Supporting Information

Anti-Biofilm Agents against *Pseudomonas aeruginosa*: a Structure-Activity Relationship Study of *C*-Glycosidic LecB Inhibitors

Roman Sommer^{1,2}, Katharina Rox^{2,3}, Stefanie Wagner^{1,2}, Dirk Hauck^{1,2}, Sarah S. Henrikus^{1,2,6}, Shelby Newsad^{1,2}, Tatjana Arnold^{2,3}, Thomas Ryckmans⁴, Mark Brönstrup^{2,3}, Anne Imberty⁵, Annabelle Varrot⁵, Rolf W. Hartmann^{2,6,7}, and Alexander Titz^{1,2,6*}

¹Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
²Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
³Chemical Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
⁴Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
⁵Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
⁶Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
⁷Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany

Table of contents

¹ H, ¹³ C and ¹⁹ F-NMR spectra of new compounds	S 3
Table S1: ITC measurements with 22	S34
Table S2: Data collection and refinement statistics for $LecB_{PA14}$ structure in complex with 22	\$35
Table S3: m/z search window for plasma stability assay	S36
Table S4: : Mass transitions of compounds	\$37
Figure S1: Rationale for the extension of the thiophene moiety in 7 to target an additional patch or a subpocket on the surface of LecB	S38
Figure S2: Purity of key compounds 17 , 22 , 23 , 27 , 29 by HPLC-UV	S38

Table of contents

¹ H, ¹³ C and ¹⁹ F-NMR spectra of new compounds	S 3
Table S1: ITC measurements with 22	S34
Table S2: Data collection and refinement statistics for LecB _{PA14} structure in complex with 22	S35
Table S3: m/z search window for plasma stability assay	S36
Table S4: : Mass transitions of compounds	S 37
Figure S1: Rationale for the extension of the thiophene moiety in 7 to target an additional patch or a subpocket on the surface of LecB	S38
Figure S2: Purity of key compounds 17 , 22 , 23 , 27 , 29 by HPLC-UV	S 38

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.(f1 (ppm)

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 f1 (ppm)

S20

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 f1 (ppm)

$^1\text{H},\,^{13}\text{C}$ and ^{19}F spectra of new compounds

$^1\text{H},\,^{13}\text{C}$ and ^{19}F spectra of new compounds

S32

	LecB рао1 64.3 µМ	LecB рао1 60 µМ	LecB _{РАО1} 60 µМ
	22 1.0 mM	22 750 μΜ	22 600 μΜ
	TBS supplemented with 1 mM CaCl ₂	TBS supplemented with 1 mM CaCl ₂	TBS supplemented with 1 mM CaCl ₂
	Time (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Image: space of the s	Tine (mi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ka [1/M]	9.07E+05	7.14E+05	9.15E+05
$\triangle H$ [cal/mol]	-10980	-11420	-11520
$\triangle s$ [cal/molK]	-9.53	-11.5	-11.4
Kd [M]	1.1E-06	1.4E-06	1.09E-06
Ν	1.02	0.96	0.974
$\triangle G$ [cal/mol]	-8140	-7990	-8120

Table S1: ITC measurements with 22

	LecB _{PA14} in complex with 22			
Data collection				
Beamline			ID23-2	
Wavelength	0.87260			
Space group			P61	
Unit cell dimensions		49.88 4	9.88 288.75 90.00 90.00	90.00
Resolution (Å)			37 07-1 45 (1 47-1 45)	
Nb reflections			808656	
Nb uniques reflections			71656	
R _{merge}			0.057 (0.308)	
R_{pim}			0.026 (0.141)	
Mean $I / \sigma I$			27.1 (7.6)	
Completeness (%)			100.00 (100.00)	
Redundancy			11.3 (11.0)	
CC1/2			100.0 (98.0)	
Refinement				
Resolution (Å)			37.07-1.45	
No. reflections/No. free reflections			67895/3598	
Rweet / Roma			12 4 / 14 3	
\mathbf{R} m s Bond lengths (Å)			0.016	
K.m.s bond lenguis (A)			0.010	
Rmsd Bond angles (°)	2.043			
Rmsd Chiral (°)	0 103			
No. atoms (Chain)	А	В	С	D
Protein	862	883	853	868
Sugar	22	22	22	22
Calcium	2	2	2	2
Waters	150	175	166	169
B-factors (Å ²)				
Protein	10.5	10.0	10.4	9.6
Sugar	15.3	10.3	12.2	10.8
Calcium	8.6	7.4	8.3	7.0
Waters	24.0	25.8	24.7	24.6
Ramachandran				
Allowed	99.8			
Favored	97.1			
Outliers	1			
PDB Code			5MAZ	

Table S2: Data collection and refinement statistics for $LecB_{PA14}$ in complex with 22

name	start-stop [m/z]
naproxen	230-232
glipizide	444.5-447
procaine	236-237.5
procainamide	235.5-236.6
propoxycaine	294.4-295.8
17	320-321.8
22	349.8-351
23	335.8-337
27	389-390.4
29	421-423.1

Table S3: m/z search window for plasma stability assay

Table S4: Mass transitions of compound
--

compound	Q1 mass	Q3 mass	Time [msec]	DP [volts]	CE [volts]	CXP [volts]
6	357.966	183.0	30	-140	-34	-19
	357.966	197.9	30	-140	-36	-23
7	321.888	146.8	30	-140	-30	-15
	321.888	230.0	30	-140	-28	-21
17	320.91	238.2	30	-30	-18	-13
	320.91	82.0	30	-30	-20	-9
	320.91	40.0	30	-30	-66	-17
22	349.98	174.6	30	-90	-30	-7
	349.98	110.9	30	-90	-38	-11
23	335.899	175.9	30	-115	-32	-17
	335.899	160.9	30	-115	-30	-15
29	421.93	182.9	30	-135	-40	-19
	421.93	198.8	30	-135	-34	-17
3	374.003	198.0	30	-135	-34	-19
	374.003	182.9	30	-135	-32	-17
45	337.881	161.8	30	-130	-34	-17
	337.881	146.8	30	-130	-30	-15
Naproxene	231.106	185.1	50	80	19	10
	231.106	170.2	50	80	33	12
Caffeine	195.024	138.0	30	80	25	14
	195.024	110.0	30	80	31	18

Figure S1: Rationale for the extension of the thiophene moiety in 7 to target an additional patch or a subpocket on the surface of LecB

Figure S2: Purity of key compounds 17, 22, 23, 27, 29 by HPLC-UV