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Abstract: We present a new approach to the electromagnetic inverse problem that explicitly addresses the
ambiguity associated with its ill-posed character. Rather than calculating a single ‘‘best’’ solution according
to some criterion, our approach produces a large number of likely solutions that both fit the data and any
prior information that is used. Whereas the range of the different likely results is representative of the
ambiguity in the inverse problem even with prior information present, features that are common across a
large number of the different solutions can be identified and are associated with a high degree of probability.
This approach is implemented and quantified within the formalism of Bayesian inference, which combines prior
information with that of measurement in a common framework using a single measure. To demonstrate this
approach, a general neural activation model is constructed that includes a variable number of extended regions of
activation and can incorporate a great deal of prior information on neural current such as information on location,
orientation, strength, and spatial smoothness. Taken together, this activation model and the Bayesian inferential
approach yield estimates of the probability distributions for the number, location, and extent of active regions.
Both simulated MEG data and data from a visual evoked response experiment are used to demonstrate the
capabilities of this approach. Hum. Brain Mapping 7:195–212, 1999 Published 1999Wiley-Liss,Inc.†
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INTRODUCTION

Under suitable conditions of spatial and temporal
synchronization, neuronal currents are accompanied
by electric potentials and magnetic fields that

are sufficiently large to be recorded noninvasively
from the surface of the head. These are known as
the electroencephalogram (EEG) and magnetoencepha-
logram (MEG), respectively. In contrast to PET
and fMRI, which measure cerebral vascular changes
secondary to changes in neuronal activity, EEG and
MEG are direct physical consequences of neuronal
currents and are capable of resolving temporal pat-
terns of neural activity in the millisecond range [Hä-
mäläinen et al., 1993; Aine, 1995; Toga and Mazziotta,
1996]. Unlike PET and fMRI, however, the problem of
estimating the current distribution in the brain from
surface EEG and MEG measurements (the so-called
electromagnetic inverse problem) is mathematically
ill-posed, i.e., it has no unique solution in the most
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general, unconstrained case [von Helmholtz, 1853;
Nunez, 1981].

Existing approaches to the electromagnetic inverse
problem fall into two broad categories: (1) ‘‘few-
parameter models’’ (i.e., those in which M 9 N, where
M is the number of parameters to be estimated in the
model and N is the number of recording sites), and (2)
‘‘many-parameter models’’ (i.e., those in which M $ N).
A well-known example of the ‘‘few parameter’’ ap-
proach is the single- or multiple-dipole model [e.g.,
Kavanaugh et al., 1978; Scherg and von Cramon, 1986;
Mosher et al., 1992], in which the current is assumed to
be represented by a few point-dipoles, the ‘‘order’’ of
the model is estimated using Chi-square or related
statistical techniques, and the best-fitting values of the
dipole parameters (locations, orientations, and magni-
tudes) are estimated using nonlinear numerical minimi-
zation techniques. A well-known example of the
‘‘many-parameter’’ approach is the ‘‘minimum-
norm linear inverse’’ [e.g., Hämäläinen and Ilmoniemi,
1984; Dale and Sereno, 1993; Hämäläinen et al.,
1993], in which the problem is underdetermined (be-
cause M $ N) and a strictly mathematical criterion is
used to select among the many solutions that fit
the data equally well. In the case of the minimum-
norm approach, the mathematical criterion is the
solution that minimizes the sum of squared current
strengths.

Here, we introduce a new probabilistic approach to
the electromagnetic inverse problem, based on Bayesian
inference [e.g., Bernardo and Smith, 1994; Gelman et
al., 1995]. Unlike other approaches to this problem,
including other recent applications of Bayesian meth-
ods [Baillet and Garnero, 1997; Phillips et al., 1997],
our approach does not result in a single ‘‘best’’ solution
to the problem. Rather, we estimate a probability
distribution of solutions upon which all subsequent
inferences are based. This distribution provides a
means of identifying and estimating the likelihood of
features of current sources from surface measurements
that explicitly emphasize the multiple solutions that
can account for any set of surface EEG/MEG measure-
ments.

In addition to emphasizing the inherent probabilis-
tic character of the electromagnetic inverse problem,
Bayesian methods provide a formal, quantitative means
of incorporating additional relevant information, inde-
pendent of the EEG/MEG measurements themselves,
into the resulting probability distribution of inverse
solutions. Such information might include constraints
derived from anatomy on the likely location and/or

orientation of current [Wang et al., 1992; George et al.,
1995; Baillet and Garnero, 1997; Dale, 1997], maximum
current strength, spatial and/or temporal smoothness
of current, etc. The Bayesian approach also provides a
way to marginalize over nuisance variables that can-
not be determined or resolved from the data. A related
approach, concerning Bayesian confidence regions,
was presented in Hämäläinen et al. [1993].

We begin with an overview of the general tech-
niques of Bayesian inference. Then, we show how
these techniques may be applied to the EEG/MEG
inverse problem and demonstrate their use in ex-
amples from both simulated MEG data and MEG data
from a visual evoked response experiment.

BAYESIAN INFERENCE

Bayesian inference (BI) is a general procedure for
constructing a (posterior) probability distribution for
quantities of interest from the measurements given
(prior) probability distributions for all of the uncertain
parameters—both those that relate the quantities of
interest to the measurements and the quantities of
interest themselves. The method is conceptually simple,
using basic laws of probability, making its application
even to complicated problems relatively straightfor-
ward. The posterior probability distribution is often
too complicated to be calculated analytically, but usu-
ally can be adequately sampled using modern com-
puter techniques, even in problems with many param-
eters. The method is outlined here; more detailed
presentations can be found elsewhere [e.g., Gelman et
al., 1995].

The starting point for BI is Bayes’ rule of probability:

P(u, y) 5 P(u 0y)P(y), (1)

where P(u, y) is the joint probability distribution for
the quantities, u and y, P(u 0y) is the conditional
probability distribution of u given y, and P(y) is the
marginalized probability distribution of y; P(y) 5

SuP(u, y) (or P(y) 5 eP(u, y)du for continuous u).
If u represents parameters about which we wish to
learn and y represents data bearing upon u, then the
probability of u given y can be constructed from Bayes’
rule as:

P(u 0y) 5
P(u, y)

P(y)
5

P(y 0u)P(u)

P(y)
. (2)
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Here, P(u) is the prior probability distribution of u,
which represents one’s knowledge of u prior to the
measurement. This is modified by the data through the
likelihood function, P(y 0u), to produce the posterior
probability distribution, P(u 0y). Since P(y) is indepen-
dent of u it can be considered a normalizing constant
and can be omitted from the unnormalized posterior
density:

P(u 0y) ~P(y 0u)P(u). (3)

As summarized in Gelman et al. [1995], ‘‘These simple
expressions encapsulate the technical core of Bayesian
inference: the primary task of any specific application
is to develop the model P(u, y) and perform the
necessary computations to summarize P(u 0y) in appro-
priate ways.’’

Bayesian inference applied to the EEG/MEG
inverse problem

Activity model

The methods of BI applied to the EEG/MEG inverse
problem are demonstrated within the context of a
model for the regions of activation, which is intended
to be applicable in evoked response experiments.
There is both theoretical and experimental evidence
that EEG and MEG recorded outside the head arise
primarily from neocortex, in particular from apical
dendrites of pyramidal cells [e.g., Allison et al., 1986;
Dale and Sereno, 1993; Hämäläinen et al., 1993]. We,
therefore, construct a model that assumes a variable
number of variable size cortical regions of stimulus-
correlated activity in which current may be present.
Specifically, an active region is assumed to consist of
those locations that are identified as being part of
cortex and are located within a sphere of some radius r
centered on some location w, also in cortex. There can
be any number n of these active regions up to some
maximum nmax, and the radius can have any value up
to some maximum rmax. The goal is to determine the
posterior probability values for the set of activity
parameters a 5 5n, w, r6, which govern the number,
location, and extent of active regions.

Probability model for activity parameters

The first step in BI is to construct a probability model
that relates the activity parameters to the measure-
ments. Let the N measurements at one instant in time

be denoted by b 5 5b1, . . . , bN6. The conditional prob-
ability of the activity parameters given the observed
data, P(a 0b), can be expressed using Bayes’ rule of
probability as

P(a 0b) ~P(b 0a)P(a) (4)

where P(a) is the prior probability for the activity
parameters and P(b 0a) is the probability of the data
given a particular set of values for the activity param-
eters. The prior probability for the activity parameters
will be set by the experimenter using physiological
information about the particular experiment being
analyzed. Because the data do not depend on the
activity parameters directly, but rather on a given
current distribution j, the function, P(b 0a), cannot be
specified until first expanding it to include the depen-
dence of the measurements on the current. This may be
accomplished by marginalizing out the current in the
joint probability of the data and current such that

P(b 0a) 5 e P(b, j 0a)D j

5 e P(b 0 j, a)P(j 0a)D j (5)

where the integral is a functional integral over all
current distributions. The function, P(b 0 j, a), is the
likelihood function of the data; there is no explicit
dependence upon a since j is all that is needed
completely to specify P(b 0 j, a). In particular, since most
evoked response experiments are repeated many times
and averaged, it is assumed that the likelihood func-
tion is Gaussian such that

P(b 0 j, a)~ exp 52 1

2 o
k,l51

N

(bk 2 7ak, j8)Ckl
21 (bl 2 7al, j8)6. (6)

Here, C is the covariance matrix of the noise or
background in the measurements and a are the for-
ward fields or measurement kernel such that if there
were no noise or background the measurements would
be related to the current by the inner product:

bk 5 7ak, j8 5 e ak(x) · j(x)d3x. (7)

We find it convenient to use an equivalent representa-
tion of Eq. 6, which has the noise covariance absorbed
into a new set of effective measurements and forward
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fields, b̃ and ã, such that Eq. 6 becomes

P(b 0 j, a) ~ exp 52 1

2 o
k51

N

(b̃k 2 7ãk, j8) 26. (8)

The function P(j 0a), which gives the probability of
any current given a particular set of activity param-
eters, needs to be constructed. Clearly, the current
should be zero outside of active regions. Furthermore,
we would like to be able to incorporate prior informa-
tion about the limits of current strength, spatial variabil-
ity, and orientation of the current within active regions.
For example, high-resolution current source density
estimates suggest that net cortical currents are oriented
predominately perpendicular to the cortical surface
[Mitzdorf, 1985]. These forms of prior information may
be incorporated in a manner that simplifies computing
the marginalization over j in P(b, j 0a), by using a
Gaussian distribution such that

P(j 0a) ~ 0Va 0
21/2 exp 521⁄27j, Va

21j86 (9)

where Va
21 is the inverse of the covariance operator

(matrix) of the current. The diagonal elements, or the
variances, serve to limit the current strength, and the
off-diagonal elements, which are related to the correla-
tion coefficients, can serve to restrict the smoothness
and orientation of the current distribution. The vari-
ance at locations that are not part of any active region
for a given a is set to zero. The experimenter needs to
set the values of the covariance matrix, based on
knowledge of the experiment to be analyzed, using
prior information about the strength, orientation, and
spatial variability of current within active regions.

The full probability model for the activity param-
eters is

P(a 0b) ~P(a) 0Va 0
21/2

e exp 32 1

2
5o
k51

N

(b̃k2 7ãk, j8) 2 1 (j, Va
21j864D j (10)

and P(a) is set by the experimenter. The integral over
the current may be constructed using the eigenvalues,
5lu(a)6, and normalized eigenvectors, 5cu(a)6 (u 5 1, . . . , N),
of the matrix Gk,l(a) 5 7ãk, Vaãl8; all of which may be
calculated using standard numerical techniques. Using
these eigenvalues and eigenvectors the formula for the

posterior probability distribution becomes

P(a 0b) ~ P(a)exp 32
1

2 5ok,u,l
b̃k

ck,u(a)cl,u(a)

1 1 lu(a)
b̃l

1 o
u

ln(1 1 lu(a))64. (11)

This formula is well behaved and is not overly sensi-
tive to very small eigenvalues. Moreover, it is rela-
tively simple to compute because it depends only on
the N by N matrix, Gk,l(a).

Sampling the posterior

The next step in BI is to use the posterior probability
distribution in order to answer questions related to the
activity parameters in terms of probability. Examples
of such questions include: what is the probability that
there were m regions of activity? What are the loca-
tions for these active regions at a 95% probability level?
In cases where the number of different possible sets of
activation parameters is small, one can evaluate the
complete posterior distribution. Generally, however,
the number of different possible sets of activation
parameters is large. In such cases, the method of
Markov Chain Monte Carlo (MCMC) can be used to
generate a sample of sets of activity parameters that
are distributed according to the posterior distribution.
This is known as sampling the posterior, the tech-
niques for which are described in detail elsewhere
[e.g., Gelman et al., 1995].

Examples

Although the methods described above apply to
models for both EEG and MEG data, in the remainder
of this report, we use MEG data to illustrate the
properties of the approach. Both simulated and empiri-
cal MEG data for a Neuromag-122 whole-head system
were used [Ahonen et al., 1993]. The physical setup of
the actual MEG experiment was used to determine the
location of the subject’s head relative to the sensors in
the simulated data examples. In addition, an anatomi-
cal MRI data set acquired from the subject in the MEG
experiment was used to determine the location of
cortex (actually gray matter) using MRIVIEW (Fig. 1),
a software tool developed in our laboratory [Ranken
and George, 1993]. About 50,000 voxels were tagged
and the normal directions for each of these voxels was

r Schmidt et al. r

r 198 r



then determined by examining the curvature of the
local tagged region.

A spherically symmetric conductivity model was
used to calculate the expected measurements given a
current source both for the simulated data and in the
likelihood calculations [Sarvas, 1987]. The same prior
assumptions were used with the simulated data sets,
with only minor changes for the real data example.
Specifically, the prior probability function P(a) was
uniform so that each set of activation parameters had
the same prior probability. The number of active
regions was allowed to range from 0 to 8, and the
radius of any region of activity was allowed to range
from 0 to 10 mm.

The covariance matrix was factored such that

bgVa (i, j) 5 sa (i)sa (j)r(i 2 j)bgV(i, j) (12)

where b and g are orientation indices, i and j are
location indices, sa(i) is the standard deviation at
location i, r(i 2 j) is the spatial correlation function,
and bgV(i, j) is the orientation covariance. The correla-
tion function was chosen to be a Gaussian with zero
mean and 7 mm standard deviation, which imposes
spatial smoothness on scales of ,7 mm or less. Because
of this prior information concerning spatial correla-
tion, the continuous current distributions and integrals

of the previous section may be well approximated by
discrete distributions and sums over the volume ele-
ments (voxels) that were tagged from the anatomical
MRI data. For example, in evaluating the posterior
probability value using Eq. 11, the matrix G is calcu-
lated in the following examples by approximating the
continuous integral with a sum over tagged voxels.
This is a good approximation because the covariance
operator has a correlation length of 7 mm, which is
larger than the voxel dimensions of 2 mm on a side.

To complete the specification of the covariance
operator, a value of 2 nAm was used for sa(i) at all
locations in active regions and 0 nAm elsewhere. The
orientation covariance was chosen such that there was
no correlation between the orientations at different
locations and the orientation distribution at any given
location was symmetric with respect to the direction
normal to the cortical surface at that location and had a
mean equal to the cortical norm direction and a
standard deviation of 30°. Unlike other recent imple-
mentations of cortical constraints in distributed in-
verse solutions [e.g., Dale and Sereno, 1993; Baillet and
Garnero, 1997], this procedure results in a distribution
of orientations around the perpendicular, not a fixed
normal orientation.

Finally, the same noise was added to all simulated
data sets, which was Normal with a standard

Figure 1.
Gray matter regions are tagged (in red) from anatomical MRI data. These tagged voxels constitute
the anatomical model used to implement the cortical location and orientation prior information.
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deviation of 10 fT. The values used here in the
prior probability distribution are meant to be an
example of what one might choose for a MEG analysis
and should be chosen for each particular MEG data
set.

Example 1

The location and extent of the active region used to
generate the simulated MEG data are shown in Figure
2. The bounding radius of the active region was 5 mm
and the current dipole strength at each voxel was 2
nAm oriented in the cortical normal direction. A plot
of the simulated data and some views of its field
pattern are shown in Figure 3. Ten-thousand sam-
ples were drawn from the posterior distribution
using a MCMC algorithm. The program ran over-
night, not having been optimized, on a current per-
sonal computer. It took about 600 samples to progress
from the starting point, which had a low probability to
one that had a high probability and was therefore
representative of the posterior distribution. Only the
final 9,000 samples, a few of which are shown in Figure
4, were used in making probabilistic inferences as
discussed below. All of the samples shown in Figure 4
are among the 95% most probable and therefore fit
both the data and the prior expectations quite well.
Any of these could have produced the given MEG
data; yet there are clearly vast differences among the
samples. The number of active regions ranges from 1 to
5, the sizes of the regions vary greatly, and the

locations of the active regions vary nearly across the
entire tagged region of the brain (when considering all
9,000 samples). This variability is a representation of
the degree of the ambiguity of the inverse problem for
these MEG data, even with the prior information
present.

Despite the degree of variability among the samples
in Figure 4, a property common to all is apparent;
namely, an active region in the dorsal, lateral region of
the right hemisphere. A feature such as this, common
to all or most of the samples, is associated with a high
degree of probability. This probability can be quanti-
fied because the MCMC samples are distributed accord-
ing to the posterior probability distribution. The small-
est set of voxels that contains the center of the active
region in the dorsal, lateral region in 95% of the
samples was identified and is shown in Figure 5. This
region, which contains a center of activity with a
probability of 95%, in fact encompasses the region of
activity that was used to produce the simulated data
set (Fig. 2). Although it is good to see this agreement, it
is not sufficient to justify this or any MEG inverse
method based solely on whether it produces results
consistent with the true active regions because any of
the sets of active regions shown in Figure 4 also could
have been used to generate the same MEG data. Any
robust and highly probable result or inference, there-
fore, should be consistent with the wide range of
possible sets of active regions, as is the result in Figure
5 by construction. This is a very important feature of
BI, which is necessarily missing from any other analy-
sis method that only considers just one possible result,

Figure 2.
Maximum intensity projection of the location and extent (in black) of the active region used to
generate simulated MEG data for Example 1.
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even if it happens to be the most likely result within a
given model.

In addition to the information about the locations of
probable regions of activity, the Bayesian approach
combined with this activity model also provides proba-
bilistic information about the number and size of
active regions. The posterior distribution for the num-
ber of active regions was constructed by histograming

the number of regions across the MCMC samples.
This histogram is shown in Figure 6a. One active
region is the most probable; however, two active
regions are quite likely as well. Although the location
of one active region was identified above, the location
of a second could not be well localized because it
occurred in a wide range of locations across the
MCMC samples. Assuming there was only one active

Figure 3.
The simulated data used in Example 1 as a function of channel
number. (a): To aid in visualizing the field pattern associated with
this data panels (b) and (d) display iso-amplitude contours of a field
on the sensor helmet surface that is consistent with the data shown
in (a). Positive fields (flux emerging from the head) are displayed in

light shades and negative fields (reentering flux) are shown in dark
shades. (b) is a polar projection, viewing the helmet surface from
above, for which the relative position of the sensors and orienta-
tion of the subject’s head are shown in (c). The sensors labeled a, b
and g in (c) correspond to those with the same labels in (d).
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region present, we can obtain information about its
size by histograming the size of active regions in the
MCMC samples that had only one region present. This
histogram is shown in Figure 6b and represents the
posterior probability for the bounding radius of the
active region, assuming that there was only one region
active. Regions ,2 mm and .8 mm in radius are very
unlikely, whereas regions that are ,5 mm in radius are
likely. The size of the region used to produce the
simulated data was 5 mm. We believe that much of the

information on size derives from prior information
about location, orientation, and strength of neural
current.

Other inferences could be drawn using the MCMC
samples in a similar manner. For example, one could
construct the probability for the size of the active
region, assuming there was one centered within the
95% probability region shown in Figure 5, rather than
assuming there was only one active region present
throughout the entire head as was done above.

Figure 4.
A few of the 9,000 samples drawn from the posterior probability distribution of Example 1. Each
panel shows three views of the maximum intensity projection of all of the active regions from a single
sample. All of these samples could have produced the same MEG data set.
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Example 2

A second simulated data set was generated using the
three active regions of different sizes shown in Figure 7.
The most anterior region is centered at the same location as
the region in the first example except for this case it has a
bounding radius of 8 mm. A current dipole strength of 2
nAm oriented normal to cortex was used at each voxel
within this bounding sphere. The nearby more posterior
region had a bounding radius of 5 mm and a current
dipole strength of 2.5 nAm was used. The most posterior
region had a 3 mm bounding radius and a current dipole
strength of 1.5 nAm. The same noise and prior assump-
tions where used here as for the first example. Figure 8
shows a plot of the resulting simulated data and the field
pattern.

Ten-thousand samples were drawn from the poste-
rior, of which the final 8,000 were used to make
probabilistic inferences. Just as in the first example, we
expect there to be many different locations where
activity may be found in these samples. Since we are
interested in those locations that contain activity in
most of the samples, it is useful to make a histogram of
the locations of the centers of active regions across the
8,000 samples. This histogram is shown in Figure 9. It
is relatively simple to determine those regions that
contain centers of activity at a 95% probability level
from this histogram by centering each region on the
local peaks in the histogram and expanding the radius
of each region until a 95% level is reached. This was
done for the three peaks present in Figure 9 and is
shown in Figure 10. These regions are consistent with

the locations of the active regions used to generate the
simulated data, but what is more important is that
these regions are consistent with at least 95% of the
likely sets of active regions that could have also
generated this data. This is true even when allowing a
variable number of active regions of variable extent.
Furthermore, these regions are not necessarily the only
regions that could have been active. As shown in
Figure 11, there is significant probability that more
than three regions may have been active. Shown in
Figure 10 are the locations of those active regions that
occurred consistently in well-localized areas across the
MCMC samples. Other possible active regions were
not so well localized.

In order to learn about the extent or size of each of
the active regions localized in Figure 10, a histogram of
the radius of the active regions present in each of
the areas shown in Figure 10 across the samples
was made. This represents the posterior probability
for the size of active regions, assuming there was an
active region in each of these areas. These plots are
shown in Figure 12. Recall that the radii of the actual
regions used to generated the data were 8 mm, 5 mm,
and 3 mm for the regions in anterior-to-posterior order.
The agreement between actual radii and posterior
probabilities is especially remarkable given the varia-
tion in the current strengths of the regions used to
generate the data. Such information on extent can be
very useful, is not present in most other current
methods for analyzing MEG data, and is affirmation of
the likely utility of anatomical and physiological prior
information.

Figure 5.
Maximum intensity projections of the location and extent of a region containing a center of activity at
a 95% probability level in Example 1.
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Example 3

The final example, based on MEG data from a visual
evoked response experiment [Aine et al., 1997a], illus-
trates the feasibility and the value of the approach with
actual data. In order to examine the sensitivity of the
Bayesian approach to detect known features of human
visual cortex organization, we compared Bayesian
analyses of MEG responses to visual stimuli in the left
and right visual fields. Based on the crossed anatomi-
cal projections of the visual fields to the brain and on
previous lesion, MEG, and fMRI studies in humans

[e.g., Horton and Hoyt, 1991; Sereno et al., 1995; Aine
et al., 1996], initial cortical activation for stimuli in the
left and right visual fields should occur near the
calcarine fissure in the occipital region of the contralat-
eral hemispheres.

The visual stimuli were black-white circular sinusoi-
dal patterns, 1.0° in diameter, presented near the
horizontal meridian at 6.2° in the left and right visual
fields. The stimulus duration was 250 ms and the
average interstimulus interval was 1.0 s. One-hundred
epochs (from 100 ms before each stimulus to 400 ms
after each stimulus) were averaged; bad channels were
identified and removed before data analysis. The
variance of the noise was estimated by calculating the
variance of the prestimulus epoch. The same model
and the same prior information used in Examples 1
and 2 were used for the Bayesian analyses in this
example, except that the standard deviation of
the current strength was assumed to be 8 nAm in-
stead of 2 nAm. This value is consistent with the
maximum current strength measurements in Okada et
al. [1998].

The model was applied separately to the data for
each visual field stimulus at 10 ms intervals from 110
ms to 160 ms poststimulus. Ten-thousand samples of
the posterior probability were generated for each
latency. The results to be presented here are from 110
ms and 150 ms following stimulus onset; latencies that
should include robust activation of the calcarine region
[Aine et al., 1996]. Figure 13 presents the field distribu-
tions for these data.

The top of Figure 14 presents maximum intensity
projections of the probability of activity for each voxel
in the anatomical model for the left and right visual
field stimuli at two different latencies following stimu-
lus onset (110 and 150 ms, respectively). This probabil-
ity distribution was constructed by calculating the
fraction of MCMC samples in which each voxel
had activity and is a marginalization of the full
posterior probability distribution onto the space of
anatomical voxels. The bottom of Figure 14 presents
the posterior probability marginalized onto the num-
ber of active regions for each latency and visual field
combination.

For the left visual field stimulus, maximal probabil-
ity of activation at 110 ms was located in the right
(contralateral) hemisphere, centered upon the calca-
rine region. This pattern was reversed for the right
visual field stimulus at 110 ms, consistent with the
predictions from anatomy, and from the lesion, fMRI,
and previous MEG studies cited above. In order to

Figure 6.
The posterior probability for (a) the number of active regions
present in Example 1 and (b) the radius of the sphere bounding
activity in Example 1, assuming there was only one active region
present.
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show this more clearly, regions that contained activity
at a probability level of 95% were identified and are
shown in greater detail in Figure 15, which depicts
relative probability of activation within these regions
on a color scale in three orthogonal slices through the
calcarine region and a three-dimensional rendering of
the occipital region.

For both the left and right visual field stimuli, the
most probable number of active regions at 110 ms
latency was two, suggesting that active regions in
addition to the most probable ones in the calcarine
regions of each hemisphere were needed to account for
the data and prior information. However, these re-
gions were inconsistently located over the Monte Carlo

Figure 8.
The simulated data of Example 2, (a) as a function of channel number and (b) as a field pattern in a
top projection view that is described in Figure 3.

Figure 7.
Maximum intensity projections of the location and extent of the active regions used to generate the
simulated MEG data for Example 2.
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samples, as indicated by the relatively widespread
regions of low probability in addition to the focus of
high probability in Figure 14.

At 150 ms, the most probable number of active
regions increased to five for the left visual field
stimulus and to three for the right visual field stimu-
lus. Regions of highest probability in each case were
located in parieto-occipital and temporo-occipital re-
gions of the hemisphere contralateral to the visual field
stimulated. These results are consistent in general
terms with MEG and fMRI evidence of multiple
regions of extra-striate activity [Aine et al., 1997a,b;
Shah et al., 1998], although much additional work is

needed to obtain a definitive comparison of Bayesian
inference, multiple-dipole, and fMRI estimates of activ-
ity in such experiments.

Two additional features of the results in Example 3
should be noted. First, although maximal probability
of activation at the 110 ms latency was indeed located
in the opposite hemisphere, there exists sizable prob-
ability for activity in the ipsilateral hemisphere near
the midline. The extent of the 95% probability regions
shown in Figure 15 is indicative of both the extent of
estimated activation and the degree of error or uncer-
tainty in that estimate even allowing for the possibility
of different numbers of active regions of variable

Figure 9.
Maximum intensity projections of the histogram of centers of active regions across the MCMC
samples in Example 2, shown on top of surface renderings of cortex. The color bar shows the
mapping between shade of grey and histogram amplitude as a percentage of the number of samples
used.

Figure 10.
Maximum intensity projections of the location and extent of the three regions that were found to
contain centers of activity at a probability level of at least 95% in Example 2.
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extent. Second, although not shown in detail here,
analyses at other latencies suggest a progressively
increasing number of probable regions of activation, in
both the ipsilateral and contralateral hemispheres,
over the latency region from 110–160 ms following
stimulus onset. It will be of considerable interest to
explore the time dependence of the Bayesian inference
analyses in relation to evidence for multiple, function-
ally organized areas of striate and extra-striate visual
cortex and to examine the value of temporal prior
information (not included in the current activation
model) in the form of, for example, temporal covari-
ance constraints.

DISCUSSION

We have demonstrated a method for analyzing
EEG/MEG data that directly addresses the ill-posed
character of the electromagnetic inverse problem by
allowing probabilistic inferences to be drawn about
regions of activation from a large number of possible
solutions that both fit the data and the prior expecta-
tions made explicit by the Bayesian approach. In
addition, we have introduced a model for the current
distributions corresponding to neural activity that
produce MEG (and EEG) data that are not overly
restrictive, allow extended regions of activity, and can
easily incorporate prior information such as anatomi-
cal constraints from MRI [Dale and Sereno, 1993;
George et al., 1995].

Other investigators have applied the Bayesian for-
malism to various models for EEG or MEG inverse

problems [e.g., Phillips et al., 1997; Baillet and Garnero,
1997]. Any Bayesian approach requires: (1) a model
that relates the EEG/MEG measurements to underly-
ing neuronal currents, and (2) an implementation of

Figure 11.
The posterior probability for the number of active regions in
Example 2.

Figure 12.
The posterior probability distributions for the size of the three
active regions whose centers are shown in Figure 10 in anterior to
posterior order. The true sizes of the regions used to generate the
simulated data are: (a) 8 mm, (b) 5 mm, and (c) 3 mm.
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that model within the Bayesian formalism, including
the nature and parameterization of independent prior
information. The approach presented here differs from
those of Phillips et al. [1997] and Baillet and Garnero
[1997] both in the form of the activity model employed
and in the manner in which the Bayesian formalism is
exploited. Much additional work is needed to determine
which combination of source model and prior information
is most useful for the electromagnetic inverse problem.
However, we believe it is clear even at this early stage that
the strategy of estimating the probability distributions for
model parameters (e.g., the number, location, and extent of
active regions in the present model) is a richer, more

robust, and more realistic basis for inference than estimat-
ing a single ‘‘best-fitting’’ solution within a given model.
As we have demonstrated, considering only one solution,
even if it is the most likely, is not necessarily representative
of the range of possible solutions that both fit the data and
the prior information. Only by considering this full range
of possible solutions can one construct robust, reliable
inferences from the data.

Bayesian approaches to data analysis in general
are often criticized for the lack of objectivity asso-
ciated with prior information [e.g., Efron, 1986]. Those
criticisms apply as well to Bayesian applications of
the electromagnetic inverse problem, and it is essential

Figure 13.
The field patterns for the real MEG data in Example 3 in a top projection view that is described in
Figure 3.
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to attempt to justify both the choice of the source
model and the nature and specific values of the
prior information as thoroughly and rigorously as
possible. However, it is important to note that any
attempt to solve the electromagnetic inverse problem
forces the investigator to make analogous assump-

tions, even though they are rarely explicit. For ex-
ample, widely used inverse approaches such as dipole
models, minimum norm, FOCUSS [Gorodnitsky et al.,
1995], or LORETA [Pascual-Marqui et al., 1994] all
require restrictive assumptions regarding the nature
and form of the allowable current distributions. A

Figure 14.
Posterior probability distributions for the real MEG data of
Example 3, marginalized onto anatomical location and onto num-
ber of active regions. The probability of activation as a function of
location distributions are shown as maximum intensity projections
over surface renderings of anatomy in the top half of the figure.

The color bar shows the mapping between shades of grey and
probability. The distributions for the number of active regions are
shown in the bottom half of the figure. These results show
evidence for activation contralateral to the stimulus at both 110 ms
and 150 ms latencies.
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Bayesian approach: (1) generalizes this strategy by
weighting the possible current distributions on a proba-
bilistic continuum instead of restricting the possibili-
ties to those that are allowed, and (2) requires that the
assumptions and prior information be made explicit
and their associated prior probability distributions be
justified explicitly. This formal, explicit treatment of
prior information in Bayesian approaches is, therefore,
a useful general feature for applications to inverse
problems.

Finally, we emphasize that the activity model and
examples described here are meant to illustrate the
techniques and capabilities of BI in EEG/MEG and
that other activity models, conductivity models, or sets
of parameters of interest might be more appropriate
for different experimental conditions. Our major objec-
tive is to present and illustrate the value of the

Bayesian inferential approach, not to argue for the
universal applicability of the particular activity model
and prior information employed. Nevertheless, we
believe the activity model described here is useful for
many functional imaging applications and can be
readily extended in a number of ways. These include
incorporating temporal prior information in the form
of temporal covariance constraints [e.g., Dale and
Sereno, 1993], or explicit temporal models for evoked
response studies. In addition, the Bayesian approach
provides a natural means for incorporating informa-
tion from other functional imaging modalities such as
PET or fMRI [George et al., 1995; Belliveau, 1997; Dale,
1997]. The latter can be readily achieved with the
Bayesian framework and with this activity model by
assigning prior probabilities to possible locations of
active regions based on results from the other modality

Figure 15.
Four views of a region that was found to contain activity at a 95%
probability level in Example 3, for both a left and a right visual field
stimulus, at 110 ms latency. The two-dimensional views show the
regions (in color) within the anatomical MRI data (grey-scale).
Shades of color represent relative probability within the regions on
a temperature-like scale; bright yellow represents the highest
probability. The horizontal and coronal views are from the top and

from the back of the subject, respectively; the sagital views are
from the left for the left visual field stimulus panel and from the
right for the right visual field stimulus panel. The three-dimensional
views are useful for showing the location of the regions relative to
other brain structures. These results indicate that the probability
of activity is maximal in the calcarine region of the hemisphere
contralateral to the visual field stimulated.
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or modalities. Such a Bayesian formulation of multimo-
dality integration would yield an inherently probabilis-
tic result in which the quantity estimated would be the
probability of activation as a function of both space
and time.
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