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Abstract: Functional connectivity between two voxels or regions of voxels can be measured by the
correlation between voxel measurements from either PET CBF or BOLD fMRI images in 3D. We propose to
look at the entire 6D matrix of correlations between all voxels and search for 6D local maxima. The main
result is a new theoretical formula based on random field theory for the p-value of these local maxima,
which distinguishes true correlations from background noise. This can be applied to crosscorrelations
between two different sets of images—such as activations under two different tasks, as well as
autocorrelations within the same set of images. Hum. Brain Mapping 6:364–367, 1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

Functional connectivity between two brain regions
is defined as the correlation between pairs of measure-
ments of cerebral blood flow (PET) or blood oxygen-
ation level (fMRI) taken from several scans on the same
subject, over several different subjects, or a combina-
tion of both.

Two indirect approaches have been suggested for
assessing functional connectivity. The first is analysis
of correlations between a small number of preselected
regions or voxels [Horwitz et al., 1996], or to fit
Structural Equations models [McIntosh and Gonzalez-
Lima 1994]. Bullmore et al. [1996] have looked at more
extensive matrices of correlations between activated
voxels, but no thresholding is attempted. More re-
cently, Friston et al. [1997] have used linear models

involving interactions with a task. This method looks
for the effect of the task on the correlation, such as a
change in correlation provoked by the task. Here, we
are only interested in the simpler problem of the
presence or absence of the correlation.

The second approach is characterization of correla-
tions by a small number of spatial modes, found using
a simple Singular Value Decomposition of the scans 3
voxels matrix [SVD: Friston et al., 1993, SSM: Strother
et al., 1995]. To characterize the effects of covariates,
several methods have been proposed, all based on an
SVD of the covariates 3 voxels covariance matrix [PLS:
McIntosh et al., 1996; SVD-CVA: Friston et al., 1995,
MLM: Worsley et al., 1997].

In this article we suggest looking at correlations
between all voxels. This involves a very large amount
of calculation; for 3D data, the resulting correlation
‘‘image’’ is 6D. The main problem is where to put the
threshold in order to screen out null correlations that
are due to chance alone, leaving only the most signifi-
cant correlations that are due to real underlying connec-
tivity. As with other statistical maps, the threshold can
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be set so that the p-value of the maximum correlation is
controlled at, say, 0.05.

A related problem occurs in linear models for image
data with spatially varying covariates. An example is
testing for a linear relation between subtracted images
from two modalities, such as PET and fMRI. Another
example, which we shall use in this study, is testing for
a linear relation between subtracted images under two
different tasks. In these example, we are relating two
images; the usual random field theory [Worsley et al.,
1996] only applies to linear relations between one
image and fixed external covariates (such as age, task
difficulty, etc.) which are the same for every voxel. We
shall show how this problem and the previous prob-
lem of functional connectivity are special cases of the
more general crosscorrelation field, which we now
define.

CORRELATION FIELDS

The crosscorrelation field

Suppose that we have n pairs of 3D images. Denote
the values of the ith pair of images at a 3D voxel with
coordinates (x, y, z) by Xi(x, y, z) and Yi(x, y, z), i 5
1, . . . , n. The values are centered over images by
subtracting the mean value at each voxel, so that Si

Xi(x, y, z) 5 0 and SiYi(x, y, z) 5 0. Then the 6D
crosscorrelation field at ‘‘connexel’’ (x1, y1, z1, x2, y2, z2) is

R(x1, y1, z1, x2, y2, z2)
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This is illustrated in Figure 1D. This field is then
searched for local maxima, defined as 6D connexels
which have values larger than all 12 neighbors.

The autocorrelation field

Setting Xi 5 Yi—that is, crosscorrelating Yi with
itself—produces the 6D autocorrelation field, whose
values are the correlations between all pairs of voxels
of Y1, . . . , Yn. This is the statistical map used to assess
functional connectivity. Note that voxels separated by
less than about one FWHM should be ignored, since
they will have high correlation due to the partial
volume effect. Note also that only half the remaining

voxel pairs should be considered, since R(x1, y1, z1, x2,
y2, z2) 5 R(x2, y2, z2, x1, y1, z1) in this case.

The homologous correlation field

Setting (x1, y1, z1) 5 (x2, y2, z2)—that is, restricting the
crosscorrelation field to its ‘‘diagonal’’ elements (see
Fig. 1), produces the 3D homologous correlation field
whose values are the correlations between Xi and Yi at
the same voxel. This is the statistical map for assessing
a linear relationship between Yi and a spatially varying
covariate Xi.

Random field theory

Note that t-statistics T for testing for a linear relation-
ship are equivalent to correlations R, since T 5
În 2 2 R/Î1 2 R2. Hence the homologous correlation
field can be transformed into a field that has a t-
distribution with n 2 2 degrees of freedom at every
point. Curiously enough, even though such a field has
a t-distribution at every point, it is not a t-field as
defined by Worsley et al. [1996], and so the theoretical
results for P-values of maximal of t fields cannot be
used to assess the p-values of maxima of homologous
correlation fields.

The problem is quite subtle. The crosscorrelation
field can be transformed to a t-field if we fix one of the
voxels, say (x1, y1, z1). Then we look at the statistical
image of all voxels (x2, y2, z2) that correlate with the
single fixed voxel. These are the vertical and horizontal
lines in Figure 1. This produces the standard covarying
voxel analysis that has been successfully used by many
authors to investigate functional connectivity between
a single voxel and all others. In other words, the
crosscorrelation field can be transformed to a t-field
along any ‘‘horizontal’’ or ‘‘vertical’’ line, but not along
the ‘‘diagonal’’ (the homologous correlation field) nor
in the interior (the cross- or autocorrelation fields).
New theoretical results are needed.

If we fix one of the fields, say X1, . . . , Xn, and regard
this as the covariate, then the resulting t-statistic field
is nonstationary, and the random field theory of Adler
[1981] does not apply without serious modification.
The way around this difficulty is to make Xi a station-
ary Gaussian random field, as well as Yi, i 5 1, . . . , n.
This makes the t-statistic field stationary, but it is still
not a t-field. In fact, it turns out to be slightly rougher
than a t-field based on a fixed spatially invariant Xi, so
that its effective FWHM is lower, resulting in slightly
higher P-values and critical thresholds.

We have extended random field theory to cover the
crosscorrelation, autocorrelation, and homologous cor-
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relation fields to find approximate p-values for local
maxima searched over regions of arbitrary shape or
size [Cao and Worsley, 1998]. The resulting approxi-
mate P 5 0.05 critical thresholds for n 5 40 images, a
1000cc spherical search region, and 20-mm FWHM
smoothing are shown in Table 1, all transformed to a
Gaussian scale for easier comparison. Note that the
homologous correlation thresholds are slightly higher
than the usual t-field thresholds for correlations with a

single covarying voxel. The auto- and crosscorrelation
thresholds are considerably higher due to the higher
dimensional search.

APPLICATIONS

Preliminary analysis of a PET study of 8 subjects 3 6
scans per subject during a vigilance task [Paus et al.,

Figure 1.
A simulated 2D crosscorrelation field R for n 5 20 1D scans, X and
Y. Dotted lines link the voxels where three simulated positive
correlations of 0.85 were added to smoothed white noise. The 1D
homologous correlation field is the ‘‘diagonal’’ (dashed line) and
the 1D covarying voxel correlation fields for a fixed X voxel are the
vertical lines. Local maxima of crosscorrelation and homologous
correlation fields are indicated. The previous random field theory

can be used for assessing the P-value of the maximum of the
covarying voxel correlations (vertical or horizontal lines), but new
results reported here are required for the 1D homologous correlation
field and the 2D crosscorrelation field. Using these results, the P , 0.05
threshold contour is shown by thick lines: R . 0.614 for the homolo-
gous correlation field, and R . 0.744 for the crosscorrelation field. The
three simulated correlations are all detected at P , 0.05.
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1997] revealed several autocorrelations that confirmed
those already found using a covarying voxel analysis.
Homologous and crosscorrelations for subtracted PET
images under two cognitive tasks (Petrides et al., in
preparation) revealed no significant correlations, prob-
ably due to the very small number of images (9).
Details of these analyses will be reported elsewhere.

CONCLUSIONS

This method examines correlations directly, provid-
ing a critical threshold above which the correlations
are significant. It can be used for any Gaussian image
data, such as surface displacements or nonlinear defor-
mations, which might be useful for finding anatomical
connectivity, analogous to functional connectivity. It
can also be used to correlate the residuals from any
linear model, so that confounding effects such as time
trends can be removed. A comparison with SVD
approaches will be reported elsewhere.

The main drawbacks are computational effort, data
storage, and display of high-dimensional data. At the
moment, we have used large voxels (3 mm) to cut
down computation time, and we only store correla-
tions above a certain threshold, to cut down on
storage. These are then displayed as arrows linking the
3D voxels that are significantly correlated. We also
compute the 3D ‘glass’ correlation images, defined as

R*
1(x1, y1, z1) 5 max

x2, y2,z2
R(x1, y1, z1, x2, y2, z2),

R*
2(x2, y2, z2) 5 max

x1, y1,z1
R(x1, y1, z1, x2, y2, z2)

These are clearly identical for autocorrelation fields.
Another drawback, which we are working on, is that
the theoretical P-values are only accurate if the voxel
size is small relative to the FWHM, otherwise a
straightforward Bonferroni correction is better.
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TABLE I. P 5 0.05 critical thresholds for the maximum
correlation of n 5 40 images inside a 1000cc spherical

search region with 20-mm FWHM smoothing

Statistical field
Correlation
threshold

Gaussianized
threshold

3D Gaussian field (for com-
parison only) — 4.16

3D covarying voxel correla-
tions, (x1, y1, z1) fixed 0.618 4.25

3D homologous correlations,
(x1, y1, z1) 5 (x2, y2, z2) 0.648 4.52

6D autocorrelations, Xi 5 Yi 0.799 6.18
6D crosscorrelations 0.809 6.32
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