables

Supplementary Table 1. Samples used in this study

Species	Location	Coordinates	Depth	Habitat	Sampling method	Purpose*	Date	Fixation
Laxus oneistus	Carrie Bow Cay, Belize	16°48′11" N, 88°04′55" W	1 m	Back-reef sand bar	Sieved from sediment	G	March 2014	RNAlater
						G	20 th Oct, 2010	RNAlater
	Bay of Fetovaia Elba	42°43'49 0" N		Next to Posidonia oceanica	SCIIBA diving digging	Т	2 nd Jun, 2015	RNAlater
Loripes lucinalis	Italy	10°09'20 5" E	7 m	seagrass hed	clams from sediment	Pr	24 th Oct, 2015	Frozen
	italy	10 07 2010 2		seagrass beu		SI	21 st and 24 th Oct, 2015	Frozen
Loripes lucinalis	Thau Lagoon, France	43°26'53.95" N, 3°39'6.54" E	0.5 m	Zostera noltii seagrass beds	Sieved from sediment cores	Р	12 th Dec, 2015	96% Ethanol
Lorines lucinalis	Banc d'Arguin,	19°53'0" N, 16°18'0" W	Intertidal	Zostera noltii seagrass beds	Sieved from sediment cores	SI	7 th to 21 st May, 2008	Frozen
Longes lucinuits	Mauritania	19°53'0" N, 16°18'0" W	Intertidal	Zostera noltii seagrass beds	Sieved from sediment	Р	9 th Dec, 2015	RNAlater
Codakia orbicularis	St George's Cay, Bahamas	25°33'7.04" N, 76°45'56.85" W	Intertidal	<i>Thalassia testudinum</i> seagrass bed	Haphazard digging in seagrass sediment	Р	24 th Dec, 2015	RNAlater
Euanodontia	Near boat jetty for Isle	20°25'26" S,	Intertidal	Halodule and Halophila	Sieved from sediment	р	2nd May 2015	Absolute
ovum	aux Aigrettes, Mauritius	57°45'23" E	mertiuur	seagrass beds	Sieven nom seument	1	2 may, 2013	ethanol
Clathrolucina	Opposite Hyatt resort,	12°03'57" N,	0.5 to 1 m	Thalassia and Halodule seagrass	Sieved from sediment	Р	22 nd May, 2015	Absolute
costada	SW Curaçao	68°51'13" W	010 to 1 m	beds	eleven nom seament		nuy, _010	ethanol

*Purpose: G = genomics, T = transcriptomics, Pr = proteomics, SI = stable isotopes, P = PCR amplification

Supplementary Table 2. Results of PCR screening in diverse lucinid species

				Sequences obtained*	
Host subfamily§	Species	Sampling location	# of individuals	16S	nifH
Lucininae	Loripes lucinalis	Mauritania	3	LT548935 - LT548936	LT548952 - LT548954
Lucininae	Loripes lucinalis	France	2	LT548933 - LT548934	LT548950 - LT548951
Lucininae	Clathrolucina costata	Curacao	1	LT548918	LT548937
Codakiinae	Codakia orbicularis	Bahamas	3	LT548919 - LT548921	LT548938 - LT548940
Pegophyseminae	Euanodontia ovum	Mauritius	1	LT548923	LT548941
Leucosphaerinae	Epidulcina cf delphinae	Madagascar	1	Only 16S rRNA co LT548	ould be amplified 8922
Codakiinae	Lucinoma borealis	Tjärnö, Sweden	1	Only 16S rRNA co LT548	ould be amplified 8924

§Subfamilies as defined by Taylor and Glover⁸

*Accession numbers

Location	Site	Latitude	Longitude	Date sampled	Species	ID	Shell length (mm)	Dry mass (mg)	δ ¹³ C (‰)	δ ¹⁵ N (‰)
Banc d'Arguin,							()		(<i>1</i> 00)	(700)
Mauritania	1	19°53'54.4" N	16°19'49.4" W	18-May-08	Pelecyora isocardia	16950	6.5	0.216	-17.70	5.93
Banc d'Arguin, Mauritania	1	19°53'54.4" N	16°19'49.4" W	18-May-08	Loripes lucinalis	16951	7	0.224	-23.62	-1.07
Banc d'Arguin, Mauritania	2	19°53'57.7" N	16°18'36.6" W	10-May-08	Pelecyora isocardia	16411	14.8	0.277	-17.70	6.92
Banc d'Arguin, Mauritania	2	19°53'57.7" N	16°18'36.6" W	10-May-08	Senilia senilis	16414	57.8	0.239	-17.51	8.47
Banc d'Arguin, Mauritania	3	19°52'36.7" N	16°15'55.2" W	08-May-08	Loripes lucinalis	16226	10.9	0.230	-20.31	0.22
Banc d'Arguin, Mauritania	4	19°53'33.2" N	16°18'44.1" W	15-May-08	Diplodonta circularis	16688	14.2	0.216	-16.20	5.57
Banc d'Arguin, Mauritania	5	19°53'26.3" N	16°19'41.6" W	15-May-08	Pelecyora isocardia	16785	13.5	0.230	-17.80	6.36
Banc d'Arguin, Mauritania	5	19°53'26.3" N	16°19'41.6" W	15-May-08	Senilia senilis	16783	59.3	0.252	-19.58	7.84
Banc d'Arguin, Mauritania	6	19°53'23.5" N	16°16'46.3" W	08-May-08	Pelecyora isocardia	16258	19.3	0.246	-17.91	6.20
Banc d'Arguin, Mauritania	7	19°53'38.9" N	16°16'48.1" W	08-May-08	Senilia senilis	16251	40.6	0.251	-19.16	7.40
Banc d'Arguin, Mauritania	8	19°52'47.8" N	16°16'27.1" W	11-May-08	Diplodonta circularis	16448	9.6	0.192	-15.71	4.08
Banc d'Arguin, Mauritania	9	19°54'32.9" N	16°19'50" W	12-May-08	Loripes lucinalis	16496	6.7	0.322	-24.30	2.66
Banc d'Arguin, Mauritania	9	19°54'32.9" N	16°19'50" W	12-May-08	Diplodonta circularis	16498	12.2	0.297	-18.14	5.30
Banc d'Arguin, Mauritania	10	19°54'52" N	16°18'56" W	12-May-08	Senilia senilis	16480	16.1	0.251	-18.47	6.11
Banc d'Arguin, Mauritania	11	19°53'36.5" N	16°16'36.1" W	07-May-08	Loripes lucinalis	16221	9.9	0.213	-24.48	-3.67
Banc d'Arguin, Mauritania	12	19°52'56.4" N	16°15'26.1" W	08-May-08	Pelecyora isocardia	16262	10.6	0.226	-15.63	3.86
Banc d'Arguin, Mauritania	13	19°53'54.4" N	16°18'33.1" W	10-May-08	Pelecyora isocardia	16354	5.9	0.195	-15.14	6.90

Supplementary Table 3. Stable isotope data used in this study

Banc d'Arguin,	10	10050(54 4/2 N	1 (01 0(22 1"))	10 Mars 00	C 'l'	1(050	175	0.005	16.01	7.02
Mauritania	13	19°53 54.4 N	16°18 33.1 W	10-May-08	Senilla senilis	16352	17.5	0.235	-16.01	7.93
Mauritania	14	19°53'51.8" N	16°18'52.9" W	10-May-08	Loripes lucinalis	16409	8.1	0.310	-25.43	-2.79
Banc d'Arguin,					·					
Mauritania	15	19°52'52" N	16°16'6.5" W	08-May-08	Loripes lucinalis	16233	6.5	0.262	-19.07	0.05
Banc d'Arguin,										
Mauritania	16	19°53'23.8" N	16°19'41.6" W	15-May-08	Senilia senilis	16778	56.1	0.208	-19.84	7.55
Banc d'Arguin,										
Mauritania	17	19°53'12.7" N	16°15'28" W	16-May-08	Senilia senilis	16881	16.3	0.247	-12.54	5.34
Banc d'Arguin,										
Mauritania	18	19°53'23.9" N	16°15'45.2" W	07-May-08	Pelecyora isocardia	16209	8.3	0.187	-15.17	5.27
Banc d'Arguin,										
Mauritania	18	19°53'23.9" N	16°15'45.2" W	07-May-08	Senilia senilis	16210	54.1	0.323	-15.21	7.83
Banc d'Arguin,	10			15 14 00			2.4	0.017		1.07
Mauritania	19	19°52'27.1″ N	16°17'25.4″ W	15-May-08	Loripes lucinalis	16/51	8.6	0.216	-24.42	-4.36
Banc d'Arguin,	20	10952(44 0" N	1 (91 0 4 2 6 " W	15 Mars 00	Delensone incondia	1(001	0	0.260	15 (2)	
Mauritania	20	19 ⁻ 53 44.9 N	10°1943.0 W	15-May-08	Pelecyora isocarala	10801	ð	0.268	-15.62	5.50
Banc d Arguin, Mauritania	21	10°54'26 8" N	16º18'58 3" W	14-May-08	Palacuora isocardia	16621	63	0.282	-19.76	657
Banc d'Arguin	21	19 J4 20.0 N	10 10 50.5 W	14-May-00	T elecyor a isocurata	10021	0.5	0.202	-10.70	0.37
Mauritania	22	19°53'40.7" N	16°16'26.6" W	07-May-08	Senilia senilis	16214	54.4	0.221	-14.03	7.19
Banc d'Arguin,				y						
Mauritania	23	19°52'52.9" N	16°15'58.7" W	08-May-08	Loripes lucinalis	16259	10.4	0.205	-22.77	-1.23
Banc d'Arguin,										
Mauritania	24	19°50'54.1" N	16°16'10.7" W	21-May-08	Diplodonta circularis	18275	19.4	0.260	-13.61	4.82
Banc d'Arguin,										
Mauritania	25	19°52'54.9" N	16°16'58.9" W	11-May-08	Senilia senilis	16437	40.4	0.290	-18.30	7.34
Banc d'Arguin,										
Mauritania	26	19°53'20.1" N	16°18'53.5" W	13-May-08	Loripes lucinalis	16594	7.3	0.213	-24.42	3.34
Banc d'Arguin,										
Mauritania	27	19°53'55.5″ N	16°19'41.9″ W	18-May-08	Pelecyora isocardia	16966	17	0.189	-17.10	5.88
Banc d'Arguin,	20	1005 4(2 C 12 N	1 (01 0(47 47 14)	10 Mar 00	C : 1:	10045	20.0	0.000	10.02	7.07
Mauritania	28	19°54'36.1" N	16°19'47.4" W	18-May-08	Seniliä senilis	16945	30.8	0.332	-19.82	1.27
Banc d'Arguin,	20	1095240 5" N	1691650 2714	11 May 00	Lorinos lucinalis	16474	6.0	0.202	24.20	264
Mauritania Bong d'Arguin	29	19 ⁻ 52 48.5 N	10°10'50.3 W	11-May-08	Loripes iucinalis	16424	6.9	0.303	-24.28	-3.64
Mauritania	30	19°53'25 9" N	16°18'44 9" W	15-May-08	Sonilia sonilis	16744	193	0 233	-17 39	7 35
Banc d'Arguin	50	19 JJ 2J.9 IN	10 10 44.9 W	13-May-00	Senniu sennis	10/44	17.5	0.233	-17.59	7.55
Mauritania	31	19°53'56.1" N	16°20'11.2" W	13-Mav-08	Diplodonta circularis	16610	4.8	0.127	-18.55	5.72
Banc d'Arguin		27 00 0012 11		10 1149 00		10010		0.120	10.00	0.72
Mauritania	32	19°52'53.3" N	16°17'2.3" W	21-May-08	Senilia senilis	18307	22.3	0.333	-18.66	7.10

Banc d'Arguin,		40050(00.0% N		07.14 00	, . , . <u>,</u> .	16004	0.0	0.000	22.75	0.04
Mauritania Banc d'Arguin	33	19°53 32.8 N	16°15 50.5 W	07-May-08	Loripes lucinalis	16204	9.8	0.293	-23.75	-0.34
Mauritania	34	19°52'31.9" N	16°17'28" W	20-May-08	Loripes lucinalis	18266	5.6	0.248	-22.73	1.66
Banc d'Arguin,										
Mauritania Banc d'Arquin	35	19°54'56.9″ N	16°18'41.4″ W	12-May-08	Seniliä senilis	16526	55.7	0.244	-19.64	7.72
Mauritania	36	19°53'19.4" N	16°16'47.1" W	22-May-08	Senilia senilis	18321	60.9	0.335	-16.45	8.58
Banc d'Arguin,										
Mauritania Bana d'Arquin	37	19°53'29.8" N	16°18'56.2" W	19-May-08	Senilia senilis	16988	36.1	0.250	-19.77	7.73
Mauritania	38	19°54'28'' N	16°19'56.8" W	18-May-08	Loripes lucinalis	16956	9.3	0.286	-24.38	3.23
Banc d'Arguin,										
Mauritania	39	19°52'43.6" N	16°16'51.1" W	11-May-08	Senilia senilis	16429	48	0.249	-18.60	7.34
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-1	14	0.624	-26.40	2.52
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-2	16.5	0.617	-27.44	-4.76
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-3	14	0.305	-26.05	1.90
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-4	11.2	0.306	-26.62	-2.90
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-5	10.8	0.608	-25.80	1.27
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-6	11.8	0.664	-27.44	-4.11
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-7	9.3	0.412	-25.75	1.69
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-8	11	0.405	-19.79	2.24
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-9	10	0.637	-27.13	-5.04
Elba, Italy	1	42°43'49.0" N	10°09'20.5" E	21-0ct-15	Loripes lucinalis	2015D1-10	8.1	0.631	-26.38	-0.53
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-22	6	0.587	-25.93	-1.81
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-23	5.5	0.883	-25.36	-1.22
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-24	5.5	0.800	-26.01	-1.06
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-25	5.6	0.805	-25.60	0.10
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-26	9	0.819	-27.26	-4.07
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-27	5.7	0.679	-24.91	-2.25
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-28	6.5	0.815	-25.28	-1.66
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-29	6.2	0.746	-25.97	-0.87

Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-30	7	0.838	-26.85	-1.00
Elba, Italy	3	42°43'49.0" N	10°09'20.5" E	24-0ct-15	Loripes lucinalis	2015D3-31	6.2	0.885	-26.71	-0.08

Supplementary Table 4. Parameter estimates of the linear mixed-effect model

with either nitrogen **(A)** or carbon **(B)** stable isotope ratios (‰) as the

dependent variable.

		Estimate	SE	Р
(A) Nitro	gen stable isotope ($\delta^{15}N$)			
Intercept		-0.47	0.73	0.53
Species ¹				
	L. lucinalis (Italy)	-0.61	1.03	0.56
	S. senilis	7.87	0.75	< 0.001
	P. isocardia	6.21	0.77	< 0.001
	D. circularis	5.52	0.79	< 0.001
Random e	effects			
	$\sigma_{sampling site}$	0.72		
	$\sigma_{residual}$	0.20		
Variance	function			
	$\sigma_{L.lucinalis}$	12.72		
	$\sigma_{L. \ lucinalis \ (italy)}$	11.58		
	$\sigma_{S. senilis}$	1.00		
	$\sigma_{P. isocardia}$	2.88		
	$\sigma_{D. Circularis}$	0.00		
(B) Carbo	on stable isotope ($\delta^{13}C$)			
Intercept		-23.32	0.52	< 0.001
Species ¹				
	L. lucinalis (Italy)	-2.61	1.00	0.01
	S. senilis	5.59	0.69	< 0.001
	P. isocardia	6.39	0.77	< 0.001
	D. circularis	6.91	0.97	< 0.001
Random e	effects			
	$\sigma_{sampling site}$	1.11		
	$\sigma_{residual}$	1.55		

¹Reference category: *L. lucinalis* (Mauritania)

Supplementary Figures

Supplementary Figure 1. Connectivity analysis of the *Laxus oneistus* A metagenome

Supplementary Figure 1. Connectivity analysis of the *Laxus oneistus* A metagenome. A) Overview of the full assembly graph of the metagenomic assembly. The bin of connected *Ca*. Thiosymbion oneisti contigs is indicated with an arrowhead. B) Detailed view of the graph structure of the *Ca*. Thiosymbion oneisti bin that features the rRNA operon and the core nif operon within eight graph nodes from each other.

Supplementary Figure 2. Nif gene cluster in *Ca*. Thiodiazotropha endoloripes and comparison with *Azoarcus* sp. BH72

Schematic representation of the nif *and* rnf gene clusters in the *Ca*. Thiodiazotropha endoloripes D draft genome (NCBI Accession: LVJZ0000000), and in the model nitrogen-fixing bacterium *Azoarcus* sp. BH72 (NCBI Accession: NZ_LARU0000000). Homologs are shown in the same colour in each organism. Gene content and order are identical in all *Ca*. Thiodiazotropha endoloripes draft genomes (not shown). Genes encoding hypothetical proteins are shown in white. Genes with annotations are numbered as follows (RAST annotation):

- 1. Nitrogen fixation regulatory protein
- 2. Transcriptional regulator, NifA
- 3. FeMo-cofactor synthesis, NifB
- 4. 4Fe-4S ferredoxin, nitrogenase-associated
- 5. NifO
- 6. Probable flavoprotein
- 7. Ferredoxin
- 8. Ferredoxin
- 9. NifQ
- 10. ADP-ribosyl-(dinitrogen reductase) hydrolase
- 11. Conserved hypothetical protein

- 12. NAD(+)-dinitrogen reductase ADP-D-ribosyltransferase
- 13. Nitrogenase reductase asnd maturation protein NifH
- 14. Nitrogenase alpha chain, NifD
- 15. Nitrogenase beta chain NifK
- 16. NifT protein
- 17. 4Fe-4S ferredoxin, nitrogenase-associated
- 18. Dinitrogenase iron-molybdenum cofactor biosynthesis
- 19. LRV (FeS)4 cluster domain protein clustered with nitrogenase cofactor synthesis, leucine-rich repeat domain
- 20. Conserved hypothetical protein
- 21. Nitrogenase assembly protein NifE
- 22. Nitrogenase assembly protein NifN
- 23. Nitrogenase FeMo-cofactor carrier NifX
- 24. NifX-associated protein
- 25. Ferredoxin III, nif-specific
- 26. 2Fe-2S ferredoxin
- 27. Conserved hypothetical protein
- 28. Iron-binding protein in Nif operon
- 29. Nitrogenase Fe-S assembly scaffold protein NifU
- 30. Cysteine desulfurase NifS
- 31. Homocitrate synthase
- 32. Serine acetyltransferase
- 33. Conserved hypothetical protein
- 34. Nitrogenase stabilizing/protecting NifW
- 35. NifZ
- 36. NifM

Supplementary Figure 3. Phylogeny of NifD proteins

Supplementary Figure 3. Phylogeny of NifD proteins. Maximum likelihood phylogeny of full-length Group 1 NifH proteins. Percentages refer to bootstrap values. Sequences from this study are shown in bold red text.

Supplementary Figure 4. Top 30 most abundantly expressed genes in

Loripes lucinalis (Elba) symbionts.

Supplementary Figure 4. Transcriptome identity plots. This figure shows the

percentage of transcriptome reads (five transcriptomes from individuals 1 – 5)

that mapped to each of the five symbiont draft genomes (*Ca*. Thiodiazotropha endoloripes A – E), according to their nucleotide identity.

Supplementary Figure 5. Transcriptome identity plots

 Identity (%)

 Supplementary Figure 5. Top 30 most abundantly expressed genes in

 Loripes lucinalis (Elba) symbionts. Bar chart of the 30 most abundantly

 expressed genes (*Number of reads mapped as a percentage of the total reads

 mapping to symbiont genes in one individual) in the symbiont transcriptome of

 Loripes lucinalis Individual 1 (grey bars), also showing the abundance of these 30

 genes in the transcriptomes of individuals 2 to 5 (orange, blue, green and brown

 bars). Genes involved in nitrogen fixation are highlighted with an asterisk and

 indicated by a red box. Genes involved in carbon fixation are shown with a black

 box, those in involved in sulphur oxidation with a yellow box.

Supplementary Figure 6. Coverage plot of the contig containing the

nitrogenase gene cluster in Ca. Thiodiazotropha endoloripes A.

Supplementary Figure 6. Coverage plot of the contig containing the nitrogenase gene cluster in *Ca*. Thiodiazotropha endoloripes A. This plot shows the mapping of the metagenome reads from *Ca*. Thiodiazotropha endoloripes A to the portion of the contig containing the nif genes (*nifH* is marked with a vertical line). The contig is plotted on the x axis, with the contig position shown above (the entire contig is 2.4 Mb in length). The coverage (from 0 to 158 x) on the y axis. There is no clear drop in the coverage at the nif gene cluster compared to the surrounding regions, indicating that this gene cluster is present in all symbiont strains. Reads were mapped and visualized in Geneious (http://www.geneious.com/).

Supplementary Dataset 1. Transcriptome mapping results – see separate Excel file 'Petersen_SupplementaryDataset1.xls'

This Excel file lists all predicted symbiont genes, and the number of transcripts that mapped to each gene in the five *Loripes lucinalis* individuals sequenced for transcriptomics. For easier comparison, RAST gene predictions are listed next to NCBI gene predictions.

Supplementary Dataset 2. Symbiont proteins identified in metaproteomes - see separate Excel file 'Petersen_SupplementaryDataset2.xls' This Excel file shows all symbiont proteins identified in the six individuals of

Loripes lucinalis whose gill proteomes were measured.